Archives for ucla

NDN Project 2012-2013 Annual Report

We finally published our annual report covering our activities from Sept 2012 through August 2013.  We excerpt the executive summary here, for the entire report see http://named-data.net/wp-content/uploads/2013/10/ndn-annualreport2012-2013.pdf:

Today’s Internet’s hourglass architecture centers on a universal network layer (i.e., IP) which implements the minimal functionality necessary for global interconnectivity. This thin waist enabled the Internet’s
explosive growth by allowing both lower and upper layer technologies to innovate independently. However, IP was designed to create a communication network, where packets named only communication endpoints. Sustained growth in e-commerce, digital media, social networking, and smartphone applications has led to dominant use of the Internet as a distribution network. Distribution networks are fundamentally more general than communication networks, and solving distribution problems via a point-to-point communication protocol is complex and error-prone.

The NDN project proposes an evolution of the IP architecture that generalizes the role of this thin waist, such that packets can name objects other than communication endpoints. The name in an NDN packet can be anything — an endpoint, a data chunk in a movie or a book, a command to turn on some lights, etc. This conceptually simple change allows NDN networks to use almost all of the Internet’s well-tested engineering properties to solve not only end-to-end communication problems but also content distribution and control problems. Based on three decades of experience with the strengths and limitations of the current Internet architecture, the design also builds in fundamental security primitives (via signatures on all named data) and self-regulation of network traffic (via flow balance between Interest and Data packets). We recognize that any new architecture must be incrementally deployable over the current Internet, and we explicitly consider factors that will facilitate user choice and competition as the network evolves.
Read More