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Introduction  
This report discusses the design and implementation of authenticated lighting control, as an example of 

actuation in Building Automation Systems (BAS)
1
, using Named Data Networking (NDN). It describes the 

application motivation and outlines preliminary designs for device bootstrapping, assigning permissions to 

applications, and authenticated control. Additionally, it reviews our testbed implementation, deployment 

and initial testing. The purpose of this document is to provide a brief overview of work-in-progress. The 

security approaches described here are treated in more detail in an upcoming paper created in collaboration 

with the NDN security group at UC Irvine (Burke et al., 2012). 

Motivation  
NDN is a newly-proposed networking architecture that shifts the “thin waist” of the Internet from 

IP's host-centric model to a data-centric model, together with two important consequences. First, 

data are named by applications, and the network directly uses these data names, rather than host 

addresses, for packet delivery. Second, each name is associated with a cryptographic key, which 

is used to secure data directly (Zhang et al., 2010). 

 

In the work described here, we explore lighting control over NDN as an example component of a 

Building Automation System (BAS), which in turn is an example of an “instrumented 

environment” or “cyberphysical system.”  BAS provides an interesting and challenging 

application domain for NDN because information-centric networking is generally discussed in the 

context of large scale content dissemination, as opposed to control, actuation, or remote 

execution. Lighting represents a broad class of actuators while posing limited physical safety 

concerns in comparison with, for example, motor control. Additionally, there is increasing use of 

IP-based networking of lighting fixtures in new architectural and entertainment deployments. 

Application Context 
IP networking is now common as the backbone of modern BAS, both within individual systems, 

such as lighting, and to interconnect various systems, such as lighting, HVAC, and energy 

management. (Often, IP is used to interconnect controllers that use legacy serial protocols or 

contact closures to control individual devices). To secure a BAS, current practice typically relies 

on physical or VLAN-based segregation. Unfortunately such physical or logical segregation not 

only requires advanced networking expertise to set up and maintain, but also makes 

interoperability with IT systems difficult and configurations brittle to change. Segregating the 

networks physically or through VLANs limits the very interoperability—between, say, energy 

management and lighting control—promised by IP based control. Moreover, this segregation is 

often temporarily or permanently violated in order to provide web access to some devices—e.g., 
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allowing a dedicated piece of equipment Internet access so that it can download firmware 

updates. In addition, IP addressing (and other configuration information) for devices is often 

hard-coded in at least some applications running on the network, making the infrastructure 

changes painful to implement. The lack of available IPv4 addresses and deployment of NAT 

further complicate the access and interoperability of these networks. 

 

Figure 1 illustrates a common context for lighting control (itself shown in the upper part of the 

diagram) as part of a larger building automation system.  It is often deployed simultaneously with 

heating, ventilation, and air conditioning (HVAC) control, energy monitoring, and other building 

systems. While it may share physical network infrastructure in some cases, control traffic for each 

system may be isolated to particular VLANs, causing challenges for integrated monitoring and 

user-facing applications. 

 

Figure 2 shows our working abstraction of the building automation context for recent 

development, including the addition of critical control (e.g., fire / life-safety systems).  It includes 

the following components: 

 

• Fixtures and lighting interfaces – the lights themselves and their NDN gateways, 

embedded controllers connected to the lights via some legacy protocol (including IP). 

Eventually this functionality may be contained entirely in lights themselves. 

• Configuration manager – an administrative process that assigns names and authorizes 

keys.  

• Controllers – one or more controllers that affect lighting attributes (e.g., intensity).   

Figure 1.  Building automation context. 

 



• Fire / life-safety – a special category of process that can override control of other 

processes control of the fixtures to, for example, turn lights on or off in case of an 

emergency.  

• Environmental monitoring – processes that have read-only access to lighting attributes. 

  

The “Building Services” in Figure 2 are considered to be processes with NDN connectivity, not 

hosts with IP connectivity.  

Benefits of Name‐based Networking 

With this motivation and context in mind, we describe some of the potential benefits of using 

NDN to implement name-based networking in BAS that are consistent across applications and 

lower network layers, rather than relying on various application layers to translate network 

addresses / configuration to and from names. 

 

In addition to using standard IP network naming approaches such as DNS, in many practical 

scenarios, BAS platform manufacturers provide middleware APIs (both public and internal to the 

manufacturer) that abstract away the addressing and protocol details.  For example, an integration 

server may provide a programming interface that enables “light #11” to be addressed within 

applications and UIs as BUILDING_A.ROOM_401.LIGHT.11, and the middleware would 

provide the mapping from this application-meaningful name to the specific VLAN/IP 

address/Port-number/relay. Middleware may also expose common mechanisms through an 

industry standard protocol such as BACnet, enabling the control of this specific light by other 

systems using the same protocol. However, despite this simplification, important issues remain.  

First, the middleware itself can be complex and require significant development time. Second, the 

networking configuration task (VLAN, IP subnetting, port number etc.) still remains to be done 

and is handled outside of the middleware.  

 

 
Figure 2.  Relationship of services to lighting fixtures and the NDN network. 



Significant knowledge is thus bound 

up in areas not accessible to 

application software developers or end 

users: VLANs embody boundaries 

between systems identified during 

design and deployment, but are 

typically invisible or inaccessible, as is 

IP subnetting and routing which reflect 

device organization and 

interconnectivity. Firewall 

configurations describe the rules for 

access between systems that can be 

difficult to change. Keys and 

certificates for SSL connections and 

VPNs may identify connections. VPN 

configuration and enterprise 

authentication hold network access permissions. None of these are typically visible or accessible 

to application software in traditional systems; they are “network configuration.” In fact, they 

represent important system control logic that is often replicated ad-hoc in application 

configurations. A simple example is how an application must be configured to know that 

192.168.2.1/24 is lighting, and 192.168.3.1/24 is HVAC.  

 

In NDN, names with meaning to the application can be used that are consistent across facilities 

and installations, e.g., <enterprise_root>/lighting/<building>/<room>/<light>.  

 

Addressing is dealt with in one place in the architecture and used by both applications and 

network infrastructure.   

 

Names may be used to address fixtures from different application perspectives. Consider, for 

example, the architectural lighting installation shown in figure 3.  Here names used by 

applications could include: 

• Manufacturer-assigned (used for bootstrapping): 
/lighting/Philips/0041F31C493EF01A  

• Controller-assigned:  
/<controller_root>/<port#>/<chan#>  

• Physical location:    
/enterprise_root/<controller_id>/<fixture_id> 

• Region of Responsibility:    
/room_root/region/wall_west/downlight 

• Designer-assigned:    
/app_root/piano_spotlight 

NDN Lighting Control  
To explore these potential benefits, we designed an approach for lighting control over NDN with 

the following design goals: 

1. Satisfy low latency requirements for communication between software (or hardware) 

controllers and lighting dimmers or fixtures.2 
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Figure 3.  Example lighting control installation. 



2. Use NDN content naming to address all components of the system, with names related to 

their identity or function rather than a combination of addressing that spans layers and 

systems (e.g., VLAN tag, IP address of gateway, port of protocol, address of fixture) as in 

current implementations. 

3. Given that NDN makes widespread use of content signatures, identify every entity in the 

system by a distinct public key. 

4. Control access to fixtures via authorization policies, coupled with strong authentication. 

(Current BAS and lighting systems typically rely on physical or VLAN-based 

segregation for security, making interoperability with IT systems challenging, 

configurations brittle to change, and requiring advanced networking expertise to set up 

and maintain.) 

5. Use NDN naming itself to reflect 

access restrictions, rather than 

require a separate policy language. 

The main motivation is that a 

namespace is consistently accessible 

within any NDN-compliant device 

or process. This obviates the need 

for application-specific access 

control protocols. 

6. Develop security mechanisms 

suitable for low-power systems, 

initially targeting cell-phone class 

devices with a planned transition to 

microcontrollers typical of IP-connected lights today, such as the Phillips Color Kinetics 

ColorBlaze, that uses a 72-MHz ARM processor. 

Namespace 

The initial namespace design uses names that made sense to applications authors with a 

background in architectural and theatrical lighting design.  We also pursued general naming 

schema for naming control and data points in a BAS on NDN, which is not covered in this paper, 

and will be discussed in forthcoming reports on building automation
3
.      

 

In the system as designed and deployed, our application names for fixtures follow the schema: 
<light> := <topological root>/<application>/<room name>/<device type> 
 

For example, for lights on the set shown in figure 4, we use the following names: 
/ndn/ucla.edu/apps/lighting/TV1/fixture/ 

kitchen!! 
living-room-fill-right 
stairs 
bedroom 
living-room-front 
entrance-door 
window-left 

 

The relationship between these desired application names and the names required to bootstrap 

and configure fixtures is described below, after a brief discussion of trust.  
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 See also related work such as (Culler & Ortiz, 2010), which describes a hierarchical naming approach for 

measurement instruments in a building energy management context. 

 
Figure 4. UCLA Television Studio #1.  



Trust model / Name‐based Permissions 

The trust model developed for fixture control is SDSI-like (Rivest, 1996). Every entity in the 

system has a public and private key pair, and one or more trusted configuration managers assign 

keys to fixtures and controllers, expressing the controllers’ permissions through the namespace in 

which its key is published (and signed by the controller). Those capabilities include name, 

configure, control, read, and override.  The configuration managers themselves may be part of a 

set of processes with their own hierarchical trust relationship expressed in the namespace. 

  

To authorize an application with a capability: 

1. Permissions are granted to applications by publishing their keys under names that 

represents their authorized capabilities. 
/<root>/lighting/<capability>/<app_name>/key  
/ndn/ucla.edu/apps/lighting/control/light_board/key 

2. Key data is signed by a key (for example, that of the Configuration Manager) that is 

already authorized. 

3. To enable lookup by the fixture, these are published as: 
<path-to-key>/authority/<fixture_name>/<capability>4 

4. Application issue authenticated interests in this namespace, with a signature including a 

locator for the authorized key. 

 

For example, a controller’s public key would be available as: 
     /<path_to_fixture>/lighting/<capability>/<app-name>/key 
     /ucla.edu/apps/lighting/control/light_board/key 

 

Upon receiving a command to authenticate (described below), trust delegation is checked against 

the following lists: 

1.  Local cache of keys already authorized. 

2.  Trust anchor list generated through the bootstrapping step above. 

3.  If it is in neither list, the fixture issues an interest for 
  <path-to-key>/authority/<fixture_name>/<capability> 

and checks that it is signed by an authorized key.  

Discovery and Bootstrapping 

To participate in the network, fixtures are assigned application-specific names. We expect that 

pervasive computing and instrumented environment applications will all use certain discovery 

mechanisms to find and configure new devices.  We envision the following scenario to develop a 

discovery approach for lighting fixtures:  When a new fixture is received from a manufacturer for 

installation in the field, it comes pre-configured with 1) an NDN name following well-known 

conventions for device discovery, as well as 2) a manufacturer-assigned public key
5
 with the key 

fingerprint playing the role of today’s serial numbers, and 3) a shared secret that will be used to 

authorize initial configuration.  Note that the shared secret could be configured by the installer at 

the fixture, if the fixture had a front panel or exists on a barcode that could be scanned and 
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 Delegation could be handled by checking whether a key higher up in the name hierarchy signed both the 

requesting application and the fixture, but we are not sure yet if this will be a common hierarchy so this 

approach is more general. 
5
  If the manufacturer’s key is not trusted, additional steps could be taken to install a user-supplied 
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communicated to the configuration process.  Once the key fingerprint and secret are known to the 

configuration manager, discovery and bootstrapping proceed as follows. 
 

1. Devices bootstrap by registering names of a known form “out of the box”: 
/ndn/lighting/devices/<manufacturer>/<type_components>/<serial> 
/ndn/lighting/devices/philips/ColorBlast/00-16-EB-05-FB-48 

 

And publishing a manufacturer-assigned public key: 
/ndn/lighting/devices/philips/ColorBlast/00-16-EB-05-FB-48/key 

 

2. The Configuration Manager periodically expresses discovery interests on a broadcast 

channel to which the lights are connected (e.g., a particular Ethernet segment) using a 

known convention: 
/ndn/lighting 

 

3. Using an authenticated interest (described below) application-specific names are then 

assigned by the CM, which authenticates with the fixture via a shared secret passed out-

of-band:  
/<root>/<building>/<room>/<lights>/<fixture_path> 
/ndn/ucla.edu/melnitz/1471/lights/west_wall/wash_down 

 

In our application scenario, this type of discovery is used at fixture installation to locate fixtures 

with a manufacturer-supplied name.   Then, interests in the application namespace(s) can be 

issued to discover fixtures available for control by a given application.  Importantly, there is a 

limited amount of preconfigured information per fixture: an asymmetric key pair and shared 

secret. 

Actuation via Authenticated Interests with Side Effects 

A substantial contribution to building automation offered by NDN is the authentication of control 

messages and verification of data using basic features of the architecture.  Data verification is not 

treated here as, at least for asymmetric signatures, it is intrinsic to the architecture and the primary 

challenge is developing the appropriate key hierarchy. Work on the lighting application focused 

on the authentication of control messages. For most applications, we believe that Interest/Data  

encryption of such commands will be unnecessary, but that authentication is a basic requirement 

poorly handled in many current IP-based control systems. 

 

To keep command latency low and take advantage of Interest routing, our design uses Interests 

for control as shown in Figure 5a, to trigger side effects in the fixtures (e.g., changing the 

intensity or color of a light).   The semantics are consistent with NDN: the controller is interested 

in the status data resulting from changing an actuator’s property to a value expressed in the 

interest name.  To authenticate the commands, we include a signature (or HMAC) in the name, 

calculated using the controller’s key over the light name, capability, and desired value.
6
 Our 

approach to authenticated control was developed in collaboration with the NDN security group at 

UCI, and is shown in Figure 5b.  
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 Signing Interests ties them to a particular creator, circumventing the normal anonymity of content 

requests in NDN;  it also prevents them from being cached.  We do not suggest this approach as a general-

purpose extension, but rather as an engineering solution for this particular case.  



 

 

For example, a lighting fixture in our testbed might be named using the following pattern: 
<light> := /<path_to_fixture>/<building>/<room>/<lights>/<fixture-path> 
 /ucla.edu/melnitz/TV1/lights/living-room-left 

 
Verifiable control Interests follow the format: 

<light>/<param_pattern>/<parameters>/<state><signature> 

e.g., 
     <light>/control/rgb-8bit-hex/F0FF39/[statebits][sigbits] 
 

Verification algorithms 

With UCI, we have explored both asymmetric and symmetric signatures as the verification 

mechanism. The details are discussed further in (Burke et al., 2012) and summarized briefly here. 

Notably, the signing time for asymmetric signatures has led us to explore HMACs using 

symmetric keys or hash chains for faster per-packet signatures.  

Asymmetric Signatures 

For RSA signatures, the name has a signed, empty ContentObject concatenated onto the name, 

just as in ccnd face registration. (In our implementation, the name is implicit in the 

ContentObject, and not carried over the wire.)  In this case, the name also contains the 

KeyLocator for configuration manager public key, and the shared secret of fixture being 

addressed, encrypted with its public key. 

HMAC Verification 

In many lighting control applications, UDP is used to transmit control updates at high rates (50+ 

Hz).  While NDN-specific optimizations or command compression may be possible (in particular, 

transmitting fade curves to fixtures rather than individual intensity values along the curve), we 

first aim to lower the latency to closer to what is found in current IP-based control. To lower 

computational costs, authorized application can propose a temporary symmetric key to fixture.   

 
Figure 5a.  Unauthenticated control via Interests. 

 

 
 

Figure 5b. Authenticated control via signed Interests. 



Then, controller uses a Hash-based Message Authentication Code (HMAC) to “sign” the Interest. 

ACK Generation Time  

Notably, the embedded controller must also generate a verifiable ACK, which requires a 

signature (or HMAC generation) at the fixture.  Because this is done at the embedded device 

providing the fixture interface, it is slower has a more significant computational burden than at 

the controller, which is currently a workstation.  ACK signing was noted as an RTT-limiting step, 

leading us to consider other techniques described in (Burke, et al. 2012), notably HMACs on 

replies.  Initial tests of UCI code for HMAC on the embedded controller suggest at least a 200x 

speedup over asymmetric signing.  

Implementation & Deployment 
We have completed a working end-to-end lighting control system, consisting of a daemon 

running on an embedded Linux controller, along with a straightforward port of the CCNx routing 

daemon, and a remote control process running on a workstation. The lighting testbed is in a 

television studio on the UCLA campus, shown in Figure 4. We have eleven lights controlled by 

five TCP/IP controllers, which are in turn controlled by one embedded processor running ccnd 

that serves as an NDN gateway. We have also added real-time hardware (fader) control of the 

lights, in addition to software sequencing and an HTTP web controller. Each application can 

name the lights anything it chooses. 

 

Testbed hardware 
Light Fixtures 

Fixtures are the individual lights controlled via NDN. In the future, these may contain NDN 

interfaces built-in. For now, they require connection to a power supply (e.g., a Philips Color 

Kinetics “Data Enabler”) for both low-voltage power and control via IP over Ethernet or DMX
7
. 

Data Enabler 

The Color Kinetics Data Enablers powering and controlling the fixtures have Ethernet interfaces 

and multiplex power and data to fixtures through one or more ports. The ethernet interfaces use a 

proprietary UDP/IP protocol called KiNET, which is used to both discover and control fixtures. 

Lighting Interface  

To connect the fixtures to the NDN network, a Linux-based embedded device (Gumstix Overo 

AIR, based on the ARM Cortex A8) with two Ethernet ports is connected to the local Data 

Enablers on one link, and to the rest of the NDN testbed on the other link. 

Testbed software 

The lighting control software was originally developed in C, but to ease development and aid 

integration with other projects, it was reimplemented in 2011 using Python. This provided an 

opportunity to test the new Python bindings for CCNx on an ARM-based embedded platform.   

 

The component processes, representative of the abstractions in Figure 2, include: 

Configuration Manager (CM) 

Responsible for all network bindings between names, applications, and fixtures, the CM’s public 

key is the root of authority in our lighting control system. It is currently only run when needed to 

discover and initialize new devices, and to authorize new applications. 
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Lighting Interface Controller 

Running on the embedded device (“NDN Module” in Figure 6), this process listens for Interests 

in its connected lights’ prefix, controls the lights, and publishes ACKs as data.  

Runtime Applications 

Two runtime control applications have been created: The Sequencer issues patterns of Interests to 

the lighting fixtures, and the Fader provides an interface to a physical lighting control panel. 

Keystore 

Every entity has a 1024 bit RSA keypair, stored as a PEM file. On application instantiation, these 

public keys are published immediately as an NDN content object. 

Implementation Limitations 

There are known limitations in our initial implementation: 

• Configuration: We plan to store configuration in device names, CCNx repos and on-

device storage that can be accessed via NDN.  Currently, each fixture and application has 

its own configuration file, containing its RSA keypair, names, NDN prefix, and 

capabilities. Configuration parameters are automatically generated during IP-based 

discovery. 

• Routing: Fixtures in the NDN testbed connect to the upstream CCND daemon on the 

UCLA NDN hub via a static route. This allows each fixture to listen for its names within 

<root>/<app_prefix>. Next, we plan to use new autoconfiguration tools from the 

architecture and routing team. 

• Topology: Currently, the NDN Module providing the interface to the fixtures looks like a 

’gateway’, with many fixtures connected through one NDN interface; the eventual goal is 

 
Figure 6.  Lighting testbed components. 



one NDN interface per device, which may be approximated by running per-fixture 

processes on the embedded gateway. 

Performance Tests  
Forthcoming in the next draft. 

Future Work 
Going forward, lighting control as developed here will be used in deployed applications, where 

engineering will continue to decrease latency and take advantage of authentication to use an open 

network (the NDN testbed as an overlay on the public Internet) for control. More sophisticated 

building automation applications will be explored. These will include both sensing and actuation.  

We would like to simplify configuration further by using the new autoconfiguration and 

bootstrapping tools emerging from the other groups.  Other open challenges include developing 

models for transmission of rare but critical events that seem best done with a “data push” 

approach, and testing group control of fixtures as described below. 

Group control: Reversing Packet Flow 

For synchronized control of many fixtures or to lower bandwidth, fixtures could issue (unsigned) 

interests, and receive commands in return. This trades off delay for group addressing.  Content 

caching allows fixture to get state at low network cost.  

Conclusion  
Our current design and testing of lighting control over NDN, as a special case of actuation in 

building automation, incorporates the following features: 1) identification of entities on the 

network, including fixtures and applications, via an asymmetric key pair; 2) capability 

authorization, expressed entirely in the namespace; 3) discovery and bootstrapping via 

manufacturer-assigned names and a shared secret, in which fixtures are assigned one or more 

application-specific names; 4) authenticated interests for control, using either RSA signatures or 

HMACs that are verified and acknowledged through data packets authenticated by the fixtures.  

 

The results of the approach are that 1) NDN’s routing based on data names brings network 

semantics closer to application semantics, and 2) names/address are gathered into one place in the 

architecture.  Because no configuration is required to express an Interest, 3) bootstrapping is also 

simplified.   Finally, 4) authentication of commands provides intrinsic security for actuation. 

Figure 9.  Group-based control, reversing the packet flow. 
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