
Egal Car: A Peer-to-Peer Car Racing Game

Synchronized Over Named Data Networking

Zening Qu ∗

UCLA REMAP

Jeff Burke †

UCLA REMAP

October 9, 2012

Abstract

Multiplayer online games require synchronization mechanisms to main-
tain game state consistency among all the players. This project explored
the use of the emerging collection synchronization primitives in Named
Data Networking (NDN) to easily synchronize a simple multiplayer car
racing game, Egal Car, in a peer-to-peer fashion. The game was based on
a Unity game engine demo application. To implement the experiment, C#
bindings usable in Unity were built for PARC’s CCNx library, including the
new Sync protocol. The impacts of the unordered nature of default CCNx
synchronization and unreliable delivery in basic Interest/data exchange
were explored. This work will inform an upcoming exploration of how to
build a more extensive multiplayer role-playing game using NDN.

1 Introduction

One of the most important differences between a multiplayer online game
(MOG) and its single-player counterpart is that the former requires a shared
virtual world and game state consistency across network-connected players.
Consistency ensures that all players in the shared virtual world are able to form
a correct understanding of it and have the desired orientation to it. For example,
a car racing game should provide each player with a consistent view of all the
cars’ positions in real-time, and there should be no collision between any two
views.

∗quzening@remap.ucla.edu
†jburke@remap.ucla.edu

1

NDN, Technical Report NDN-0010, 2012. http://named-data.net/techreports.html
Revision 1: October 2012

http://www.named-data.net/techreports.html


For a MOG with players distributed over a wide geographic area, delivery
of game state updates usually relies on packets transmitted over the Internet.
This paper documents the implementation of a simple MOG over a possible
future Internet architecture, Named Data Networking (NDN) [9]. In particular,
it explores the use of new collection synchronization mechanisms now available
in NDN. As discussed below, NDN names data instead of hosts. It has inherent
multicast data delivery, caching, content signing, and collection synchronization
capabilities that could provide substantial benefits for multiplayer games and
distributed simulations. As it relates to these applications, NDN can be regarded
as a new datagram delivery service, an alternative to TCP/IP. However, NDN
also has the potential to impact game or simulation design and conceptualization,
and to assist implementation and improve performance.

By creating a MOG on the NDN testbed, NDN’s impact on MOG design
and implementation was explored. The simple MOG described here, Egal Car,
provides preliminary experience to inform the creation of a more sophisticated
game and a test for C# libraries usable with the Unity game engine.

Egal Car is a 3D car racing game with a highly detailed track and scenery.
Each player has control over one car, which can increase in speed, slow down
and alter direction. The cars can collide with each other and with fences along
the track. All car movements are simulated by the game’s physics engine. Like
in other racing games, each player’s goal is to win the race. Egal Car is adapted
from an open source game template, Unity Car Tutorial [11]. This template
provides the necessary graphics and physics modules, but it is a single-player
offline game. The project designed and engineered this network module, a
synchronization mechanism with the needs of this car racing game in mind.

Following are descriptions of the design choices and details of the implemen-
tation. Section 2 introduces NDN principles and facts that may inspire MOG
design. Sections 3 through 5 discuss MOG design, using Egal Car as a main
example.

2 NDN Background

NDN retrieves data based on application-defined names rather than host
addresses. To retrieve data, the consumer must know the name, instead of the
data’s location (host address) as in IP. NDN communication uses two packet
types: Interest and Data. An Interest packet is issued by the receiver to express
what set of data is needed. A Data packet is published by the sender in response
to an Interest. Both Interest and Data packets use names to identify the data
being exchanged (see figure 1). An Interest is “satisfied” when a Data packet is
received with a Content Name that falls within the prefix of the Content Name
in the Interest packet. For more detail, see [9].

This project explores higher-level features being made available in NDN for
collection synchronization. There are a few general purpose synchronization
protocols under development. Among them is the CCNx1 Synchronization

1CCNx is an implementation of NDN and an open source project by Xerox PARC.

2



Figure 1: Interest packet and Data packet

C S

S

S

S

S

(a) C/S

P

P

P P

P

P

P

(b) P2P

Figure 2: C/S architecture and P2P architecture

Protocol (CCNx Sync) [3], which synchronizes collections of named data under
a given name prefix. The research examines how it can be used to support
game synchronization, as described above. The results show that CCNx Sync
can provide significant benefits to MOG development by handling many of the
low-level details for maintaining consistency across different instances of the
networked game.

3 Architecture

There are two main classes of MOG network architectures, client/server (C/S)
and peer-to-peer (P2P). In C/S architectures, all clients directly communicate
with a central server, which is the only authorized source of game state updates
(see figure 2(a)). In P2P architectures, peers (clients) communicate with each
other directly, and each peer computes the latest game state on its own (see
figure 2(b)). Typical implementations in major multiplayer online games appear
to follow the C/S model using connectionless protocols such as UDP.2

Despite its rarity in implementing major multiplayer online games, it is
generally agreed that P2P approaches outperform C/S in scalability, latency

2Connection-oriented protocols such as TCP can also be used; however, others have shown
that such protocols may result in severe performance degradation. Thus, they are rarely used
by MOGs [7].

3



and robustness [7, 13]. However, in typical IP implementations, P2P game
network architectures face significant performance limitations. For example,
due to limited deployment of IP multicast [7], they have higher bandwidth
requirements than C/S games. A common scenario is that every player wants
to exchange packets with all other players. For example, in Egal Car, every
player would benefit from knowing the positions of all the other players’ cars.
When this is implemented by direct communications between all the players, it
would lead to an enormous amount of traffic. In a C/S network, on the other
hand, the traffic is alleviated because the centralized server plays the role of an
“information aggregator”, and each player communicates with all other players
by exchanging packets with the server only.

The lack of a central authority in P2P architectures is a more fundamental
limitation, making player and update authentication more difficult and cheating
easier [13].

P2P architecture was chosen for this project’s prototype, Egal Car. NDN
makes a P2P-based multiplayer game much more feasible. Because NDN has
multicast data delivery content caching built-in, it can substantially reduce
network traffic in one-to-many scenarios like P2P state distribution. Game state
can be obtained by many peers from one or more sources on the network using
NDN’s inherent multicast and caching. Furthermore, because NDN secures every
data packet rather than securing the communication channel as currently done
in SSL, cryptographic authentication of signed content objects can be used to
alleviate the issues related to cheating.

The choice of game architecture greatly impacts other network module
design decisions, such as the synchronization mechanism. For example, in C/
S architectures, clients might send certain types of user inputs to the server, and
the server would compute the result of the inputs. A client would not compute
the result on its own because it has neither the right to compute the next game
state nor the information that is sufficient to do so. Instead of claiming, “I am
three blocks away from my last position now”, a client would only tell the server,
“I want to move three blocks to the north-east”, and let the server confirm its new
position. On the contrary, with P2P architectures, every peer has the right and
the information to compute its own next game state, assuming all the players can
maintain consistent game state. This gives more freedom to individual players in
deciding what to send to other peers. A peer can choose to send out user inputs,
as a client would in C/S architecture, or choose to send out the result of its
inputs and ask the other peers to update their information. The later approach
has been adopted in Egal Car for synchronizing information about each car’s
position (see section 4.2).

4 Synchronization

In this project, asset synchronization and state synchronization are ap-
proached differently to explore the requirements and constraints of slowly and
quickly changing data. These two approaches may be combined in future work.

4



Below, (1) data are classified as either assets or states; (2) data to be
synchronized are identified; and (3) different experimental approaches for asset
and state synchronization are defined.

4.1 Namespace

The data were identified within a namespace design that accounts for the
assets and relevant state of the single-player application used as the basis for Egal
Car. According to Knutsson et al. [10], a virtual world is typically comprised
of immutable elements (terrain) and mutable elements (players, non-player
characters, mutable objects, mutable landscape). The immutable elements are
to be installed before gameplay begins, at level changes, and other significant
moments. The properties, instantiation and deletion of the mutable elements
are to be synchronized in real time.

In Egal Car, there are three types of data:

1. the terrain, track, and car graphics, which are immutable, unchanging
across peers and thus do not need synchronization;

2. asset creation and deletion, controlled by player login and logout; and

3. synchronized state, which includes properties of the assets as well as global
game state.3

The time between asset updates (player login and logout, in this case) may be
measured in seconds or even minutes, but the state changes more regularly and
rapidly in the cases being considered. In Egal Car, a car’s position, for example,
tends to be calculated for every video frame. The time between a car position
state update and its successor is usually measured in milliseconds. It is relatively
easy to predict the desired frequency of state updates, as this is often guided by
game applications frame rates and perceived interaction latency.

Figure 3 illustrates Egal Car’s namespace, composed of three trees. Each
node contains one or more name components. Each path that starts from the
root denotes a name.4

The object tree (figure 3(c)) shows all asset and state names, in blue and
red respectively. The root node is composed of the <topological prefix>,
where game data can be published, and the game’s name, EgalCar. Our in-
stantiation of the application for testing used a <topological prefix> of
/ndn/ucla.edu/apps. Other NDN games would use their own values for EgalCar
and <topological prefix>.

In the figure, the leftmost child of the root shows the namespace for cars
in the game. Nodes using this convention (and their children) are dynamically

3State nodes do not come in and out of existence on their own, but are created and deleted
with an asset or game. Conceptually, global game state can be considered properties of a root
node.

4The brackets < > around name components denote that they will be substituted with
“real” values at run time. For example, when Egal Car is executing the actual name might be
/ndn/ucla.edu/apps/EgalCar/AliceCar/123456/transform/position.

5



<localhost prefix>

<create slice command>

<slice hash>

(a) Repository Tree

<broadcast prefix>/EgalCar

<root advise command>

<slice hash>

<root hash>

<response hash>

<node fetch command>

<slice hash>

<responsehash>

(b) Discovery Tree

<topological prefix>/EgalCar

<Car Name>/<id>

transform

position rotation

state

anti

<Car Name>/<id>

(c) Object Tree

Figure 3: The NDN namespace of Egal Car.

6



created when a player joins in the game. Since Egal Car is a MOG, there will be
more than one <Car Name>/<id> node, as players discover each other (see 4.2).
The <id> component, which will be substituted by a random number during
run-time, is designed in case there is a name collision in <Car Name>. The right
child of the root node is used to indicate that a certain player (car) has quit or
disconnected. The anti node and its child nodes are all assets. The remaining
nodes are state names, and they are synchronized differently than assets.

As stated in Section 2, CCNx Sync can be used to aid multiplayer game
development. Egal Car uses its basic features to support asset synchronization,
game discovery and player discovery, given the proper namespace design. To
do so, two other trees (the Repository Tree and the Discovery Tree) are needed
in the namespace. The Repository Tree is a namespace used by each game
peer to communicate with its local CCNx repository, where asset data is stored
and synchronized by CCNx Sync. <localhost prefix>, the root node of the
Repository Tree, confines the communication scope to localhost. The Discovery
Tree is the collection of names used by CCNx Sync. Its root node is similar
to that of the Game Tree except that it has a broadcast scope (<broadcast
prefix>). Since CCNx Sync is used for “discoveries”, it is important that its
packets be broadcast to reach all potential data publishers that may appear
anywhere in the network. More details of the Repository Tree and the Discovery
Tree follow in Section 4.2.

4.2 Asset Synchronization

Asset synchronization, specifically player entry and exit, is implemented
through the discovery of new objects in the sync tree. The process is discussed in
some detail here as Sync is a relatively new primitive in the NDN architecture.

When an instance of the application is initialized for the first time, a slice
is defined in the local repository [2] that defines the content objects to be
synchronized. At that time, two names are provided to the Sync mechanism: the
<broadcast prefix> and the <topological prefix>. The first defines CCNx
Sync’s broadcast namespace to use in communicating with other Sync daemons,
while the second is the common prefix of every name in the slice.

An application informs its local repository about the creation of a slice by
issuing a start write Interest for the slice configuration object. The name used in
this process is <localhost prefix>/<create slice command>/<slice hash>.
<localhost prefix> confines the packet within the same node; <create slice

command> claims the command type; <slice hash> is the SHA-256 hash of the
slice configuration object and is used as the name of the slice in the Discovery
Tree.

Once the slice is created, CCNx Sync broadcasts Root Advise Interests
periodically in the <broadcast prefix>. Root Advise Interests have names of
the form /<root advise command>/<slice hash>/<root hash>. The <slice
hash> identifies the particular collection of names to be synchronized. The
<root hash> is a hashed digest of a peer’s slice.

So, to participate in a given game, an Egal peer will have that game’s <slice

7



hash> in its Root Advise Interest. Other peers running the same application
recognize that peer because they share a <slice hash>.

A peer’s collection of game assets is represented by its <root hash>. If this
<root hash> is the same as that of everyone else’s <root hash>, then all peers
are in sync. If it is not the same, the other peers would respond to the peer’s Root
Advise Interest with a Data packet named /<root advise command>/<slice

hash>/<root hash>/<response hash>. CCNx Sync uses Node Fetch command
and normal Interest/Data packet exchange to then reconcile differences in the
collection among peers, updating the repositories to be consistent.

To announce the creation of a new player (car) to the network, a content
object named <topological prefix>/EgalCar/<Car Name>/<id> is published
by the player’s game instance into its local repository. By using <topological

prefix>, this content object becomes part of the slice managed by CCNx Sync.
The data of this content object are some configuration information of the car
(initial position, 3D model’s name, player information, etc.). As other peers
learn about the newcomer through CCNx Sync, they use the configuration data
to instantiate a 3D car model in the given position, and they mark it with the
given player information.

When a player quits, it writes an anti-asset into its own repository. This
provides confirmation of object deletion. (Note that the CCNx repository does
not support per-object deletion.) The anti-asset’s name would be <topological
prefix>/EgalCar/anti/<Car Name>/<id>, in which the <Car Name> and <id>

represent the car that belongs to the quitting player. With CCNx Sync, synchro-
nizing anti-assets is the same as synchronizing assets. Peers that learn about
the anti-asset destroy the corresponding avatar in their game world. If a player
is forced to quit, due to network failure for example, there is no chance to write
the anti-asset. In this case, the anti-asset would be written by other peers who
remain connected.

4.2.1 Unordered, reliable synchronization

CCNx Sync provides unordered data synchronization, i.e. it may discover
assets that are created later before discovering assets that are created earlier. In
Egal Car, assets are independent of each other, and there is no causal relationship
between asset updates as long as there is an application strategy to know when
to begin the car race. Thus CCNx Sync can be used as-is. Future work will
consider the tradeoffs between the unordered synchronization strategy, which
works in the limited case of Egal Car, and contemporary ordered approaches
([4, 1, 8, 5, 6]) for other game types. These ordered synchronization algorithms
trade off delay for ordering, either holding every peer’s turn to wait for the
correct packet to arrive, or performing a rollback when disordering is detected.
These ordered synchronization strategies will be needed for updates that are
correlated, but they are not necessary in the Egal Car.

Although asset synchronization is unordered, it does need to be reliable.
As an example, Alice and Bob must be known by all other peers regardless of
potential packet losses. NDN, similar to IP, only provides best-effort datagram

8



delivery. The reliability in asset synchronization is achieved by CCNx Sync,
as the synchronization routine periodically broadcasts Root Advise Interests
throughout the lifetime of the game. As soon as any difference between any
repositories is detected, CCNx Sync will reconcile the difference.

4.3 State Synchronization

In Egal Car, state is a snapshot of a variable (property) associated with an
asset or the game instance. In the application namespace, state updates are ver-
sioned content objects that are children of a uniquely named asset. For example,
state updates of Alice’s car use this name .../<AliceCar>/<id>/transform/
position/<version> to refer to Alice’s position, where <version> is a times-
tamp. As with asset creation and deletion described above, the states of Alice and
Bob will not affect each other: .../<AliceCar>/<id>/transform/position up-
dates will not cause .../<BobCar>/<id>/transform/position to change. Note
that this does not relate to the case when Alice and Bob interact with each
other. Such interactions lead to players’ state change. A new model for these
interactions is being developed for future work.

4.3.1 Ordered, unreliable updates

Egal Car state updates are snapshots rather than change logs. For consistency
of visual rendering, they should be ordered, with the most recent state update
representing the object state, and undelivered state updates ignored. State
synchronization does not need to be reliable as long as there is either no player
interaction (global state is deterministic based on player state input) or a facility
is available to periodically confirm overall state.

Therefore unlike asset synchronization, it is unnecessary, or even undesirable,
to use reliable game synchronization algorithms for state synchronization in the
Egal Car scenario. When a state update is lost, there is no reason to hamper
the game’s pace to wait for retransmission in order to achieve an ordered state
update or to perform rollbacks, as the latest state is what the gameplay needs.
(Again, this is for the limited case of no permanent modification to the asset’s
behavior happening because of a state update.)

Instead of CCNx Sync, NDN’s Interest-Data exchange is used directly for
state synchronization in Egal Car. Each player’s instance issues Interests for the
state updates that it wants to follow, and maintains a timestamp floor for each
state update series. For example, Alice follows Bob’s position by periodically
expressing an Interest in .../<BobCar>/<id>/transform/position. To this
Interest, NDN nodes may respond with any data matching its prefix, so the
Interests must be constructed to obtain the latest child for a given game object
prefix. This is achieved by setting selectors in Interest packets appropriately:
The rightmost child selector is set, and an exclusion filter is used to exclude
data with versions less than or equal to the timestamp floor. The result is that
a player may miss some state updates if a newer one has already been published,

9



but whatever state reaches the player will be at least later than the previous
one received.5

4.3.2 Traffic optimizations

State synchronization is what generates the largest amount of traffic in most
MOGs [10]. In many cases every player wishes to follow the state of all other
players in real time, and every player is expected to exchange several data per
second6 In a P2P network of n players, the number of packets being sent for
state synchronization per second (N) can be estimated by N = xfh̄n(n − 1),
where x is the number of packets necessary for a state exchange, which is usually
greater or equal to two. f is the frequency of state exchange defined by the game
application. h̄ is the average number of hops that packets must travel. In IP
networks, h̄ equals the average distance (in hops) between peers, as each peer is
both a data receiver and a data sender. In NDN networks, h̄ will be significantly
smaller because most Interest and Data packets do not need to travel from each
data publisher to all receivers. Interests for the same data aggregate on their way
towards the data publisher, Data packets propagate along a multicast tree, and
are cached at each hop [9]. Many Interests need to travel only a few hops to be
satisfied by data from cache, or to be combined with an identical Interest. This
reduces the average travel distance of packets, and should make NDN games
generate much less traffic than IP games.

Some optimization can be done to the game application’s packet contents to
further reduce the traffic generated by state synchronization. In Egal Car, the
state node in the Game Tree (see figure 3(c)) is designed for such optimization.
The state object is a summary of other state updates (transform/position
and transform/rotation), and is synchronized instead of its siblings.

5 Implementation

Egal Car is developed with Unity, one of the ten most prominent game
engines [12]. It is adapted from Unity’s single-player car race tutorial [11]. The
tutorial’s gameplay has been left intact, and the project’s network module makes
the tutorial a MOG. After implementation, the synchronization for a small
number of peers (2-3) was tested, and game play was evaluated.

The network modules builds on the CCNx libraries, as illustrated in figure 4.
A CCNx daemon named ccnd provides basic Named Data Networking support,
such as sending and receiving Interest and Data packets. Asset synchronization
requires a local repository, such as CCNx’s ccnr, which manages read/write
requests to the repository. Finally, CCNx Sync is used to manage repository
contents (see section 4).

5Note that because any NDN node may answer an Interest with cached data, the state that
is received may not be globally the latest state, but will at least be later than the timestamp
floor given in the exclusion filter.

6Larger environments may incorporate some type of partitioning if there are a very large
number of players.

10



Peer

EgalCar

NetworkModule

Repository

CCNxSync

CCNxDaemon network
Interest/Data

Figure 4: CCNx components used by Egal Car.

NetworkModule

Network Scripts

Egal Library
CCNx Library

Figure 5: The network module’s relationship to other libraries.

The Egal network module is where asset and state synchronization is imple-
mented. It contains C# scripts for Unity and two C libraries (see figure 5). The
network scripts implement the project’s synchronization mechanism by invoking
functions provided by the Egal library and the CCNx library. CCNx library con-
tains programming interfaces given by the CCNx project. Egal library is based
on CCNx library, but it provides some convenient functions for synchronization.
The InteropServices of the .NET Framework are used to invoke C functions from
C# and vice versa.

6 Discussions and Future Work

Egal Car is a relatively simple MOG prototype, and the project’s synchro-
nization mechanism was easy to develop using NDN collection synchronization.
With Egal Car, assets are independent of each other, and they have no explicit
interaction. This is why unordered or unreliable synchronization strategies can
be applied to the game without hurting its consistency.

The project’s synchronization mechanism does not apply to game genres that

11



have numerous user interactions, such as role-playing games (RPG) and real-time
strategy games (RTS). Inter-user interactions would lead to state changes and
even asset changes. A new model is needed to describe interactions, and a new
synchronization strategy would have to be designed (or chosen) to meet its
requirements. Studying a new model and synchronization strategy is planned
for the future.

Egal Car is not an appropriate test for scaling, as it has few asset updates
and a limited number of players. To evaluate whether, or by how much, P2P
games would be more scalable on NDN than on IP in general, new test cases
would need to be implemented. Building a multiplayer online role-playing game
with more sophisticated asset and state interaction is planned, as is the study of
scaling through actual play and simulation.

Finally, of special importance to P2P games is the research of game secu-
rity and cheating-prevention. Since network security in NDN is approached
quite differently from that of traditional IP networks7, numerous updates to
authentication and anti-cheating mechanisms are expected.

7 Conclusions

This project developed straightforward synchronization mechanisms for simple
car racing games over NDN, using the CCNx sync protocol and bindings created
for the Unity game engine. The mechanism was implemented in a prototype
game, Egal Car, and organized into an open-source synchronization library, Egal,
to support future NDN game developers. Also explored was the workflow of NDN-
based multiplayer game development. Collection synchronization approaches
using named data appear to hold promise for streamlining development and
performance of multiplayer online games and distributed simulation, especially
in terms of simplifying development and deployment of peer-to-peer architecture.
For simple games like Egal Car, where updates are independent of each other,
default unordered and unreliable synchronization strategies can be used to
deliver expected interactivity without hurting consistency. Future work will
be required to meet the synchronization requirements of more complex online
virtual environments.

8 Acknowledgements

Thanks to Alex Horn and Alessandro Marianantoni of REMAP for their
help testing the sample application, and to Lixia Zhang for feedback on the
architecture.

7In NDN, the emphasis is on securing the data rather than securing the channel as
currently done in SSL, for example. Cryptographic authentication of signed content objects
and encryption of private data are the two main approaches to be explored in the next game
project.

12



References

[1] R.E. Bryant. Simulation of packet communication architecture computer
systems. Technical report, Cambridge, MA, USA, 1977.

[2] CCNx R© Create Collection Protocol. http://www.ccnx.org/releases/

latest/doc/technical/CreateCollectionProtocol.html.

[3] CCNx R© Synchronization Protocol. http://www.ccnx.org/releases/

latest/doc/technical/SynchronizationProtocol.html.

[4] K.M. Chandy and J. Misra. Distributed simulation: A case study in design
and verification of distributed programs. Software Engineering, IEEE
Transactions on, 5(5):440 – 452, September 1979.

[5] E. Cronin, A.R. Kurc, B. Filstrup, and S. Jamin. An efficient synchroniza-
tion mechanism for mirrored game architectures. Multimedia Tools and
Applications, 23(1):7 – 30, May 2004.

[6] C. Diot and L. Gautier. A distributed architecture for multiplayer interactive
applications on the Internet. In IEEE Network, volume 13, pages 6 – 15,
August 1999.

[7] S. Ferretti. Interactivity maintenance for event synchronization in massive
multiplayer online games. PhD thesis, University of Bologna, 2005.

[8] R.M. Fujimoto. Parallel and distributed simulation. In Proceedings of
Simulation Conference, volume 1, pages 122 – 131, 1999.

[9] V. Jacobson, D.K. Smetters, and J.D. Thornton. Networking named content.
In Proceedings of the 5th international conference on Emerging networking
experiments and technologies, CoNEXT, pages 1 – 12, New York, NY, USA,
December 2009. ACM.

[10] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer support for
massively multiplayer games. In Twenty-third AnnualJoint Conference of
the IEEE Computer and Communications Societies, volume 1 of INFOCOM,
pages xxxv+2866, March 2004.

[11] UnityTM Car Tutorial. http://unity3d.com/support/resources/

tutorials/car-tutorial.

[12] DevelopTM: The top 10 game engines revealed, June
2009. http://www.develop-online.net/news/32250/

The-top-10-game-engines-revealed.

[13] S.D. Webb and S. Soh. Cheating in networked computer games: a review.
In Proceedings of the 2nd international conference on Digital interactive
media in entertainment and arts, DIMEA, pages 105 – 112, New York, NY,
USA, 2007. ACM.

13


