
OSPFN: An OSPF Based Routing Protocol

for Named Data Networking

Lan Wang∗, A K M Mahmudul Hoque∗, Cheng Yi†,
Adam Alyyan∗, Beichuan Zhang†

July 25, 2012

Abstract

Named Data Networking (NDN) is a new data-centric network ar-
chitecture. In NDN, users send Interest messages to retrieve data by
their names. Since the Interest messages do not contain source or des-
tination addresses, routers need to forward them based on the names
carried in the messages. In order to provide name-based routing ca-
pability in NDN, we have extended OSPF to distribute name prefixes
and calculate routes to name prefixes. Our protocol OSPFN is cur-
rently deployed in the NDN testbed. This report describes our design,
implementation, deployment, and future work.

1 Introduction

The Named Data Networking (NDN) [2, 3] architecture represents a funda-
mental paradigm shift from the current Internet architecture. IP identifies
data using its location (an IP address). In NDN, the data consumer sends
out an Interest packet, which identifies the data that the consumer is seeking
by name. The response to an Interest packet in NDN is called a Data packet,
which carries both the full name and the data itself. This departure from
where data is, to what data is, defines NDN. As a result, NDN routing needs
to provide routes to name prefixes rather than address prefixes. Moreover,
when NDN routers forward Interest packets, they set up state information

∗Lan Wang, A K M Mahmudul Hoque, and Adam Alyyan are with University of
Memphis. Their email addresses are {lanwang, ahoque1, aalyyan}@memphis.edu.
†Cheng Yi and Beichuan Zhang are with University of Arizona. Their email addresses

are yic@email.arizona.edu and bzhang@cs.arizona.edu respectively.

1

NDN, Technical Report NDN-0003, 2012. http://named-data.net/techreports.html

http://www.named-data.net/techreports.html

so that returning Data packets can be forwarded back to the consumers.
This state enables routers to explore multiple routes for each name prefix
without having loops. To fully support this multipath forwarding capabil-
ity, it would be advantageous for the routing protocol to calculate multiple
routes to the same name prefix whenever possible.

Our goal is to develop a dynamic routing protocol for NDN to support
the above functionality. For the long term, it is desirable to design the
new protocol over the NDN architecture directly, i.e., naming routers and
messages without using IP addresses as well as employing Interest/Data
messages to exchange routing information. However, because there is an
urgent need to support all NDN research areas to use the NDN testbed
for prototyping and evaluation, we must quickly deploy a dynamic routing
protocol for the testbed. For this reason, we decided to extend an existing
routing protocol to provide the necessary functionality. We chose Open
Shortest Path First (OSPF) [4] because it is widely used in the Internet and
it has high-quality open-source implementations. To reach our eventual goal
of designing a routing protocol purely on NDN, we started with version 1.0,
which is a name based extension of OSPF that runs on IP and supports
only single-path routing. We added the support of configred multipath in
version 2.0 and we expect to develop version 3.0, which will run on NDN
and support automatic multipath.

Our protocol OSPF for Named-data (OSPFN) uses Opaque Link State
Advertisements [1] to announce name prefixes while ensuring backward com-
patibility. It supports name prefix advertisement from multiple sites (for the
same or different prefixes). Moreover, since OSPF provides only a single best
path to each destination, we added a configured multipath feature to allow
users to specify which links to use when the best route fails to bring back
data. Even though OSPFN does not support full-fledged dynamic multipath
routing capability, the configured multipath feature has already helped us
better understand the forwarding behavior of the current CCND implemen-
tation. OSPFN is currently deployed at all the ten institutions participating
in the NDN testbed.

Section 2 discusses our motivation for the project and provides some
background information on OSPF. We describe the OSPFN design in detail
in section 3. In sections 4 and 5, we present the implementation and config-
uration of OSPFN using a sample testbed as an example. Section 6 explains
the current deployment of OSPFN and outlines the tools we use to monitor
it. Finally, in section 7, we conclude by discussing future work related to
OSPFN.

2

2 Motivation and Background

NDN is a novel proposal that retrieves data based on name instead of lo-
cation. In NDN, routers forward Interest messages by looking up their
Forwarding Information Base (FIB) using the names carried in the mes-
sages. Although FIBs can be manually configured, such manipulation is
time-consuming and error-prone. For the NDN testbed and, more impor-
tantly, future NDN deployment, we need a routing protocol that would
calculate routes to name prefixes dynamically based on the network topol-
ogy. In order to address this issue quickly, we designed our solution as an
extension of the current OSPF protocol. Open source code availability of
OSPF was also an incentive to extend OSPF.

OSPF [4] is a link state routing protocol that works within an au-
tonomous system (AS). Each router in the system gathers link state in-
formation about the network to build a Link State Database (LSDB). This
LSDB is updated through the flooding of Link State Advertisements (LSA).
All the routers in the network have the same copy of the LSDB. Each router
builds a network topology from the LSDB and runs the Shortest Path First
algorithm to calculate the path(s) to each destination. Whenever there is
any change in the network topology, the routing table is recomputed. OSPF
is free of persistent loops due to the flooding of link state information. It
supports equal-cost multipath, i.e., it produces multiple paths to the same
destination if they have the same lowest cost among all the available paths.

OSPF supports Opaque LSA (OLSA) [1] to provide extensibility for fu-
ture use. OLSA consists of a standard LSA header followed by an application
specific data field, which can be used by any external application to extend
OSPF. OLSAs are distributed by OSPF throughout the network. This dis-
tribution of OLSAs in the network is limited by the flooding scope, which
is determined by the Opaque Type field in OLSA header (see Section 3 for
more information).

3 Design

Routing in NDN is different from traditional IP routing in two ways: (a)
routing on names: data producers register name prefixes, not address pre-
fixes; (b) multipath: routing protocol is expected to provide multiple paths
to each name prefix (if such paths exist). Our current protocol “OSPFN”
supports routing on names and configured multipath routing.

We use OSPF’s Opaque LSAs or OLSA [1] to announce name prefixes.

3

OLSA allows for application specific information to be advertised in the
network. Legacy nodes will not use these LSAs to build their topology, but
will still forward them. This ensures backward compatibility with legacy
nodes and allows new functions to be implemented among the upgraded
nodes. Moreover, open source routing suites, such as Quagga OSPF, pro-
vide an API that allows for easy injection and retrieval of OLSAs through
OSPF. This flexibility and ease of use makes OLSA the perfect candidate
for advertising name prefixes.

OSPFN produces routes to name prefixes and installs them into CCND
(Content Centric Network Daemon) [5], which handles the forwarding of In-
terest and Data messages. More specifically, each NDN router runs CCND,
OSPFN and OSPFD (OSPF daemon) in parallel (Figure 1). OSPFN builds
Name OLSAs and injects them into the local OSPFD, which floods the OL-
SAs to the entire network. When the OSPFD at a node receives an OLSA,
it delivers the OLSA to its local OSPFN. Since each LSA carries the ID of
the router that originated the LSA, OSPFN can obtain the router ID of a
Name OLSA and query OSPFD to retrieve the nexthop to reach the router
(note that OSPFD still floods its regular LSAs and computes the shortest
path tree based on the overlay topology). OSPFN then installs the name
prefix and its associated nexthop into the CCND FIB. In the remainder of
this section, we describe the format of name OLSA messages, the process
for route calculation, and the detailed message exchange process.

CCND OSPFN OSPFDFIB

ROUTES
OLSA

QUERIES
OLSA

ENTRIES

Figure 1: Relationship between CCND, OSPFN, and OSPFD

3.1 Name OLSA Messages

A Name OLSA message carries a single name prefix. Its format is shown
in Figure 2. The majority of the fields are assigned by OSPFD in the
advertising router. OLSA has three scopes for flooding the network. We
use the LS Type “10” for area scope flooding, which means the OSLA will
be flooded only within the local area. The Opaque Type field can contain
a value within the range 127-255 for application specific use; we use 236
for Name OLSA. The Opaque ID is a unique value assigned by the user to
identify this name prefix. The Opaque Information field carries a 32-bit field

4

for the name prefix size, an 8-bit field for the name prefix format, as well as
the actual name prefix. The name prefix format can be URI (0) or CCNB
(1). Other formats can be defined in the future.

10 - area-local scope; Opaque LSAs are not flooded beyond the local area
11 - AS-wide scope; Opaque LSAs are flooded throughout the AS

Specifies the application specific type of the Opaque LSA
Type-specific ID
Router ID of the LSAs originator
Used to detect old and duplicate LSAs
Checksum of the complete header except the LS Age field
Total header length
Application-specific data

Size in Bytes of Name Prefix (32 bits)
Name Type (8 bits)

Name Prefix (variable size)

Name LSA Opaque Information

Opaque Information
Length
LS Checksum
LS Sequence Number
Advertising Router
Opaque ID
Opaque Type

LS Type
Options
LS Age

0 8 16 24 31
LS Age Options LS Type

Opaque Type Opaque ID
Advertising Router

LS Sequence Number
LS Checksum Length

Opaque Information (variable size)

The age of the LSA in seconds
Optional capabilities associated with the LSA
The link-state type of the Opaque LSA that identifies the LSAs range of topological
distribution. The three types used are as follows:

9 - link-local scope; Opaque LSAs are not flooded beyond the local (sub)network

Figure 2: Name OLSA Message Format

3.2 Route Calculation

OSPFN does not perform shortest path calculation – it queries OSPFD for
the nexthop to the origin router of a name prefix. When OSPFN receives
the query’s result, it adds a FIB entry containing the name prefix and the re-
turned nexthop. In the case of a name prefix advertised by multiple routers,
OSPFN sends a query for each of the origin routers and inserts a FIB entry
containing the name prefix and each returned nexthop.

Because the OSPF protocol provides only a single nexthop for each des-
tination, except when there are equal-cost shortest paths, OSPFN by default
generates one route for each single-origin name prefix. However, one of the
unique features of NDN is its forwarding strategy, which can explore multi-
ple paths to retrieve a piece of named data. Ideally, we should either modify

5

OSPF to calculate multiple best paths to each destination or let OSPFN
manage the topology information and perform multipath calculation. How-
ever, these designs would take a long time to implement. As a poorman’s
solution to multipath routing, OSPFN allows operators to specify a ranked
list of nexthops and it will insert the corresponding routes into CCND’s FIB,
so that CCND will try them when the best path fails to bring back data.
Each interface is associated with a preference; the more preferred interfaces
will be tried first. We call this feature “configured multipath routing”. To
ease the burden on operators, the multipath configuration is specified for
each node, not for each name prefix. Note that this is simply an initial or-
der for CCND to explore; CCND’s forwarding strategy will choose the best
path based on which path retrieves the data fastest.

When configured multipath is used, OSPFN generates a list of FIB en-
tries for each name prefix: the most preferred nexthops are those for the
origin routers, ranked by their associated path costs, followed by the config-
ured multipath nexthops by descending order of preference. OSPFN then
inserts the FIB entries in the reverse order, as CCND tries the last inserted
FIB entry first.

3.3 Messages Exchange Process

When a router boots up, it reads the configuration file and creates a Name
OLSA for each name prefix that it wants to advertise to the network. It
then sends the Name OLSAs to the local OSPFD to be flooded through
the area. The router may also learn the name prefixes it should originate
through other means, e.g., another protocol.

OSPFD informs OSPFN whenever there is an update in its LSDB along
with the content of the LSA. After receiving an LSA from OSPFD, OSPFN
first checks whether the LSA is an OLSA or not. If it is not an OLSA,
OSPFN simply discards that LSA. Otherwise, the router checks whether
the OLSA is originated by itself. If not, the OLSA is processed. OSPFN
reads the name prefix from the Opaque LSA field and creates an entry in
its own Name Prefix table containing the name prefix and the origin router.
After that, OSPFN sends a query to OSPFD for the nexthop(s) to reach
the origin router(s) of each name prefix.

When OSPFD receives a query message from OSPFN, it looks up its
routing table for the nexthop list and associated path costs, includes them
in a single message and then sends the message back to OSPFN. When
OSPFN receives this message from OSPFD, it will use the nexthop list and
path costs to update the Name Prefix Table for all name prefixes that have

6

this router as their origin router. Then OSPFN will create FIB entries for
each name prefix and insert them into CCND. One FIB entry is created for
each next hop for a name prefix.

When OSPFN receives any messages from OSPFD about deleting a
Name OLSA, it will delete entries for the name prefix in its own Name
Prefix table. OSPFN will then send messages to CCND to delete the corre-
sponding FIB entries from CCND. Figure 3 shows the sequences of messages
exchanged between OSPFD, OSPFN and CCND.

OLSA from neighboring
router

CCND OSPFN OSPFD

FIB Entries
ROUTES

ROUTE QUERIES

OLSA UPDATES

OLSA

Figure 3: Sequences of Messages exchanges among OSPFN, OSPFD and
CCND

4 Implementation

OSPFN is developed based on Quagga 0.99.17 [6] and tested on Ubuntu
10.04, 10.10, 11.04, 12.04, Fedora 9, and FreeBSD 9.0. It is implemented and
distributed by the University of Memphis and the University of Arizona. We
released the first version on Oct. 18, 2011 and the second version on May 15,
2012. Our code is open source and available at github.com. OSPFN2.0 can
be downloaded from https://github.com/NDN-Routing/OSPFN2.0. Below
we describe several important implementation details.

4.1 Configuration

Table 1 shows the configuration commands supported in the current OSPFN
implementation.

7

ccnnametype type

Function specify the format of the subsequent name prefixes

Parameter type: name prefix format, 0 (URI, default) or 1
(CCNB).

ccnname name prefix op id

Function specify a name prefix to be originated

Parameters
name prefix: name prefix to be originated
op id: a unique ID for this name LSA. The op id must
be unique among the name prefixes advertised by the
same router.

multipath-order a.b.c.d pref order

Function specify the interfaces to be explored by CCND and
their associated preferences

Parameters
a.b.c.d: next hop address
pref order: preference of next hop

logdir dir

Function specify the directory of the log files

Parameter dir: directory for logging

Table 1: OSPFN Configuration Commands

4.2 LSA Origination

OSPFN originates OLSAs after processing its configuration file. For each
ccnname command in the configuration file, OSPFN creates a Name OLSA
with LS Type 10, Opaque Type 236, and the configured Opaque ID. The
Opaque Data field is set with the size of the name prefix, name type from
the ccnnametype command, and the name prefix. OSPFN then injects this
OLSA into OSPFD.

4.3 Multipath Ordering

When OSPFN injects routes into the CCND FIB, the best path will be
injected last so that CCND will try it first. The other interfaces will be
inserted based on their preference specified by the operator. For example,
suppose a router has three interfaces with the following preferences:

multipath-order 10.0.1.2 3
multipath-order 10.0.2.1 2
multipath-order 10.0.8.2 1

8

If 10.0.2.1 is the best nexthop to the name prefix P, then OSPFN will con-
struct the FIB entries such that CCND will first use 10.0.2.1 to forward
Interest packets under P. If this interface fails to bring back data, then it
will try 10.0.1.2, followed by 10.0.8.2. When the best nexthop changes,
OSPFN will adjust the FIB entries accordingly. For example, if 10.0.8.2
becomes the new best nexthop, then the order becomes 10.0.8.2, 10.0.1.2
and 10.0.2.1.

5 Example

10.0.2.5

10.0.2.6

6

21

1 1

1

1

RTR 1
ID - 141.225.8.1

RTR 2
ID - 141.225.8.2

RTR 3
ID - 141.225.8.3

RTR 5
ID - 141.225.8.5

RTR 6
ID - 141.225.8.6

RTR 4
ID - 141.225.8.4

10.0.2.2

10.0.2.1

10.0.1.2

10.0.1.1 10.0.1.5

10.0.1.6

10.0.3.1

10.0.3.2

10.0.3.5

10.0.5.1 10.0.5.2

10.0.3.6

Figure 4: Network Topology

To demonstrate the design operation, the sample network topology in
Figure 4 will be used. The sample network consists of 6 NDN routers. Each
router’s public IP is displayed in the figure, as well as the tunnel address
for each router. The cost of each link is also shown. Each NDN router has
direct access to the name prefixes shown in Table 2, which also displays the
origin router of each name prefix. Each router is initially configured with
the name prefixes they want to advertise using the textbfccnname command.
Optionally, a router can specify back up paths using the multipath-order
command and the logging directory using the logdir command in its config-

9

Router Name Prefixes

RTR1 /ndn/flying/delta
/ndn/flying/aa
/ndn/flying/ticketprices

RTR2 /ndn/sports/soccer
/ndn/sports/bb

RTR3 /ndn/lifestyle/home
/ndn/lifestyle/cooking

RTR4 /ndn/leisure/park
/ndn/leisure/theater

RTR5 /ndn/travel/Michigan
/ndn/travel/Illinois

RTR6 /ndn/airport/Detroit
/ndn/airport/Chicago
/ndn/flying/ticketprices

Table 2: Name Prefixes Originated
by Each Router

RTR1 Configuration File

ccnname /ndn/flying/delta 1
ccnname /ndn/flying/aa 2
ccnname /ndn/flying/ticketprices 3
multipath-order 10.0.1.2 10
multipath-order 10.0.1.6 20

RTR3 Configuration File

ccnname /ndn/lifestyle/home 1
ccnname /ndn/lifestyle/cooking 2
multipath-order 10.0.1.5 10
multipath-order 10.0.3.6 15
multipath-order 10.0.3.2 20

RTR6 Configuration File

ccnname /ndn/airport/Detroit 1
ccnname /ndn/airport/Chicago 2
ccnname /ndn/flying/ticketprices 3

Table 3: Router Configuration Files

uration file. The configuration files for RTR1, RTR3, and RTR6 are shown
below in Table 3. Each configuration file consists of the name prefix that
the router is originating, and in the case of RTRs 1 and 3, the configured
multipath settings.

The OSPFN on each node will build a Name OLSA for each name prefix
in its configuration file to advertise to the network. It will inject the Name
OLSAs and handle the arrival/deletion/update of Name OLSAs from other
routers through the API provided by OSPFD. Each node will then be able
to build a Name Prefix Table containing the prefix names of all content ad-
vertised in the network. The Name OLSAs for RTR3 are shown in Figure 5,
which contains important information about the Name OLSAs such as the
type, size of the name prefix, as well as the name prefix itself. RTR3’s Name
Prefix Table is shown in Figure 6; for each name prefix, the corresponding
origin router is shown.

Each NDN node will then construct FIB entries for each unique name
prefix in its Name Prefix Table. In the following example a FIB entry for
RTR3 will be constructed for the name prefix /ndn/flying/ticketprices.
First the origin router (or routers) for the name prefix is looked up in the
Name Prefix Table, then, the next hops to the origin routers are obtained
from the OSPFD Routing Table (Figure 7).

10

Opaque Information
Advertising Router
Opaque Type
LS Type

RTR3 Opaque Name LSA

Opaque Information
Advertising Router
Opaque Type
LS Type

RTR3 Opaque Name LSA

0 (0/1 0-indicates uri, 1-indicates ccnb)
20 (Size in bytes of prefix name) 23 (Size in bytes of prefix name)

0 (0/1 0-indicates uri, 1-indicates ccnb)
/ndn/lifestyle/home /ndn/lifestyle/cooking

141.225.8.3
236
10

141.225.8.3
236
10

Figure 5: Name OLSA for RTR3

RTR3 Name Prefix Table
Name Prefix Advertising Router

141.225.8.1 (RTR1)
141.225.8.1 (RTR1)
141.225.8.1 (RTR1)
141.225.8.2 (RTR2)
141.225.8.2 (RTR2)
141.225.8.4 (RTR4)
141.225.8.4 (RTR4)
141.225.8.5 (RTR5)
141.225.8.5 (RTR5)
141.225.8.6 (RTR6)
141.225.8.6 (RTR6)
141.225.8.6 (RTR6)

/ndn/flying/delta
/ndn/flying/aa
/ndn/flying/ticketprices
/ndn/sports/soccer
/ndn/sports/bb
/ndn/leisure/park
/ndn/leisure/theater
/ndn/travel/Michigan
/ndn/travel/Illinois
/ndn/airport/Detroit
/ndn/airport/Chicago
/ndn/flying/ticketprices

Figure 6: RTR3’s Name Prefix Table

For a name prefix advertised by a single router, a FIB entry is con-
structed containing the name prefix and the next hop to the origin router.
Then the constructed FIB entry is inserted into the CCND FIB. If a name
prefix is advertised by multiple routers, FIB entries are constructed for each
next hop to the origin routers. Then, these FIB entries are added in CCND
FIB in decreasing order of path cost to the origin routers. Higher preference
is given to lower cost path.

Now if a router has been configured for multipath, it will construct and
insert FIB entries for each configured next hop for a name prefix by increas-
ing order of preference, followed by any next hops for the origin routers of
that name prefix by decreasing path cost. Since CCND uses the last in-
serted FIB entry first, OSPFN makes sure that the origin routers’ nexthops
get higher preference than other configured nexthops. Partial FIB of RTR3
will look like Figure 8, where the next hops are ordered from lowest to high-
est preference. To find RTR3’s next hops for /ndn/flying/ticketprices,
firstly the origin router(s) of the prefix, i.e., RTR’s 1 and 6, are looked up

11

RTR1
Destination Next Hop

RTR3 OSPF Routing Table

10.0.1.5 (RTR1)
RTR2 10.0.1.5 (RTR1)
RTR4 10.0.1.5 (RTR1)
RTR5 10.0.3.2 (RTR5)
RTR6 10.0.3.6 (RTR6)

Figure 7: RTR3’s Routing Table

in the OSPF routing table. This yields the next hop associated with each
router, 10.0.1.5 (RTR1) and 10.0.3.6 (RTR6), respectively. The path cost
is also looked up and the lower value wins. RTR6 has a path cost of 1
from RTR3, while RTR1 has a path cost of 2 from RTR3, thus RTR6 be-
comes the best next hop, followed by RTR1. This gives us the first 2 next
hops for the prefix. In our example, RTR3 has a backup path due to its
multipath configuration, therefore the backup link is used as the next hop,
which is RTR5. A similar process is performed to obtain the next hops for
/ndn/sports/soccer.

10.0.5.1 (RTR5)
10.0.1.5 (RTR1)
10.0.3.6 (RTR6)

...
10.0.3.6 (RTR6)
10.0.5.1 (RTR5)
10.0.1.5 (RTR1)

...

RTR3 FIB
Name Prefix Next Hop

/ndn/flying/ticketprices
/ndn/flying/ticketprices
/ndn/flying/ticketprices

/ndn/sports/soccer
/ndn/sports/soccer
/ndn/sports/soccer

...

...

Figure 8: RTR3’s FIB Table

6 Deployment and Testbed Status Monitoring

We deployed the first version of OSPFN in Oct. 2011 and the second version
in May 2012 over the NDN testbed. All the 10 sites on the NDN testbed have
deployed OSPFN 2.0 as of June 28 2012, including UCLA Remap, PARC,
University of Arizona, Colorado State University, Washington University
(including the Supercharged PlanetLab Platform or SPP nodes), University
of Memphis, CAIDA, UCLA, Northeastern University and UIUC. From the

12

deployment experience, we noticed that setting up and configuring GRE
tunnels in different OSes accounted for the majority of our problems. Man-
aging private IPs is also an issue in network management. We hope to get
rid of these problems when the next version is released, which will be a pure
name-based design using NDN messages.

We have developed web-based tools to monitor which prefixes are ad-
vertised by OSPFN and which neighbors are advertised by OSPFD at each
NDN hub (Figure 9). The current state of each link is also displayed along
with a timestamp of when the corresponding LSA was received. The times-
tamp at the top of the page indicates the time the page was last updated.
Another monitoring tool we use is the CCND status web page (Figure 10),
which helps us verify whether OSPFN installs routes correctly into CCND.

Figure 9: OSPFN Status on NDN Testbed

7 Future Work

We plan to continue running and maintaining OSPFN 2.0 on the NDN
testbed. At the same time, we would also like to ensure the long-term
viability of NDN routing. Therefore, we have recently started developing an
OSPF protocol over NDN. It will not rely on IP addresses, but rather, each
router and interface are named. It will also automatically calculate multiple
forwarding choices without user configuration.

13

Figure 10: OSPFN routes installed into CCND

8 Acknowledgments

Yaoqing Liu participated in the implementation of OSPFN 1.0. Gus Sanders
developed the web-based OSPFN status monitoring tool. Yifeng Li devel-
oped the CCND status webpage. We would also like to thank Lixia Zhang,
Van Jacobson, James Thornton, Michael Plass and Syed Obaid Amin for
their valuable feedback. Finally, we thank all the NDN testbed operators
for deploying OSPFN at their sites.

References

[1] L. Berger, I. Brystkin, A. Zinin, and R. Coltun. The OSPF opaque LSA
option. RFC 5250, July 2008.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard. Networking named content. In Proceedings of ACM
CoNEXT, 2009.

[3] L. Zhang et al. Named data networking (NDN) project. Technical Report
NDN-0001, PARC, October 2010.

[4] J. Moy. OSPF version 2. RFC 2328, Apr. 1998.

[5] PARC. CCNx open srouce platform. http://www.ccnx.org.

14

[6] Quagga routing software suite. http://www.quagga.net.

15

