
NDNLP: A Link Protocol for NDN

Junxiao Shi, Beichuan Zhang
The University of Arizona

1 Introduction

Current CCNx applications run on top of TCP/UDP/IP tunnels. It would be beneficial to be able
to run directly on Ethernet, e.g., without having to configure IP addresses and without extra layer
of processing. There are two major issues, though, namely (1) messages larger than Ethernet MTU
cannot be sent, and (2) packet losses may degrade application performance.

In this work we propose a link protocol for delivering CCNx messages over a local one-hop
link. This protocol, called NDNLP, defines a new message encapsulation and exchange protocol to
provide the following two features:

• Fragmentation and Reassembly When a CCNx message is larger than the lower-layer’s
MTU, NDNLP will fragment the message into multiple MTU-compliant packets at the sender,
and reassembly the original message at the receiver.

• Acknowledgement and Retransmission The receiver acknowledges the receipt of packets
in a summary bitmap, and the sender can retransmit any lost packets.

NDNLP operates between the network layer (i.e., ccnd) and the “link”, which can be any
lower-layer delivery service, including TCP tunnels, UDP tunnels, Ethernet links, and so on. Its
two features are optional: they can be turned on or off depending on the capability of lower-layer
delivery. For example, both should be turned off when using TCP tunnels, but when using Ethernet,
fragmentation/reassembly must be turned on.

We have made the initial design of NDNLP, implemented it on Linux with CCNx, and tested
it on Ethernet links, and TCP/UDP tunnels. The rest of the paper will describe these in details.

2 Protocol Design

In this section we first describe packet formats of NDNLP, and then how it operates in fragmenta-
tion/reassembly and acknowledgement/retransmission.

A note about terminology: in this paper “messages” refers to what NDNLP receives from and
sends to the upper network layer, and “packets” refers to what NDNLP receives from and sends to
the lower link layers. Messages may be fragmented into multiple packets and get reassembled later.
Messages are the payload of packets, whose header contain some extra information to facilitate
NDNLP’s functionality.

2.1 Packet Format

CCNx has two types of messages: Interest and Data. Each message is in XML under a well-known
schema. Messages are encoded to a binary representation, ccnb [1], when transmitted either across
hosts or between ccnd and local apps on the same host.

1

NDN, Technical Report NDN-0006, 2012. http://named-data.net/techreports.html
Revision 2: July 2012

http://www.named-data.net/techreports.html

NDNLP has two types of packets: Link Data packets and Link Acknowledgement packets.
Link Data packets are those carrying CCNx messages (Interest and Data) as payload, while Link
Acknowledgement packets are used to detect packet loss. All NDNLP packets are XML documents
encoded in ccnb too. This makes it easier to extend the packet format or be compatible with other
link layer protocols developed in the future.

2.1.1 Link Data Packet

A Link Data packet carries a CCNx message or a fragment of it as the payload. It has the following
XML structure:

<NdnlpData>

<NdnlpSequence>sequence number</NdnlpSequence>

<NdnlpFlags>flags</NdnlpFlags>

<NdnlpFragIndex>fragment index</NdnlpFragIndex>

<NdnlpFragCount>fragment count</NdnlpFragCount>

<NdnlpPayload>payload</NdnlpPayload>

</NdnlpData>

These elements must appear in the given order. Their meanings are as follows.

1. Sequence number, 48 bits; required. A unique sequence number for each packet.

2. Flags, 16 bits; required. The following flags are defined:

bit 0 RLA, requesting per-link acknowledgement

3. Fragment index, 16 bits; optional, default to ‘0’ if not present. The 0-based index of current
fragment within the message.

4. Fragment count, 16 bits; optional, default to ‘1’ if not present. Total number of fragments
of the message.

5. Payload, variable length; required. The payload.

2.1.2 Link Acknowledgement Packet

An acknowledgement packet encodes the receipt status of a collection of link data packets. It
contains one or more acknowledgement blocks. Each block indicates the receipt status of a sequence
of link data packets (i.e., they have continuous sequence numbers). Packet sequence numbers in
different blocks don’t have to be continuous. The packet’s XML structure is as follows.

<NdnlpAck>

<NdnlpAckBlock>

<NdnlpSequenceBase>sequence base</NdnlpSequenceBase>

<NdnlpBitmap>bitmap</NdnlpBitmap>

</NdnlpAckBlock>

</NdnlpAck>

These elements must appear in the given order. There can be multiple NdnlpAckBlock elements.
The meanings of the elements are as follows.

2

1. Sequence base, 48 bits. This is the sequence number of the first packet to which this
acknolowedgment block applies.

2. Bitmap, variable length. It represents the receipt status of a block of packets with continuous
sequence numbers. Each bit, when set to 1, indicates that a packet with the corresponding
sequence number has been received. The first bit corresponds to the packet whose sequence
number is the sequence base.

2.2 Fragmentation Operations

To send a ccnb-encoded message to another host, NDNLP layer slices it into N packets according
to link MTU and send them. Packets belonging to the same message have continuous sequence
numbers. The relative position of a fragment in the message is reflected by fragment index and
fragment count fields. The receiver reassembles the message according to these three fields.

2.2.1 Sender Operation

To send a message of L octets on a lower layer with MTU , the sender first decides maximum
payload length MPL, such that the total length of a resulting packet will not exceed MTU . Thus,
the message needs to be sliced into N = d L

MPLe fragments. N packets are created and assigned
consecutive sequence numbers, fragment index from 0 to N − 1, and have N as the fragment count.
Each of the first N − 1 packets contains MPL octets payload, and the last packet contains the
remaining part.

For example, on MPL = 1000, a 2500-octet message is sent as the following 3 packets:

sequence fragment index fragment count payload

600 0 3 0-999

601 1 3 1000-1999

602 2 3 2000-2499

2.2.2 Receiver Operation

The receiver maintains a partial message store data structure. Each item in the store represents
a partially received message. Items are indexed by message identifier, which is the sequence number
of the first packet in the message. Each partial message contains a list of received fragments. It also
has a timestamp of latest packet arrival, so an incomplete message without new packets coming
can be cleaned out after some time.

When a packet with sequence number S, fragment index I, and fragment count N is received,
the receiver first calculates message identifier M = S − I. If item M does not exist in the store
yet, it is created. The current fragment is added into the partial message, if it isn’t a duplicate.
When the partial message has all the fragments (as indicated by fragment count), the message is
reassembled and delivered to upper layer, and the partial message object is removed from the store.

Two performance improvements can be made:

• If N = 1, the message is not fragmented, so it can be delivered right away without going
through the partial message store.

• The receiver can pre-allocate the buffer when message length can be estimated, so that copying
is not needed on reassembling.

3

However an attacker may inject many packets with very large fragment count as a Denial-of-
Service attack. Thus, an implementation should limit buffer pre-allocation for large messages.

For example, if the packets in Section 2.2.1 are received in the order of 601, 600, 601, 602, the
following will happen:

1. 601 arrival M = S − I = 601 − 1 = 600. Create a partial message with message identifier
600 with buffer size 1000× 3 = 3000, and copy the payload into octets 1000-1999.

2. 600 arrival M = S − I = 600 − 0 = 600. A partial message with message identifier 600
exists, so copy the payload into octets 0-999.

3. 601 arrival M = S − I = 601 − 1 = 600. A partial message with message identifier 600
exists, and fragment I = 1 already arrived, so this is a duplicate.

4. 602 arrival M = S−I = 602−2 = 600. A partial message with message identifier 600 exists,
so copy the payload into octets 2000-2499. Now the partial message has all the fragments, so
the message is reassembled and delivered to upper layer, and removed from the store.

2.2.3 Discussions

The main difference between IPv4’s design and NDNLP’s design of fragmentation/reassembly is
that in IPv4, reassembly only happens at the final destination, while in NDNLP it happens right
after the fragmentation across a single hop. Reassembling messages at each hop is required because
the receiver node needs to be able to cache the message at its entirety or verify its signature over
the entire content. By including fragment count in the packet header, we allow receivers to improve
its performance by allocating memory of appropriate size and avoiding copying things around.

2.3 Link Acknowledgement Operations

When per-link acknowledgement is enabled, NDNLP will set the RLA (requesting per-link ac-
knowledgement) flag in link data packets to 1. The sender can store some recently sent packets
for the purpose of retransmission, which is also optional and configurable. Acknowledgement and
retransmission are performed on packet level.

NDNLP uses selective acknowledgement. Each acknowledgement block contains a bitmap where
each bit indicates whether a packet is received. The receiver should accumulate received sequence
numbers for a short time, pack them into one or more acknowledgement blocks and send back to
the sender in one or multiple acknowledgement packets.

2.3.1 Sender Operation

When sending a message, the sender should determine whether per-link acknowledgement is needed
for this message. This decision can be based on link quality, the importance of the message, and/or
configuration. If the sender decides that per-link acknowledgement is needed, RLA flag is set to
1 for all packets associated with this message. Link acknowledgement packets themselves do not
request per-link acknowledgement, nor can they be fragmented.

The sender maintains a sent packet store that stores a number of recently sent packets,
indexed by their sequence numbers. These packets can be retransmitted if not acknowledged in
time. The size of this store is configurable, and setting the size to zero will effectively disable
retransmission.

4

When a packet requesting per-link acknowledgement is sent, it is inserted into the sent packet
store along with a timestamp. When this packet is acknowledged, it is removed from the store.

A periodical process checks the store for packets that are sent some time ago, and retransmit
them. The timeout period should be at least 4x link delay. Each packet can be retransmitted at
most for a few times (e.g. twice), and within a limited period of time after the first transmission
(e.g. 32x link delay).

The focus of this work is to provide the acknowledgment mechanism to detect packet losses.
The details of how to deal with the losses, e.g., retransmission mechanisms, reporting to upper
layers, etc. are subject to future work.

2.3.2 Receiver Operation

The receiver maintains an acknowledgement queue data structure, which is a list of sequence
numbers of received packets that are requesting per-link acknowledgement. Once a packet with
RLA set to 1 is received, its sequence number is appended into this queue.

A periodical process reads all sequence numbers from the acknowledgement queue, and packs
them into one or more acknowledgement blocks that are sent in one or more packets. This process
should be executed at least once per 2x link delay, to ensure every packet is acknowledged within
4x link delay.

Once an acknowledgement packet is sent, the sequence numbers are removed from the acknowl-
edgement queue. If a later acknowledgement block happens to cover a previously acknowledged
sequence number, the bit for that sequence number will be zero.

2.3.3 Discussions

TCP receivers by default acknowledge the last sequence number that has been successfully received
without holes. The TCP Selective Acknowledgement Option (TCP SACK, [2]) allows a TCP
receiver to acknowledge ranges of octets that have been successfully received, by specifying the
sequence numbers of the beginning and the end of each block. NDNLP is similar to TCP SACK.
This allows more accurate loss detection and retransmission. The differences are that NDNLP uses
bitmaps to to encode the receipt status more efficiently, and acknowledgement and retransmission
are done at the packet level, not octet.

3 Reference Implementation

To extend CCNx [3] with NDNLP protocol, we implement ndnld, a user-space daemon, as a link
adaptor for ccnd. The ndnld maintains multiple “link connections”, each can be Ethernet, IP,
UDP, TCP, or other underlying protocols. Acting as a ccnd client program, ndnld creates a face
for each connection on ccnd. From these faces, ndnld receives messages from local ccnd, perform its
functions (e.g., fragmentation), and send them to remote hosts over the lower-level links/tunnels. A
control program, called ndnldc, is also implemented to control the connections and faces of ndnld.
The control is done using CCNx Interests, similar to how ccndc controls ccnd.

3.1 Architecture

There are two options implementing NDLP: (1) directly modify ccnd code to add the new function-
ality; (2) write a ccn client program to receive the messages and perform the functions outside of
ccnd. At this early stage of development, we adopted the second approach so to test the protocol. In

5

the future when better performance or more functionality are needed, the current implementation
can be integrated into ccnd code base.

ccnd ccnd

ndnld ndnld

control control

Ethernet/IP/UDP/TCP

ccnd

ndnld

Ethernet/IP/UDP/TCP
control

ndnldc

Figure 1: network architecture

The network architecture is shown in Figure 1. Each NDN router runs one ccnd process and one
ndnld process. The ccnd process is responsible for routing and forwarding, and ndnld takes care of
communicating with remote hosts via links/tunnels. A single ndnld process is capable of managing
multiple connections, but each connection needs its own UNIX socket face on local ccnd, because
routing and forwarding is done by ccnd. From the viewpoint of ccnd, messages sent into this face
will be received by ccnd on another host through the corresponding face. To open a connection
from host A to host B:

1. ndnld on host A opens a UNIX socket face with local ccnd of host A

2. ndnld on host A initiates a connection to ndnld on host B

3. ndnld on host B accepts the connection

4. ndnld on host B opens a UNIX socket face with local ccnd of host B

In addition, a separate control face is opened for accepting control commands. A utility program,
ndnldc, sends a control command by expressing an Interest of specific name, which is forwarded
by local ccnd to ndnld’s control face. Face management and prefix registration is taken care of by
ndnldc, which subsumes ccndc.

3.2 Software Components

We implemented ndnld and ndnldc in C.
Figure 2 illustrates software components and their relationship.
Core event system is the main loop of the program. It makes use of poll system call and

non-blocking I/O, and invokes other components periodically or when data becomes available.
CCN client abstraction is a wrapper of ccn client. It talks with local ccnd over a UNIX

socket face, and conducts message integrity verification and message bound detection.
Control command listener listens on the control face for control commands. These control

commands are Interests generated by ndnldc, and are used to add or remove connections and set
parameters. CCN face manager talks with ccnd to add or remove faces for such connections.

6

ccn client

abstraction

lower layer abstraction

Ethernet UDP TCP

NDNLP service

NDNLP

sender

NDNLP

receiver

control system

control

command

listener

ccn face

manager

core

event

system

Figure 2: software components

Lower layer abstraction provides a generic lower layer interface out of different types of lower
layers. NDNLP sender and NDNLP receiver implement NDNLP service above a generic lower
layer.

3.3 Control Protocol

The ndnld control protocol provides a method for tools such as ndnldc to control the connections
managed by ndnld.

3.3.1 Connection Management Protocol

The connection management protocol of ndnld supports “connect”, “disconnect”, and “listconnec-
tions” operations.

The design of connection management protocol borrows largely from CCNx Face Management
Protocol [4], due to their similarity. A request operation is represented as a CCNx Interest with a
CCNx ContentObject encoding the majority of the request parameters embedded as a component
of the Interest name. A response is represented as a ContentObject for which the name matches
the Interest, and the content encodes any necessary response data.

The ContentObject encoding requests and responses is NdnldConnection, that has the following
structure:

<NdnldConnection>

<Action>verb</Action>

<FaceID>ccnd face ID</FaceID>

<NdnldLowerProtocol>lower layer protocol</NdnldLowerProtocol>

<Host>remote address</Host>

<NdnldLocalInterface>local interface</NdnldLocalInterface>

<ForwardingFlags>flags</ForwardingFlags>

<NdnldSentPktsCapacity>sent packets store capacity</NdnldSentPktsCapacity>

<NdnldRetransmitCount>retry count</NdnldRetransmitCount>

<NdnldRetransmitTime>retransmit time</NdnldRetransmitTime>

7

<NdnldAcknowledgeTime>acknowledge time</NdnldAcknowledgeTime>

<StatusCode>connection state</StatusCode>

</NdnldConnection>

The elements must appear in the given order. Fields are described below:

1. Verb, UDATA; required. The verb “connect”, “disconnect”, or “listconnections”.

2. ccnd face ID, UDATA; required in disconnect request and all responses, ignored otherwise.
An integer representing the connection. Since each connection has a face on ccnd, it’s sufficient
to identify a connection by the ccnd face ID.

3. Lower layer protocol, UDATA; required in connect request and all responses, ignored
otherwise. The lower layer protocol.

• Ethernet: “ether”

• UDP: “udp”

4. Remote address, UDATA; required in connect request and all responses, ignored otherwise.
The host address of the lower layer protocol.

• Ethernet: standard hex-digits-and-colons notation; must be parsable by ether aton.

• UDP: string representation of IPv6 or IPv4 address; must be parsable by inet pton as a
AF INET6 or AF INET address.

5. Local interface, UDATA; required when using Ethernet in connect request and all responses,
ignored otherwise. The name of local Ethernet interface, such as “eth1”.

6. Flags, BLOB 16 bits; required in connect request and all responses, ignored otherwise. The
following flags are defined:

bit 0 RLA, whether to request per-link acknowledgement on each outgoing packet

7. Sent packets store capacity, UDATA; optional, default to ‘100’ if not present, ignored in
requests other than connect. The maximum number of packets to be kept in sent packets
store. The recommended value of this parameter is the estimated number of packets being
sent in 2x round trip time.

8. Retry count, UDATA; optional, default to ‘5’ if not present, ignored in requests other than
connect. The maximum number of retries for each packet. The initial transmission is not
counted within this limit.

9. Retransmit time, UDATA; optional, default to ‘1000’ if not present, ignored in requests
other than connect. The timeout, in milliseconds, after which a packet should be retrans-
mitted if not acknowledged. The recommended value of this parameter is 3x round trip
time.

10. Acknowledge time, UDATA; optional, default to ‘300’ if not present, ignored in requests
other than connect. The maximum time, in milliseconds, a sequence number can be kept in
the acknowledge queue before being sent in an acknowledgement packet. The recommended
value of this parameter is 1x round trip time.

8

11. Connection state, UDATA; required in all responses, ignored otherwise. The connection
state, ‘normal’ or ‘error’.

ndnldc then expresses an interest in /ccnx/ndnld/CCNDID /control/VERB /NFBLOB , where

• CCNDID is the ccndid of the local ccnd

• VERB is the operation verb

• NFBLOB is the signed content object

VERB occurs redundantly in both the interest prefix and in the NFBLOB. Its presence in the
prefix is for dispatching the request. It is also in the NFBLOB, so that it is signed.

The listconnections response contains zero or multiple NdnldConnection objects, enclosed in a
<Collection> element.

3.3.2 Prefix Registration Protocol

ndnld does not need a separate prefix registration protocol. Once ndnldc receives the ccnd face ID
of a connection from the connection management protocol, it can use CCNx Prefix Registration
Protocol [4] to talk with ccnd and register or unregister prefixes on the face.

3.4 The ndnldc Utility

ndnldc is a command line utility for managing the connections on local ndnld, and registering
prefixes on the ccnd faces of those connections. It works by using ndnld Connection Management
Protocol and CCNx Prefix Registration Protocol.

3.4.1 Creating a Connection

Creating a UDP connection

ndnldc -c -p udp -h 192.0.2.1

ndnldc -c -p udp -h 2001:DB8::1

-h IP address of destination host, either IPv6 or IPv4.

Creating an Ethernet connection

ndnldc -c -p ether -h 08:00:27:01:01:01 -i eth1

-h MAC address of destination host, in standard hex-digits-and-colons notation.

-i Name of local network interface.

Specifying parameters for a new connection

ndnldc -c ... -a -S 100 -C 5 -R 1000 -A 300

-a Whether to enable per-link acknowledgement. If this argument is present, RLA flag is set for
packets sent from local ndnld; otherwise RLA flag is not set. Local ndnld will acknowledge
received packets with RLA flag set, regardless of this setting.

9

-S Sent packets store capacity. This number of packets will be kept in sent packets store, so that
they can be retransmitted if not acknowledged.

-C Retry count. An unacknowledged packet may be retransmitted for this number of times.

-R Retransmit time. A packet may be retransmitted if it is not acknowledged within this amount
of time since last (re)transmission.

-A Acknowledge time. A sequence number cannot stay in acknowledge queue for more than this
amount of time.

FaceID FaceID is written to stdout. A calling script should capture this FaceID in order to
destroy the conneciton, and (un)register prefixes. If ndnldc -c is called with the same protocol,
address, and local interface, the same FaceID will be returned.

Accepting a connection Currently ndnld does not listen for new connections. To make a
working connection, you need to run ndnldc -c on both hosts, setting the address of the remote
host.

3.4.2 Destroying a Connection

ndndlc -d -f 11

-f FaceID of the connection. This must be the ccnd FaceID of a connection managed by local
ndnld; you cannot use this command to kill the control face, or a face of another application.

3.4.3 Listing Existing Connections

ndndlc -l

A human-readable list of existing connections is written to stdout. It looks like:

face=277 ether 08:00:27:01:01:01 on eth1

face=280 udp 2001:DB8::1

face=282 udp 192.0.2.1

3.4.4 Prefix Registration

Registering a prefix

ndnldc -r -f 11 -n ccnx:/example

-f FaceID of the connection. This should be the ccnd FaceID of a connection managed by local
ndnld. It’s possible to operate on the control face, or a face of another application, but this
is not the intended use of this command.

-n The prefix. “ccnx:” can be omitted.

10

Unregistering a prefix

ndnldc -u -f 11 -n ccnx:/example

-f FaceID of the connection. This should be the ccnd FaceID of a connection managed by local
ndnld. It’s possible to operate on the control face, or a face of another application, but this
is not the intended use of this command.

-n The prefix. “ccnx:” can be omitted. It must precisely match the prefix used in registration.

3.4.5 Error Handling

ndnldc returns 0 on success.
ndnldc returns 1 on failure, and writes any error messages to stderr. Some common failure

reasons include:

• Local ccnd is not running.

• Local ndnld is not running.

• You are trying to operate on a FaceID that does not exist in local ndnld.

• The format of MAC address or IP address is incorrect.

• The local interface does not exist.

4 Testing

Testing is an important part of every software project. I conducted unit test, functionality test,
and performance test for ndnld.

4.1 Unit Test and Debugging

I made use of CUnit [5] unit testing framework to test various components individually. These unit
tests can help ensure code quality and the correctness of implementation.

ndnlink is a light-weight version of ndnld. It is a command line program that can manage one
NDNLP connection, and it does not contain the control system. This program is used to test the
NDNLP service components.

Debugging tools such as gdb and valgrind are used to fix logical errors, segment faults, and
memory leaks in the program.

4.2 Test Environment

The test environment consists of four Ubuntu 11.10 64-bit machines, on a VirtualBox virtualization
environment. Four Intel Xeon E5645 @2.40GHz CPU cores are available to each machine. Each
machine has two network interfaces, and eth1 of all four machines are connected to the same
Ethernet switch. All machines are running ccnx-0.6.0 stable release.

ndnld, ndnldc, and ndnlink programs are installed to /usr/local/bin on each machine. ndnld
and ndnlink have ‘SetUID’ enabled so that they are able to create Ethernet sockets.

A network-layer topology shown in Figure 3 is configured with ndnldc. Each machine is assigned
a name prefix, and ccnpingserver [6] is running on this name prefix. FIB is populated statically
with assigned name prefixes by using ndnldc.

11

R0

R1

R2

R3

Figure 3: test environment topology

4.3 Wireshark NDNLP Dissector

ndnlp.lua is a Wireshark plugin which implements a dissector for NDNLP. It is able to identify
NDNLP packets, and display certain header fields.

Although this dissector is not able to find out every NDNLP field, it is sufficient for debugging
and testing this NDNLP implementation.

4.4 Functionality: Fragmentation

R1 acts as the publisher; a file of 6600 bytes is published under R1’s prefix with ccnpoke command.
R0 acts as the consumer; it expresses an interest for that file with ccnpeek command.

Figure 4: fragmented message

A Wireshark capture on R0 (Figure 4) shows that the ContentObject message is fragmented
into 5 packets.

4.5 Functionality: Acknowledgement and Retransmission

The same experiment is repeated. This time, R1 is running ndnlink instead of ndnld, and a lossy
option is enabled in ndnlink so that it drops outgoing packets with 5% probability.

A Wireshark capture on R0 (Figure 5) shows that the data packet with sequence ‘aaaf95d90680’
was lost during the first transmission, and it is retransmitted after about 1000ms (the default
retransmission time).

4.6 Performance: Delay

To measure the delay of ndnld and compare to ccnd’s native UDP/TCP face, ccnping is invoked
on R2 to ping the ccnpingserver located on R1. Interests and Contents will traverse two hops
(R2-R0 and R0-R1). 20000 Interests are sent at an interval of 5 milliseconds (200 Interests per
seconds; experiment lasts for 100 seconds).

12

Figure 5: packet retransmission

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500

C
D

F

ccnping round trip time (ms)

ccnd UDP
ccnd TCP

ccnx udplink UDP
ndnld Ethernet

ndnld UDP

Figure 6: ccnping round trip time on various link implementations

link program lower-layer protocol timeouts round trip time (ms)
min median max

ccnd UDP 2.03% 29.545 419.130 1816.55

ccnd TCP 0.00% 57.739 715.417 3102.440

ccnx udplink UDP 0.35% 56.395 539.820 2241.140

ndnld Ethernet 0.00% 51.283 179.651 1511.120

ndnld UDP 1.11% 46.587 182.490 1475.110

The result shows that, in terms of delay, ndnld has better performance than ccnd’s native
UDP/TCP face.

4.7 Performance: Resource Consumption

This experiment measures the system resource consumption of ndnld. R1, R2, R3 each runs two
ccnping processes that continuously ping two other hosts. The CPU consumption of ndnld on R0
is observed by top.

13

ccnping interval (ms) msg/sec on R0 ndnld CPU ccnd CPU

1000 12 1% 1%

100 120 8% 9%

8 1500 28% 33%

The result shows that, ndnld consumes about 85% of the CPU cycles consumed by ccnd. Most
servers are equipped with multiple CPU cores, and both ccnd and ndnld are single-threaded so
each can take one CPU core. Thus, as long as ndnld consumes less CPU cycles than ccnd, the CPU
consumption of ndnld is not a big concern.

A Protocol Numbers

lower layer field protocol number

Ethernet Ethertype 0x8624

IP protocol 150

UDP port 9695

TCP port 9695

B ccnb DTAG Codes

CCNx project assigned a block of 16 DTAGs starting with 20653248 for use with NDNLP. [7]

Element DTAG

NdnlpData 20653248

NdnlpSequence 20653249

NdnlpFlags 20653250

NdnlpFragIndex 20653251

NdnlpFragCount 20653252

NdnlpPayload 20653253

NdnlpAck 20653254

NdnlpAckBlock 20653255

NdnlpSequenceBase 20653256

NdnlpBitmap 20653257

B.1 DTAGs in Control Protocol

The ndnld control protocol is using a private range of DTAGs. This is allowed because those
DTAGs only appear in messages to or from ndnld, so the dictionary can be inferred from context
[1].

14

Element DTAG

NdnldConnection 20653264

NdnldLowerProtocol 20653265

NdnldLocalInterface 20653266

NdnldSentPktsCapacity 20653267

NdnldRetransmitCount 20653268

NdnldRetransmitTime 20653269

NdnldAcknowledgeTime 20653270

References

[1] “CCNx Binary Encoding (ccnb).” [Online]. Available: http://www.ccnx.org/releases/latest/
doc/technical/BinaryEncoding.html

[2] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Acknowledgment
Options,” RFC 2018 (Proposed Standard), Internet Engineering Task Force, Oct. 1996.
[Online]. Available: http://www.ietf.org/rfc/rfc2018.txt

[3] “CCNx.” [Online]. Available: http://www.ccnx.org/

[4] “CCNx Face Management and Registration Protocol.” [Online]. Available: http://www.ccnx.
org/releases/latest/doc/technical/Registration.html

[5] “CUnit, A Unit Testing Framework for C.” [Online]. Available: http://cunit.sourceforge.net/

[6] “ccnping.” [Online]. Available: https://github.com/NDN-Routing/ccnping

[7] “CCNx - Feature #100710: Assign DTAGs for experimentation with link-level protocols.”
[Online]. Available: http://redmine.ccnx.org/issues/100710

15

