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ABSTRACT
The recently proposed Named Data Networking (NDN) ar-
chitecture and the widely deployed HTTP infrastructure
both support content distribution in a name-centric fashion.
In this paper, we evaluated the content distribution perfor-
mance of NDN-based and HTTP-based content distribution
solutions.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Store and
forward networks

General Terms
Performance, Measurement

1. INTRODUCTION
As content distribution traffic keeps increasing, efficient con-
tent distribution methods are needed. On the one hand, sev-
eral recently proposed content-centric network architectures
support content distribution intrinsically. Named Data Net-
working (NDN) [4] is one of these architectures. NDN names
packets rather than end-hosts, which enables the caching of
packets in the network for future distribution. On the other
hand, HTTP is recognized as a name-centric protocol. A
significant portion of today’s content distribution services
leverage widely deployed HTTP infrastructures, such as web
servers and caching proxies [5]. HTTP is the practical so-
lution for efficient content distribution. However, there is
a lack of knowledge on the performance difference between
NDN-based and HTTP-based solutions. In this paper, 1) we
evaluate NDN-based and HTTP-based file distribution per-
formance in a real world testbed with more than 40 hosts; 2)
we make a modest modification on the current NDN proto-
type implementation which nearly doubles system through-
put.

2. BACKGROUND
2.1 Named-Data Networking
In NDN, each packet has a unique name, and it is forwarded
at each NDN node based on a lookup on its name. An NDN
node consists of three logical components, the Forwarding-
Information Base (FIB), the Content Store (CS) and the
Pending-Interest Table (PIT). NDN packets are either inter-
est packets or data packets. Content consumers send inter-
est packets to fetch data. For each incoming interest packet,
an NDN node first checks whether the requested content can
be satisfied from its local CS, and it then either sends back

a data packet or forwards this interest packet. For an in-
coming data packet, an NDN node will cache it and then
check the PIT. It will then forward the data packet if there
are pending interests that can be satisfied by this content.

CCNx [2] is an NDN prototype software implementation de-
veloped by PARC. The key component of CCNx is the ccnd
daemon, which supports packet forwarding and caching. The
current ccnd program runs as an overlay network on top of
IP. The CCNx implementation we evaluated in this paper
was released on March 8, 2011.

2.2 HTTP-Caching System
The HTTP protocol is recognized as a name-centric proto-
col, where the names are the URLs. As a result, HTTP
packets can be cached and redistributed in the network by
utilizing HTTP caching proxies. With the widely deployed
HTTP infrastructure, such as web servers and caching prox-
ies, HTTP is a practical solution for content distribution. It
should also be noted that there has been a resurgence of
HTTP traffic in today’s internet [5]. In this paper, we con-
figured an HTTP-caching system using the popular http web
server lighttpd [1] and HTTP caching proxy Squid [3].

3. PERFORMANCE
Although there are a lot of similarities between NDN-based
and HTTP-based content distribution methods, there is a
lack of performance comparisons between these two approaches.
We evaluated the file distribution performance using these
two methods in the Open Network Laboratory (ONL) [6].

3.1 Experiment Setup

Figure 1: Testbed Topology
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The testbed includes 40 client hosts, 1 server and two levels
of intermediate nodes, which can be either CCNx routers
or Squid proxies. Every 8 clients form a cluster and share a
common second level intermediate node. All the hosts in the
testbed have 1 Gbps interfaces. Figure 1 shows the experi-
ment setup. In the CCNx case, the client host runs the ccnd
daemon and the ccncatchunks2 application to download the
file. The second level intermediate nodes, which are CCNx
routers in this case, run the ccnd daemon. The server runs
a ccnd daemon and a file server program we developed. For
the HTTP case, the clients run the wget program to fetch
data. The second level nodes run Squid proxies and the
server runs a lighttpd web server. To perform file distribu-
tion, a file is stored in the server, and the clients will try
to fetch the file simultaneously. The file downloading time
(DT) is the time from when the client application sends
the request until the file is downloaded completely, and DT
is recorded on each client host. Based on our experience,
CCNx is much slower than HTTP caching system. As a re-
sult, in our experiment, the CCNx clients download a 10MB
file and HTTP clients download a 100MB file.

3.2 CCNx vs. Squid
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Figure 2: CCNx vs. Squid (90% CI)

The factors we studied in this performance evaluation are
the levels of cache and the number of clients in the system.
In the single level case, all the clients connect through the
top level CCNx router or Squid proxy to the server, and
the second level intermediate nodes are unused. In the two
level case, clients are connected via a second level cache.
Every cluster has the same number of active clients, i.e., the
number of clients that will request the file. We start with 5
clients requesting the file, with 1 client in each cluster. The
number of active clients is increased by one until all of the
clients are active. For each configuration, we run the experi-
ment 5 times and the average DT across all the active clients
are reported. Figure 2 shows the results. For the single level
cache case, the DT of using Squid increases linearly with the
number of clients. This is due to the fact that the Squid im-
plementation is very efficient thus the proxy host’s physical
outgoing link capacity (1Gbps) becomes the bottleneck. In
the CCNx case, the downloading time stays relatively con-
stant until there are more than 10 hosts. What happens is
when there are fewer than 10 hosts, the ccnd daemon is not
saturated, leaving our own naive file server program as the
bottleneck. When there are more than 10 hosts, the ccnd
daemon is saturated, and thus the DT increase linearly as
the number of clients increases. For the two-level cache case,
both Squid and CCNx perform much better, as the physical
link bottleneck and the ccnd daemon processing bottleneck

disappear. Overall, the current CCNx implementation is
about 10 times slower than Squid. This is partially due to
the fact that CCNx is still in an early development stage,
while Squid is a mature and widely used system.

3.3 Improving CCNx Performance
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Figure 3: Performance Improvement (90% CI)

We profiled the ccnd daemon when it was saturated using
Gprof. To our surprise, more than 50% of the time was spent
on functions related to packet name decoding. In particular,
the ccn skeleton decode function, which is the lowest level
packet decoding function, takes 47.34% of the time. Upon
further investigation, it turns out that the CCNx implemen-
tation chooses to store cached names in XML-encoded wire
format, and as a result, every content store lookup requires
𝑙𝑜𝑔(𝑛) of the name decoding on average, where 𝑛 is the num-
ber of content stored in the CS. Our modified CCNx stores
cached names in decoded format. This simple change almost
doubled the system throughput as shown in Figure 3.

4. CONCLUSION
In this paper, we evaluated the file distribution performance
of NDN-based and HTTP-based solutions and found that
the throughput of the current NDN prototype implemen-
tation is much slower than Squid. This is a first step in
evaluating their performances as there is only a single file
being distributed. We plan to develop traffic generators for
these two systems and further evaluate their performance.
We will also explore methods to optimize the NDN proto-
type implementation.
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