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ABSTRACT
Recent experimentation with NDN networking under ad hoc mobile
conditions with intermittent connectivity revealed several issues
regarding the existing design and implementation of the “dead
nonce list” (DNL). DNL is a mechanism to stop Interest packets from
looping after they are removed from an NDN node’s the Pending
Interest Table (PIT). A detailed analysis of the observed problems
leads to the discovery of a few design flaws and implementation
shortcomings in the existing solution.

This report explains the intended role of DNL in NDN forward-
ing, the identified flaws in the original design assumption about
the DNL usage, and the implementation issues identified. Through
this exercise of discovering and fixing the DNL design and im-
plementation problems, we gain a deeper understanding in the
complementary roles played by DNL and HopLimit in packet loop-
ingmitigation.We also learned that simply running an NDN testbed
cannot be a sufficient proof for the absence of the NDN protocol
design issues or implementation bugs; instead, it is necessary to
perform thorough measurement and analysis to identify them.

1 INTRODUCTION
Our experimentations on the NDN Testbed with emulated high
dynamic changes in network connectivity showed an unexpected
behavior: Interest packets loop. By design, this should not happen
— looping Interest packets should be detected and stopped either
by the virtue of Pending Interest Table (PIT) if the looping Interest
is still in the forwarding node’s PIT, or the Dead Nonce List (DNL)
which keeps all the “dead” Interests for a predefined amount of
time after an Interest is deleted from PIT by Data packet arrival or
lifetime expiration. Further examination exposed incorrect behavior
of DNL, in part because of the initially incorrect design assumptions,
and in part caused by implementation issues.

NDN’s stateful forwarding plane uses the PIT at each forwarder
to mitigate Interest looping: upon receiving an Interest packet 𝐼 , a
forwarder 𝐹 checks its PIT to see whether 𝐼 has passed by earlier.
However, early NDN experimentation with short Interest lifetime,
in the context of NDN-RTC application [2], showed the need to keep
PIT entries (some record of them) after they are removed either
after satisfying with Data packet or expiration [Burke, personal
communication]. Thus, a forwarder 𝐹 needs another mechanism to
stop looping Interests. Hence the DNL was introduced. DNL stores
the hash of the name and nonce carried in an Interest packet after it
is removed from PIT. Upon receiving an Interest packet 𝐼 , 𝐹 checks
DNL first to see whether 𝐼 is a looping Interest before putting it
through the forwarding process.

The observed issue came to existence because the assumed “sim-
ple” DNL design is in fact not that simple. The first design question
is how long the DNL should remember “dead” nonces. If they are
not kept long enough, Interest packet looping may still occur. On
the other hand, if they are kept for too long, not only they would
take up memory space, but also there is a potential danger, however
slim, that a new Interest with coinciding nonce can be incorrectly
treated as a duplicate which, effectively, results in denial of service.
As a trade-off, the existing DNL design picks six seconds as the
value, which seems appropriate in the NDN Testbed context [4].
We call this value the longevity of a DNL entry.1

The second design question is which nonces need to be kept on
the DNL. Naively, the original design assumed that only unsatisfied
Interests with too short a lifetime, which should be a small per-
centage of the total Interests, need to be stored in DNL. However,
a careful analysis shows that the majority of Interests should be
moved to DNL after they get removed from PIT, due to the following
reasoning: (1) Satisfied Interests (which should be the majority of
all Interests in the absence of errors or attacks), by definition, reside
in the PIT for less than their lifetime. Although the Data packets
retrieved by satisfied Interests are cached in the Content Store (CS)
and can be used to stop Interest looping, the effectiveness depends
on the CS capacity and caching policies. In particular, this looping
mitigation by caching does not work for constrained devices with
limited storage capacity. Thus, all the satisfied Interests should be
moved from PIT to DNL; (2) Long-lived Interests, by the name, have
a long lifetime. However, if their lifetime is shorter than the DNL
longevity time, these unsatisfied long-lived Interests should also be
moved from PIT to DNL as well. The above two reasons invalidate
the initial assumption that DNL only needs to store a small portion
of the total Interests passing through an NDN forwarder. In addition
to this false design assumption, there also exist implementation
bugs, that we elaborate later, reduced the DNL’s effectiveness.

In this technical report, we first discuss the rationale for having
the Nonce field in each NDN Interest packet, and a DNL at each
forwarder (§2). We then describe the original DNL implementa-
tion, explain what went wrong, what has been done in fixing the
errors, and identify additional remaining work for an ideal DNL
implementation (§3). In §4 we discuss the lessons learned, includ-
ing a clarification of the complement roles played by DNL and the
HopLimit field in NDN Interest looping mitigation.

1Experimentations with ad hoc/delay-tolerant networking showed that this value
may not be sufficient.
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2 THE NONCE FIELD AND ITS RATIONALE
In an NDN network [9], data consumers send Interest packets to re-
quest content chunks by names or name prefixes. While the name is
the only required field for a consumer to request a piece of data [3],
other fields may be needed to guide the Interest when forwarded
through a network. One of such fields is the Nonce, a random num-
ber that accompanies Interests. If not already present, the Nonce
field is added to the Interest by the first forwarder. The combina-
tion of an Interest’s name and nonce should uniquely identify the
Interest packet, which allows forwarders to detect looping Interests.

Although HopLimit already provides looping Interests detection,
relying on this field alone shows inefficiency in alternative path
exploration by a forwarding strategy or multipath forwarding (es-
pecially in ad hoc environment). Therefore, the main purpose of
adding a Nonce field to an Interest is to more effectively detect
looping Interests. As shown in Fig. 1, forwarding an Interest 𝐼1
creates an entry in PIT, which is used to return a matching Data
to the requester(s). As a side effect, whenever 𝐼1 is looped back
to a forwarder, the existing PIT entry can be used to detect and
stop the loop. However, a PIT entry with the requested data name
alone on Node 1 cannot tell whether such an Interest is a looping
Interest, or is from a different consumer which sends an Interest-
ing with the same name. Adding the Nonce field helps make such
distinction. Mechanically, each NDN forwarder 𝐹 remembers the
nonce of every forwarded Interest in the corresponding PIT entry.
Upon receiving an Interest, if 𝐹 finds a matching PIT entry for the
Interest’s name, it checks the nonce carried in the incoming Interest
against all the nonces associated with that PIT entry. If no identical
nonce is found, the incoming Interest is considered from a different
consumer, whose incoming face is added to the PIT entry and the
Interest is dropped. If an identical nonce is found, the incoming
interest is treated as looped and is dropped, and an NACK with type
Duplicate can be sent to the incoming face of this looped Interest.
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Figure 1: According to Node 2’s FIB, Node A’s Interest is for-
warded to Node B and 3. Node 1 detects the looping interest
by using the nonce list in Node 1’s PIT.

While it was not apparent at the initial design of NDN, early
experimentation highlighted the need for keeping Interest state for
longer time period beyond their PIT residence time to effectively
mitigate Interest looping. Specifically, NDN forwarders require ad-
ditional state to detect and break Interest loops that last longer than
the round-trip time for data retrieval, and/or longer than the inter-
est lifetime. The DNL was added to serve this purpose in 2014 after
looping Interests were observed on the NDN Testbed. The objective
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Figure 2: Flow Table Algorithms

of DNL is to preserve nonces collected from removed PIT entries
for a predefined time. This time should be long enough to detect
Interest loops and short enough not to cause excessive memory
use and Interest misclassification. Using the DNL, the incoming
Interests processing pipeline is slightly altered: before checking
the content store and the PIT, a forwarder first checks against the
Interest name and nonce combination in the DNL, treating a DNL
match the same way as looped Interest.

Since the DNL cannot keep growing forever, entries need to be
removed after a specified time. The DNL implementation details
may vary between different forwarders. The next section described
the DNL implementation in the NDN Forwarding Daemon,NFD [1].

3 NFD’S DEAD NONCE LIST
3.1 Current DNL Realization and Its Flaws
Inspired by the concept of hashed wheel timers [8], we designed
an algorithm to approximate lifetime of DNL entries using time
buckets. This algorithm captures temporal components by includ-
ing MARK-entries into the DNL, effectively resulting in negligible
overhead. However, when designing we overlooked that this algo-
rithm requires a constant flow of nonce insertions to work properly.
When facing nonce bursts (when a large number of pending Inter-
ests get satisfied), the algorithm may not be able to adjust correctly
and results in over-/underflow of items.

As depicted in Fig. 2, the lifetime of entries in the current DNL
implementation is controlled dynamically by adjusting the capacity
of the container. Every 1-second interval, a special MARK-entry
is inserted into the DNL, and the quantity of MARK-entries in the
container is recorded. Effectively, normal entries between MARK-
entries represent entries with the corresponding lifetimes.

Every 6-second interval, the quantity ofMARK-entries, as recorded
in the past six 1-second intervals, is compared against the target
value of 6. If all six recorded quantities are greater than 6, it means
the DNL has been holding more entries than necessary and the
oldest entries have been held for longer than the expected 6-second
entry longevity. In this case, the DNL capacity is adjusted down by
10%, so that its memory usage can be decreased. If all six recorded
quantities are less than 6, it means the DNL capacity is insufficient
for the expected 6-second entry longevity. In this case, the DNL
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capacity is adjusted up by 20%, so that more entries can be accom-
modated. If some of the six recorded quantities are greater than
6 and some are less than 6, NFD does nothing until the traffic is
stabilized.

When the capacity of the DNL is sufficient to store all newly
inserted entries, the algorithm works as our expectation. However,
when the allocated DNL capacity is too low to accommodate all
the dead nonces to be added to DNL, entries will be prematurely
removed starting from the left end. To handle this problem, the
algorithm periodically adjusts the DNL size:

• If at the time of check, the DNL is fully utilized, increase
its size by 1.2.

• If under-utilized, then reduced by 0.9.
The existing implementation chose a period of six seconds to per-
form the above check and adjustment. During this six seconds,
if nonce insertion bursts, a low DNL capacity leads to premature
eviction of DNL entries. The presented algorithm also requires to
be initialized to a pre-configured DNL capacity, which is set to 128
entries in NFD releases before 0.8.0. Assuming a burst of 1000 inter-
ests packets, this configuration and the slow capacity adjustments
would require NFD 12 adjustment cycles (over a minute) to allow
fitting all nonces into the DNL. During this time, effective loop
detection using the DNL is not possible.

Moreover, analysis on the NDN Testbed revealed a bug2 in NFD’s
DNL implementation that allowed inserting duplicate entries to the
DNL in the following ways: (1) When multicast Interest packets
are forwarded through a node with high degree of network con-
nectivity, a PIT entry may have a number of out records holding
the same nonce. (2) When removing a PIT entry, the nonces of
all the corresponding out records are moved to the DNL, without
checking for duplicates before inserting. This resulted in redundant
DNL entries.

As a result, multicast Interests resulted in the same number of
duplicate entries in DNL as the number of faces these Interests were
forwarded to, and potentially wasted valuable DNL capacity that
is already insufficient to handle bursts, which consequently failed
Interest loop detection.

3.2 Patches and Long Term Solution
Patches (NFD 0.8.0+): To address the aforementioned issues ob-
served on the NDN Testbed, we applied two patches to NFD.

(1) Deduplicating entries inserted into the DNL. While the for-
warding pipelines are still allowed to invoke insertion of
duplicate name-nonce pairs (avoiding this requires a sep-
arate planned fix), the insertion procedure now ensures
that instead of adding duplicate entries to the end of the
DNL, the existing entry that matches the looping Interest is
relocated to the start of the DNL. Such relocation ensures
that the existing entry will not be evicted too soon.

(2) Increasing the initial capacity of the DNL by a few orders
of magnitude to 214 entries. While this value may still be
insufficient to handle large bursts, it temporarily fixes the
observed issue.

2Reported in [6], reproduced with MiniNDN using the following scenario: https:
//github.com/phylib/dnl-experiment

An Ideal DNL Implementation: Besides patches, we also plan
to provide an ideal DNL implementation as a long term solution.
The analysis revealed that relying on container size adjustments
as a proxy to control the longevity of DNL entries is ill-suited for
the burst traffic pattern on NDN networks. It is necessary to have
more direct control on the longevity of DNL entries.

The most straightforward solution is storing a timestamp with
each DNL entry. As analyzed in [5], this change would triple the
memory usage, resulting in significant memory overhead. Instead,
for a DNL with expected longevity 𝐿, we propose the following
data structure:

• The DNL consists of 𝑀 buckets, where each bucket is a
hashtable-like data structure.We expect insertion and lookup
on this data structure have a time complexity of 𝑂 (1).

• To insert an entry, the entry is inserted into the bucket at
index𝑀 − 1. The time complexity of this operation is𝑂 (1).

• To lookup an entry, the entry is searched among all 𝑀
buckets3. If it is found in any of the buckets, it exists in
the DNL. Otherwise, it does not exist in the DNL. The time
complexity of this operation is 𝑂 (𝑀)4.

• Every 𝐿/𝑀 duration, the bucket at index 0 is discarded, the
remaining buckets are shifted down (bucket 𝑖 + 1 becomes
bucket 𝑖), and an empty bucket is created at index 𝑀 − 1.
The time complexity of this operation is either 𝑂 (1) or
𝑂 (𝑁 /𝑀) (where 𝑁 is the average number of insertions per
𝐿), depending on data structure design.

This design is inspired by timing wheels [7]. It exploits the re-
quirement flexibility that while each DNL entry shall be kept for
a configurable longevity, this longevity need not be precise. With
this design, the precision of DNL entry longevity is 𝐿/𝑀 , which
could be reasonably small with appropriate parameter settings.

The parameter settings of this design is a tradeoff between DNL
entry longevity accuracy and computational overhead. For the same
expected longevity 𝐿, choosing a larger𝑀 would decrease 𝐿/𝑀 and
achieve more precision in DNL entry longevity, but increase the
computational overhead of DNL lookup operation. On the other
hand, choosing a smaller 𝑀 would increase 𝐿/𝑀 and cause less
precision in DNL entry longevity, but decrease the computational
overhead of DNL lookup operation.

There are several options for the data structure within each
bucket. Using a regular hashtable (std::unordered_set), insertion
and lookup can satisfy the expected 𝑂 (1) time complexity, but the
memory usage may grow as more entries are inserted into a bucket;
the periodical discarding operation may have up to 𝑂 (𝑁 /𝑀) time
complexity for memory deallocation. Using a bloom filter, insertion
and lookup can likewise satisfy the expected 𝑂 (1) time complexity
and the memory usage is fixed; the periodical discarding operation
is guaranteed to have𝑂 (1) time complexity because a fixed amount
of memory is being zeroed. However. the inherent possibility of
false positives in bloom filters may cause the DNL lookup procedure
to erroneously report an entry to be exist despite it was not inserted.
This in turn causes the forwarder to reject an Interest that should
have been accepted, which is a correctness issue. We need to further

3Since NFD is a single threaded forwarder, this look up cannot be parallelized or
pipelined.

4Generally speaking,𝑀 is a small factor that is not supposed to scale, so actually
𝑂 (𝑀 ) = 𝑂 (1) .

https://github.com/phylib/dnl-experiment
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analyze the implication of bloom filter false positives, and also
perform benchmark testing to get quantitative results to get a better
understanding of the above tradeoffs.

4 DISCUSSIONS AND LESSONS LEARNED
This section discusses design considerations and lessons learned
during the development of the DNL and documents the reasons for
design decisions.

4.1 Interest Longevity vs. DNL Entry Longevity
Theoretically speaking, the time period to keep the state for an
Interest should start from its injection into the network instead
of the time it is added to DNL. That is, one should use Interest
longevity instead of DNL entry longevity to decide when to remove
the state. Doing so can remove those Interests that already have
extended stay in PIT from DNL sooner. However, doing so can also
add additional complexity into the DNL implementation. Given
the DNL’s memory consumption is not viewed as an issue at this
time, the current design makes use of DNL entry longevity, trading
additional memory cost for simplicity5.

4.2 The Nonce vs. the Hop Limit Field
The Interest packet loop detection by using unique nonces does
not guarantee the elimination of Interest packet looping. In rare
cases of a nonce collision, or an Interest packet wanders inside
the network for long enough time, so that when it is received by
forwarder 𝐹 the second time, its corresponding Data packet has
been removed from 𝐹 ’s CS, and its nonce deleted from 𝐹 ’s DNL, the
loop is not detected. Note that Interest loops of short duration can
cause high workload to the network, one may choose the DNL size
to be large enough to prevent such short loops. An Interest loop
of longer duration will be removed when the Interest’s HopLimit
reaches zero.

4.3 Running Code: Enabling Measurement, Not
Substitute for Meamsurement

The DNL is one of the fundamental components required for NFD to
work correctly. Having a bug in the DNL implementation, whereas
NFD’s codebase underlies a code reviewing system, having software
test in place, and being deployed for several years on a global NDN
Testbed [4] was unexpected and teaches two lessons:

(1) Premature optimization is the root of all evil 6: The original
DNL implementation used in NFD is based on a sophis-
ticated algorithm originating from IP network research.
The rationale for using this algorithm in NFD is unclear,
and evaluations showing superior performance compared
to simpler DNL approaches are missing. Besides, scarce
documentation of the implemented algorithm makes suffi-
cient testing, code reviews, and improvements on the DNL
structure challenging. All these aspects may be potential
reasons for not having detected the bug in over six years
of development. Starting NFD development with a simple
yet less efficient DNL structure and evaluated incremental

5If one assumes that the PIT residency time for most Interests is within sub-second
range, then this additional memory cost should be minimal.

6Quoted from Tony Hoare

improvements may have led to a better understanding of
the DNL, and potentially could have prevented the issue.

(2) Setting up infrastructure, such as the NDN Testbed, is not
sufficient for testing a system. Using the infrastructure (e.g.,
for real applications) and exercising experimentation is
required to find issues and limitations.

4.4 Traffic Unpredictability and DNL Memory
Allocation

In addition to unpredictable traffic surges, it is also well-known
that an NDN network can be DDoSed by Interest Flooding Attacks
(IFA). IFAs can potentially exhaust the allocated DNL size, disabling
forwarders from carrying out loop protection, which can further
intensify the attack.

As discussed in §3.2, the next revision to DNL implementation
may either use multiple hash tables or multiple bloom filters, one
for each time unit. If allocated hash memory is exhausted, one needs
to allocate more and pay more processing cost. If the chosen bloom
filter size is no longer adequate, that will result in increased false
positives (which effectively leads to denial of services). We leave a
note here for future efforts to address this potential complication.

5 CONCLUSION
While the concept of NDN’s Interest-Data exchange is well de-
scribed and understood, few details about the packet handling
have been discussed in publications. The only existing description
about the packet handling is NFD Developer’s Guide [1]. It pro-
vides insights specific to the reference implementation. However,
the reasons for the design decisions, and especially the lessons
learned, are largely buried inside various meeting notes or inline
source-code documentation. The issues identified in the DNL de-
sign and implementation show the need for design documentation
and accessibility to the design documents.

This report fills the knowledge void for the DNL design, its im-
plementation, together with the lessons learned. While reviewing
potential reasons for the observed issues, we provide an in-depth
discussion of the pros and cons of various design choices. We hope
this technical report can serve as an sample for future NFD devel-
opers to document their work.
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