
Designing Hydra with Centralized versus Decentralized Control:
A Comparative Study

Siqi Liu
UCLA

siqi.liu@ucla.edu

Varun Patil
UCLA

varunpatil@cs.ucla.edu

Tianyuan Yu
UCLA

tianyuan@cs.ucla.edu

Alexander Afanasyev
Florida International University

aa@cs.fiu.edu

Frank Alex Feltus
Clemson University
ffeltus@clemson.edu

Susmit Shannigrahi
Tennessee Technological University

sshannigrahi@tntech.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

ABSTRACT
Today’s networked and distributed applications, by and large, rely
on cloud services. However, solely cloud-based services are not
the ideal solution for all use cases, in particular, the case of high
volume data sharing in scientific computing whose cloud usage
costs could be prohibitively high. Thus we take on a task of building
a distributed, federated data repository, dubbed Hydra, for sharing
large volume scientific data. In this paper, we compare two design
choices: designing Hydra over TCP/IP with a centralized controller,
and designing Hydra over Named Data Network (NDN) to enable
distributed control. Our study shows that (i) building Hydra over
TCP/IP with a central controller offers a simple, straightforward
design; (ii) however, the controller necessarily needs to be repli-
cated for scalability and reliability, and cloud CDN is needed to
scale data delivery, both bringing additional complexity into the
overall design; and (iii) building Hydra over NDN automatically
offers scalable and efficient data dissemination at volume, as well
as enables distributed control with high resiliency.

CCS CONCEPTS
• Networks→ Network services; Network design principles.

ACM Reference Format:
Siqi Liu, Varun Patil, Tianyuan Yu, Alexander Afanasyev, Frank Alex Fel-
tus, Susmit Shannigrahi, and Lixia Zhang. 2021. Designing Hydra with
Centralized versus Decentralized Control: A Comparative Study. In Inter-
disciplinary Workshop on (de)Centralization in the Internet (IWCI ’21), De-
cember 7, 2021, Virtual Event, Germany. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3488663.3493690

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IWCI ’21, December 7, 2021, Virtual Event, Germany
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9138-2/21/12. . . $15.00
https://doi.org/10.1145/3488663.3493690

1 INTRODUCTION
21st century scientific experiments accumulate large amounts of
data that are often generated and analyzed in geographically dis-
tributed facilities. Existing storage solutions utilize either central-
ized repositories in the cloud, large institutional repositories, or a
hybrid approach that makes use of both types of storage. These
highly centralized approaches not only require huge storage with
the associated high costs, but also constrain what researchers may
be allowed to publish, slowing down data publication and research
progress. Additionally, once data are published to these centralized
repositories, moving data in and out of proprietary cloud offerings
can be difficult and expensive. Further, researchers can lose precise
control of the datasets, and any update or deletion of the datasets
needs to go through the central repository control which can be a
slow process.

A more sustainable approach is to allow individual scientists and
small consortia to publish data to a distributed storage system they
control. Thanks to ever increasing volume and decreasing cost of
storage technology, many scientists have access to local file servers
or institutional repositories. We conjecture that an easy-to-deploy
and easy-to-use storage framework that utilizes scattered storage
can help fulfill modern research needs. Such a system will allow
scientists to not only retain control of the datasets but also publish
datasets that are not accepted by central repositories, or are too
expensive to host in commercially available cloud storage services
at this time.

In this work, we discuss the design of Hydra, a federated file
repository to meet the need for storing and managing a large num-
ber of files for distributed science use cases. We examine two differ-
ent design choices: an IP-based design that utilizes a central server
in the cloud, and a distributed design over Named Data Networking
(NDN) [13]. In making our design choice in building Hydra, we
articulate the insights into the most critical factors that enable such
decentralized designs in today’s pervasively consolidated deploy-
ment environments: distributed control, security management, and
dataset synchronization.

In the rest of the paper, we first describe the needed functionality
of Hydra, then a design sketch of implementing Hydra functionality
over TCP/IP using a centralized server, followed by Hydra design

4

IWCI ’21, December 7, 2021, Virtual Event, Germany Siqi Liu et al.

Figure 1: National Center for Biotechnology Information’s
Sequence Read Archive [9]

over NDN. Lastly, we will discuss the key factors in the formation
of the solution and their impact on network centralization today.

2 A FEDERATED FILE REPOSITORY
To obtain the storage capacity mentioned above, scientists and small
consortia need a distributed storage system that utilizes scattered
storage resources and provides the same interface as centralized
repositories. A federated file repository is designed to satisfy this
need. This section first elaborates on the consumer use case in
genomics data, then generally explains the advantages and interface
requirements of a federated file repository.

2.1 Case Study: Genomics Data
In 2021, genomics data accumulation is exploding in centralized
data repositories. As shown in Figure 1, a single database at the
National Center for Biotechnology Information’s Sequence Read
Archive (NCBI-SRA) [9] has accumulated over 57 petabytes of DNA
sequence data, representing over 8.8million experiments that can be
mined for biological patterns impacting biomedicine to agriculture.
There are hundreds of other data repositories large (e.g. NASA
Genelab: genelab.nasa.gov, UK/EU ENSEMBL: ensembl.org) and
small (e.g. Tripal sites: tripal.info), where data is difficult to find
due to vagaries in finding the right IP address, file path, and the
appropriate data transfer protocols supported by the data host.
Further, individual research groups store DNA sequence data on
local file systems that are invisible to the outside world. In order
to extract new knowledge from all the available data, we need a
decentralized storage system that allows distributed publications
from dispersed data stores, as well as retrieval into data-intensive
compute workflows. Therefore, a federated file repository is a great
fit for this use case.

2.2 Why Using A Federated File Repository
The simplest file storage system is a single file server, storing both
the metadata and the actual contents of all files in the server. All
users can access files in the server over the network by directly

connecting to the server using traditional point-to-point protocols
such as FTP.

A federated file repository, on the other hand, is built on a feder-
ation of multiple geographically distributed storage servers on a
network. They are collectively responsible for storing all published
files, with each file replicated for reliability. The whole repository
must be secured, so that only authorized users can perform file in-
sertion and deletion operations, and access the contents of available
files.

Compared to such a file server, a federated file repository has
several advantages:

• Resiliency: files can be replicated in multiple servers, a file
may be persistent and available in the events of failures of
individual nodes or network partitions.

• Scalability: Since storage for the repository is distributed in
multiple servers, each server only needs to provide small stor-
age space for the files, as opposed to having a single large
storage node. Scaling up storage by adding more servers
is generally easier than scaling up against hardware con-
straints.

• High file read throughput: Since files in a federated repos-
itory are distributed across multiple nodes and disks, the
read and write requests can be handled by multiple servers
in the federation, which drastically increases the aggregate
transfer throughput.

• Utilizing scattered storage: As storage gets cheaper and
achieves higher volume with time, many scientists have
access to an increasing amount of institutional storage. How-
ever, these community-owned resources are difficult to uti-
lize due to the lack of robust protocols that can consolidate
them into a coherent file repository. A federated file reposi-
tory can reduce the cost of cloud storage, improve the uti-
lization of existing infrastructure, and reduce the bottleneck
of centralized storage.

These advantages are critical for file repositories based on the
community as well as the cloud providers. This design allows a
shared file repository in a community, in which members of a
community can pool a portion of unused storage space from their
individual owners for shared benefits, federated file repository
reduces the running costs of the repository. We note that, even for
cloud providers, a federated file repository over virtualized servers
is key for the high resiliency and availability of the storage services.
In fact this economy of scale is a key driving force for the prosperity
of the cloud.

2.3 Basic Functions
File repositories provide two basic functions: read and write op-
erations. Users can access the published data in the federated file
repository with a read command. Authorized users can manage
files to the repository with write commands, which consist of two
key actions:

• the insertion of files into the repository
• the deletion of files from the repository

These changes would then be accessible using read operations to
other authorized users of the repository. These actions are used as

5

Designing Hydra with Centralized versus Decentralized Control: A Comparative Study IWCI ’21, December 7, 2021, Virtual Event, Germany

building blocks of more complex interactions of users with the file
repository such as file modification and renaming.

2.4 Security Considerations
All actions above require authentication and authorization to ensure
that only legitimate users can access or modify the files. The file
repository should validate the identity of the user, then satisfy the
commands based on the access control data specified for the target
file.

Each operation has its own access control; for a file, a user who
is not the owner of the file may not be able to modify or delete
that file. For simplicity, we assume here that access control rules
are predefined and can be checked for a given pair of user and file
after user authentication. Often, federated file repositories do not
provide file ownership by allowing the owner to choose the file
storage location. Instead, the file owner should rely on the access
control on the file access commands or apply an additional layer of
encryption on the stored file.

3 A DESIGN OVER TCP/IP
Several existing data repository designs provide the functionality
of a federated file repository over today’s TCP/IP protocol stack. In
this section, we explore such a design and how it would perform
the functions of federated file repository. We also take a look at
contemporary systems that are designed for similar functionality.

3.1 Design Model
The most straightforward idea for building a distributed file repos-
itory over TCP/IP is to control the repository from a centralized
server, or controller, hosted in the cloud. The controller’s basic job
includes both checking the authenticity of users and file servers,
and orchestrating file replication locations. These are relatively easy
tasks for a central controller, which can perform password-based
authentication for users via secure TLS connections, and control
the storage nodes in the repository via a leader-follower model.

The basic insertion and retrieval of files in the file repository can
be achieved with a centralized controller by centrally maintaining
a database of all files stored in the repository along with their
locations. Since each file in the repository must be replicated across
multiple storage nodes for resiliency, the centralized controller can
directly make decisions on which files must be stored and replicated
on which nodes. These decisions may be performed on the basis of
one or more factors such as the size of the file, availability of storage
space on a particular node, the type of data, grouping semantically
similar content, etc. The controller may also decide to shard one
file across multiple nodes to improve read performance, or if the
file is too large to fit on one node.

For write operations on the file repository, the client contacts
the controller to retrieve a write lock and the location of the storage
node to which a data block must be sent. The client then establishes
a point-to-point link with the storage server and writes the file
to the server. If the controller desires to store the file at multiple
locations, the client must either upload the data block to the other
servers again, or the controller must orchestrate the transfer from
the upload server to the others.

For read operations, the client must first connect to the controller
to learn the location of the desired file or data block. Since the
controller has a database of all files and their locations, it can then
redirect the client to one or more storage nodes containing the file.
The client can then retrieve the file from the storage node over a
TCP connection. Therefore, locating and retrieving content from
the users’ nearest (or preferred) node requires the central controller
to measure or record the performance parameters of each node as
well as users’ relative preferences. When a user wants to upload
or download data, the central controller will coordinate the “best"
server for the operation.

For security, a data repository design requires mutual authenti-
cation between the repository and the user. Mutual authentication
establishes the identity of the repository and the authenticity of
the data to a retrieving user and allows the repository to authen-
ticate the user and enforce access control. The individual storage
and controller servers must be configured with certificates that
are either explicitly trusted by all clients using a common trust
anchor, or the system must use existing public key infrastructure
for authentication. For authentication of users, in addition to using
passwords, the system may use a Single Sign-On approach. We
further elaborate on the differences in Section 5.3.

A single central controller, however, creates a single point of
failure in the system. Such a system can also be disrupted by net-
work partitions between the controller and the data storage nodes.
As a result, more resilient designs of distributed file repositories
require the usage of several centralized controllers that are geo-
graphically distributed and perform write operations on the system
through the usage of locking mechanisms (BigTable [3]) or assume
immutability of data (Haystack [1]). Such a design with multiple
centralized controllers adds a layer of complexity over the simpler
design described earlier, since achieving synchronization between
the distributed controllers is not straightforward in the presence of
losses and network partitions.

The current Internet topological structures mean that the central
controller and even storage nodes need to be placed in the cloud for
deployment simplicity. First, the server needs to be reachable from
any location. This means that the server needs to be placed in a
server-hosting platform, instead of network edge locations that are
behind a Network Address Translation (NAT) router or assigned
with dynamic IP addresses. Then, the server needs security protec-
tion from the cloud. The cloud, with its Content Delivery Network
(CDN) facilities, is able to provide mitigation against Distributed
Denial of Service (DDoS) attacks by decrypting and filtering traffic.
Such services are becoming crucial as individually deployed servers
do not have DDoS mitigation capabilities today. Lastly, the data
dissemination over TCP/IP unicast is not scalable, and therefore
also needs CDNs to scale services. As elaborated in §5.1 and §5.3, if
multiple users are fetching the same file, the storage nodes needs to
re-build and re-encrypt response, and therefore send out multiple
copies of the same data. As the number of users increases, the nodes
may be overloaded by encrypting and service large pieces of data.
These considerations contribute to the increasing centralization of
the Internet.

6

IWCI ’21, December 7, 2021, Virtual Event, Germany Siqi Liu et al.

3.2 Related Work
Many distributed systems over IP follow the leader-follower model
as described above. TheHadoopDistributed File System (HDFS) [12]
uses a single controller, called NameNode, for orchestrating the file
location to DataNodes, the storage nodes, in order to act as a dis-
tributed file system, providing partial functionality of the federated
file repository.

More resilient designs of file repositories require the usage of
several controllers or even multiple controllers with each playing
different roles. Some of these distributed systems perform write
operations on the system through the usage of locking mechanisms.
BigTable [3], a storage database for structural data by Google, for ex-
ample, uses a hierarchy of controllers called tablets for storage and
control of meta-information. It uses a lock service called Chubby [2]
to achieve consistency on the meta-data. Haystack [1], a photo stor-
age service for Facebook, uses a set of servers to form the Haystack
directory for orchestrating the location of the photo data.

4 A DESIGN OVER NDN
To eliminate the single point of failure, we explore the realization
of a federated file repository over NDN to design a distributed
control architecture. As described next, this design has no central
controllers; instead, every node performs the same function of
storing files and supplying them to authenticated users, forming a
peer-to-peer model.

Storage Node

Storage Node

Storage Node

User

Controller

NDN

Hydra Node

Hydra Node

Hydra Node

User

a) Centralized Design over TCP/IP

b) Decentralized Design over NDN

Control Messages

Group Messages
(Sync)

Data Exchange

Anycast
Data Fetching

Figure 2: Comparison of the Hydra designs over TCP/IP and
NDN

4.1 Named Data Networking
In an NDN network, each data packet is uniquely identified by its
name. Unlike the TCP/IP model which pushes packets to destina-
tions, NDN lets consumers fetch data by names from the network.
Thus, data flow in NDN is driven by the consumer rather than the
producer of the data.

Each packet in NDN is also cryptographically signed by the
producer. This allows the network to cache packets during their

transit. If multiple users request the same data packets, only one
request is forwarded to the producer, and returned data packets
are forwarded to all requesters, enabling multicast data delivery
from the producer to all consumers. Since packets are individually
signed, all consumers can verify their authenticity.

To fetch a data packet produced by the producer by sending an
Interest, a consumer first needs to know that the data packet was
produced, and its identifying name. Dataset Synchronization, or
Sync [8], plays the role of the transport service for applications
running over NDN. Whenever a producer produces new data, Sync
propagates this change over the network and informs all communi-
cating parties in the same application (the “Sync group”) about the
name of the newly produced data. Consumers can then fetch this
data if they desire.

Sync enables applications running over NDN to easily synchro-
nize application state among multiple distributed nodes. Whenever
the application state changes, the application can produce event
data informing others about the update. This event data will be
fetched by all the other participants in the Sync group for whom
the update is relevant, and hence learn about the state change at
the producer. Further, an NDN Sync protocol, such as SVS [7], is
inherently resilient to losses, varying network delays, and inter-
mittent connectivities, make it a good fit for distributed systems
running over wide area networks.

4.2 Hydra: A Distributed Control Design
Hydra, a design of distributed federated file repository, can be
naturally implemented over NDN. Hydra runs over a collection of
file servers that share the same role and responsibility in the system.
Each Hydra node in the distributed design stores a portion of the
files. All the Hydra nodes collectively maintain a “global view” of
the system, which contains a complete list of all the files in the
system, and for each file 𝐹 , a list of nodes that holds a copy of 𝐹 . We
call this “global view” the metadata of the system, and every Hydra
node keeps a consistent copy. Hydra uses the Sync protocol SVS to
keep the metadata up to date at all the nodes. Whenever the state
at a Hydra node 𝑁 is updated by a write operation, 𝑁 publishes
this change event over Sync, which is then propagated to all other
nodes. Sync uses multicast to ensure efficient dissemination of the
metadata to all servers.

Users can make read/write requests to Hydra using NDN Interest
packets. Since NDN uses name-based network layer forwarding,
users does not need to know the name or address of any Hydra
node. Instead, users Interest packets reach Hydra via anycast, so the
request is forwarded to the “closest" Hydra node according to the
routing system. With the global view of Hydra at every node, the
nearest Hydra node can then directly serve the request according
to the meta-data that it knows.

For read operations, the file requests can be delivered over NDN
with the benefit of multipath forwarding. Furthermore, due to NDN
Interest aggregation, the replies are multicast if multiple users
request the same piece of data, or fetched from in-network caching,
drastically reducing network traffic.

Hydra uses an NDN-based security framework [16] to ensure
authentication and authorization. Instead of securing the client-
server channel like TLS, NDN secures the Data packet directly. Each

7

Designing Hydra with Centralized versus Decentralized Control: A Comparative Study IWCI ’21, December 7, 2021, Virtual Event, Germany

Data packet containing the file chunk will be signed by the Hydra
node to ensure authenticity and integrity. This design allows the
same file chunk to be distributed securely to multiple clients using
multicast and in-network caching.

To provide authentication, the nodes and clients need to be
bootstrapped with their identities. Hydra uses a Network Operating
Center (NOC) as a trust anchor. Even though this server is a single
node, Hydra still continues to run without it, except that no new
nodes can be added. The end users can also be assigned certificates
by the NOC, through the out-of-band identity challenges that utilize
existing authentication.

5 DISCUSSION
The approaches presented in §3 and §4 are radically different. With
different design decisions, there are associated differences in costs
and benefits. For both approaches, the design choices have roots in
the underlying network and transport protocols.

5.1 Data Transport
The leader-follower file repository solution design is based on
TCP/IP, which provides point-to-point data transportation. There-
fore, for insertion and retrieval of the file, the user must first find
the server’s IP address to contact. In the leader-follower design,
this connection is established with the help of the controller, which
provides the user the IP address of the server. Hydra, on the other
hand, uses a data-centric network transport. Even though Hydra is
made of a collection of file servers, users are not directly interfac-
ing with those servers; they are instead querying for files from the
network by using names. Therefore, users directly request desired
files by putting their names into NDN Interest packets, which are
anycast to the Hydra system and reach nearest Hydra nodes which
can then direct serve the data if they have the files locally, or oth-
erwise redirect users to other Hydra nodes with the requested file.
The rendezvous between a user’s request and the data is achieved
through name-based network forwarding in the NDN network.

NDNnetwork’s name-based forwarding functions could be viewed
as more complex than the model of traditional IP based forwarding
with a single controller, but it brings with great benefits. Exploiting
the named-based network transport, the routers along the transport
path are able to provide intelligent forwarding of the Interests. For
example, the routers can provide multipath forwarding for the Data
to fetch the replicated Data from all available Hydra nodes. With
the stateful network transport and in-network caching of NDN,
the routers also automatically perform multicast delivery, as well
as CDN functions for other users that may fetch the same data
packet in near future. These networking features are provided in
NDN network service abstraction that is transparent from users,
providing them the benefit automatically, without demanding any
additional setup.

We note that the features of multicast, anycast, and multipath
forwarding have also been proposed for IP networks in the past, but
except anycast, the others have faced deployment limitations that
prevent their wide usage. IP anycast is usable on the public internet;
however, it faces challenges in choosing the closest server in the
public Internet because of the BGP routing design and therefore
requires careful traffic engineering[14]. DNS-based "anycast", in

which the DNS name server chooses the closest server for clients
based on the client’s address, is widely used by CDNs. However, the
name server’s role is congruent to the file repository controllers in
the file location orchestration. IP multicast is not supported in the
public Internet because of its complexity, which in turn is due to its
design paradigm differing from IP protocol in fundamental ways:
the former is stateless, while the latter requires stateful forwarding.
Finally, IP-based multipath forwarding is also supported in a pre-
liminary phase, with custom protocols like multipath TCP[11] that
require additional kernel and application support at the host.

Above all, all the TCP/IP-based solutions are node-centric, that
is one node send packets to another. Therefore, a server needs to re-
send the same data for each of the users who request the same data,
putting traffic burden on the server and the network. Interestingly,
serving popular datasets over IP increases the load on the servers
while serving popular datasets over NDN makes no impact on the
servers (the same load as serving a single user). These additional
features greatly increase the efficiency and capability of the data
transport for the file repositories.

5.2 Control Architecture
In the leader-follower solution design, the file location is deter-
mined by the controller. Therefore, only the controller needs to
keep the metadata for the system. On the other hand, Hydra shares
the metadata with all peers. This means that the update to meta-
data needs to be synchronized among all peers. Hydra use NDN
Sync protocols such as SVS for metadata updates. The design of
the metadata update means that for each change, communication
is needed for all the peers, increasing the traffic flow. Therefore Hy-
dra’s distributed design has a higher cost than the central controller
design when measured by the total number packets that need to be
exchanges among all the nodes.

With the associated cost, however, the Hydra design enjoys the
benefit of high resiliency. Keeping meta-data at each node removes
the single point of failure of the control server. Since each Hydra
node now has all the metadata including the locations of each file, a
file will become unavailable for users only if every server that stores
the file has failed or cannot be reached due to network partitions.
As a result, the distributed solution can sustain a lot more node
failures and network instability than the centralized solution.

Additionally, Hydra’s design has system scalability built in. The
distribution of the control allows the file orchestration task to be
spread to multiple nodes, instead of having all requests processed
by the single controller. Therefore, Hydra’s solution is able to scale
for a much higher request throughput.

For the above reasons, existing TCP/IP-based solutions also try
to create a decentralized design that uses a small number of con-
trollers instead of a single central controller. However, in contrast
to NDN, where Sync can directly synchronize the state between
the controllers, TCP/IP based solutions must implement such func-
tionality for distributed consensus at the application layer, using
mechanisms such as 𝑛 × 𝑛 TCP connections, which will typically
have very high overhead. This is generally achieved using database
services, adding an additional layer of complexity to the controller.

8

IWCI ’21, December 7, 2021, Virtual Event, Germany Siqi Liu et al.

5.3 Security
Nowadays TCP/IP solutions such as BigTable [3] usually leverage
the cloud infrastructure for storage resource scaling, and the TLS
connections between application users and the cloud provider the
security support. TLS binds the communication security with the
communication endpoint, therefore individual application users
have to trust the cloud endpoint who also provides the resources.
The data security relies on users’ implicit trust in the cloud providers
(or their Certificate Authorities) for TLS certificates, and the correct
operations of the cloud-managed servers. It forms a single point of
failure problem, where if the servers in the cloud are compromised,
the stored data are no longer secured. This is because the trust
anchor of the data security is in the cloud providers, instead of
users’ hands. Even worse, recent data breach incidents in clouds [4–
6, 10] indicate that trust anchors may not always be as trustworthy
as we expected.

Distributed control solutions built on NDN can take a fundamen-
tally different approach. NDN’s data-centric security design [16]
empowers users to build decentralized trust management solutions
by establishing trust over name semantics. Data repository users
can establish their own local trust anchors (e.g., self-signed certifi-
cates) in Hydra NOC, therefore build and control their own zone of
trust, instead of outsourcing the trust management to a third party
like the cloud.

This distributed solution secures the data directly. Each individ-
ual Data packet is signed by the producer, and the packet need
not be signed again when re-transmitting to a different destination.
As a result, the Data can be cached and re-used in the in-network
cache, maintaining the security property for the more complex
actions. This property also applies to NDN Data storage like Hydra.
Although individual Hydra nodes can be compromised, the data
authenticity and confidentiality of the stored files still hold, since
each file is directly signed by the producer’s private key, and en-
crypted by the producer’s corresponding content encryption key.
Any file receiver can verify the data authenticity by validating the
signature by its producer’s public key and decrypt the content us-
ing the content decryption key from the producer. Named-based
Access Control [15] can facilitate this process with an efficient yet
simple design that leverages NDN’s named, secured data.

6 CONCLUSION
Although the IP network was designed to support distributed sys-
tems initially, its lack of basic supports for distributed applications,
in particular, security, distributed dataset synchronization, and scal-
able data dissemination, have resulted in its deployment evolving
towards an increasingly centralized structure over time. It is un-
deniable that the economy of scale fueled this evolution, but we
also believe that IP’s point-to-point communication model, and the
consequential client-server application model built upon it, pro-
vided a convenient technology path for the market to quickly grab
the opportunity of controlling the server end in the client-server
model, turning end users, the clients, to revenue-generating “eye-
balls”. Users do not have choices since they have neither an easy
way to identify each other, an easy way to reach each other, nor
an easy way to authenticate each other, as needed to enable secure
peer-to-peer communications.

To steer the Internet away from centralization, we recognize that
commercial interests and resource optimization can be important
blockades that may need legislative actions to counter. However, we
also believe that viable technical solutions can play a fundamental
role in the overall solution space. TCP/IP’s node-centric model
and lack of build-in security make decentralized solutions complex
to build and maintain. On the other hand, NDN has the potential
to address these challenges with its new data-centric networking
model. By naming and securing data directly, NDN has in-network
caching and multicast data delivery built-in to support effective
data dissemination. By fetching semantically named, secured data
at the network layer, NDN enables distributed parties to rendezvous
inside the network, removing TCP/IP’s reliance on central servers
to rendezvous, a fundamental technical barrier to decentralization.
The centerpiece in the NDN design is a semantic namespace, and
we believe that today’s DNS namespace can serve as a great starting
point.

ACKNOWLEDGMENTS
This work is partially supported by the National Science Foundation
under awards 1659300, 1719403, 2019012, 2019085, 2019163, and
2126148.

REFERENCES
[1] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel. 2010.

Finding a Needle in Haystack: Facebook’s Photo Storage. In 9th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 10). USENIX
Association, Vancouver, BC. https://www.usenix.org/conference/osdi10/finding-
needle-haystack-facebooks-photo-storage

[2] Mike Burrows. 2006. The Chubby lock service for loosely-coupled distributed sys-
tems. In 7th USENIX Symposium on Operating Systems Design and Implementation
(OSDI).

[3] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2006.
Bigtable: A Distributed Storage System for Structured Data. In 7th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI). 205–218.

[4] Forbes. 2020. Confirmed: 2 Billion Records Exposed In Massive Smart Home De-
vice Breach. https://www.forbes.com/sites/daveywinder/2019/07/02/confirmed-
2-billion-records-exposed-in-massive-smart-home-device-breach. Accessed:
2021-09-24.

[5] Health IT Security. 2021. CVS Health Faces Data Breach,1B Search Records
Exposed. https://healthitsecurity.com/news/cvs-health-faces-data-breach1b-
search-records-exposed. Accessed: 2021-09-24.

[6] HIPAA Journal. 2021. Cancer Treatment Centers of America Announces 105,000-
Record Data Breach. https://www.hipaajournal.com/cancer-treatment-centers-
of-america-announces-105000-record-data-breach/. Accessed: 2021-09-24.

[7] Philipp Moll, Varun Patil, Nishant Sabharwal, and Lixia Zhang. 2021. A Brief
Introduction to State Vector Sync. Technical Report NDN-0073, Revision 2. Named
Data Networking. 1–4 pages.

[8] Philipp Moll, Wentao Shang, Yingdi Yu, Alexander Afanasyev, and Lixia Zhang.
2021. A Survey of Distributed Dataset Synchronization in Named Data Networking.
Technical Report NDN-0053, Revision 2. Named Data Networking. 1–18 pages.

[9] National Library of Medicine (US), National Center for Biotechnology Informa-
tion. 2008. Sequence Read Archive. https://trace.ncbi.nlm.nih.gov/Traces/sra.
Accessed: 2021-11-01.

[10] Observer. 2021. ParlerWasHacked onWordPress, The Internet’s Biggest Platform.
Is Everyone At Risk? https://observer.com/2021/01/how-parler-was-hacked-on-
wordpress-risk/. Accessed: 2021-09-24.

[11] Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda,
Fabien Duchene, Olivier Bonaventure, and Mark Handley. 2012. How Hard Can
It Be? Designing and Implementing a Deployable Multipath TCP. In Proceedings
of the 9th USENIX Conference on Networked Systems Design and Implementation
(San Jose, CA) (NSDI’12). USENIX Association, USA, 29.

[12] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The Hadoop Distributed File System. In 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST). 1–10. https://doi.org/10.1109/MSST.
2010.5496972

9

Designing Hydra with Centralized versus Decentralized Control: A Comparative Study IWCI ’21, December 7, 2021, Virtual Event, Germany

[13] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patrick
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
Data Networking. ACM SIGCOMM Computer Communication Review (CCR) 44, 3
(July 2014), 66–73.

[14] Xiao Zhang, Tanmoy Sen, Zheyuan Zhang, Tim April, Balakrishnan Chan-
drasekaran, David Choffnes, Bruce M. Maggs, Haiying Shen, Ramesh K. Sitara-
man, and Xiaowei Yang. 2021. AnyOpt: Predicting and Optimizing IP Anycast
Performance. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference (Virtual
Event, USA) (SIGCOMM ’21). Association for Computing Machinery, New York,

NY, USA, 447–462. https://doi.org/10.1145/3452296.3472935
[15] Zhiyi Zhang, Yingdi Yu, Sanjeev Kaushik, Alex Afanasyev, and Lixia Zhang.

2018. NAC: Automating Access Control via Named Data. 626–633. https:
//doi.org/10.1109/MILCOM.2018.8599774

[16] Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mastorakis,
Yanbiao Li, Alexander Afanasyev, and Lixia Zhang. 2018. An Overview of Security
Support in Named Data Networking. IEEE Communications Magazine 56, 11
(November 2018), 62–68. https://doi.org/10.1109/MCOM.2018.1701147

10

