
Resilient Brokerless Publish-Subscribe over NDN
Philipp Moll, Varun Patil, Lixia Zhang

UCLA, Computer Science
{phmoll,varunpatil,lixia}@cs.ucla.edu

Davide Pesavento
Associate, NIST

davide.pesavento@nist.gov

Abstract—Publish-subscribe (pub/sub) is a popular API used
by today’s distributed multiparty applications. TCP/IP, however,
does not directly support multiparty communication, therefore
realizing pub/sub requires complex logic at the application layer.
In this paper, we introduce SVS-PS, a brokerless pub/sub protocol
running over NDN. SVS-PS utilizes NDN for data-centric secu-
rity and many-to-many communication. Compared to IP-based
implementations, SVS-PS enables publishers and subscribers to
rendezvous “in the air”, thereby reduces the complexity of the
application layer and lowers network traffic load. Our open-
source implementation of SVS-PS makes NDN’s networking
primitives transparent to applications, allowing developers to
work with a familiar pub/sub API while benefiting from NDN’s
secure and resilient multiparty communication support.

Index Terms—Pub/Sub, Named Data Networking, NDN Trans-
port, Distributed Dataset Synchronization

I. INTRODUCTION

Publish-subscribe (pub/sub) is a popular application program-
ming interface (API) that has been widely used in the de-
velopment of distributed applications among multiple parties.
Today’s popular pub/sub implementations run over TCP/IP.
Since TCP/IP only supports point-to-point connections, the
existing pub/sub deployments either use a central message
broker as the rendezvous point that all parties connect to,
or set up N × N TCP connections between all publishers
and subscribers. Although each of these two approaches is
associated with its own drawbacks (see Section II), they share
two commonalities. First, they bring all the published data to
the application layer, either at the central broker or at each of
all the nodes, in order to sort out which piece of published
content goes to which subscriber. Second, they secure the TCP
connections (e.g., by using Transport Layer Security, TLS) as
a substitutive means to authentication of published contents.

Unfortunately, the above practice is unlikely to work well in
disaster recovery or battlefield scenarios. Mobility and network
partitions can lead to intermittent connectivity, making reliance
on TCP connections to deliver all data infeasible. The use
of IP multicast alleviates some of the issues, but brings up
other ones as we discuss in the next section. Consequently
additional protocols, such as the Bundle protocol (BP) [1], are
introduced to support asynchronous communication. Yet again,
not only BP brings into the system its own dependencies such
as the Bundle Protocol security support (BPSec) [2], it also
does not fit the needs of the wireless edge, which desires to
take advantage of wireless broadcast connectivity in support
of pub/sub applications. Regrettably, BPSec is another point-
to-point security solution as TLS and DTLS.

We believe that all the above issues are due to the same
root cause: the conflict between IP networks’ node-centric
delivery and security, and pub/sub applications’ data-centric
distribution needs. Today’s pub/sub implementations resolve
this conflict by bringing all published data to application
layer to handle through secured, synchronous node-centric
connections, a luxury that is not available in scenarios with
intermittent connectivity. We postulate that the most promising
way to resolve this conflict is to develop pub/sub support over
a data-centric network architecture.

In this paper, we describe the design of State Vector Sync
Pub/Sub (SVS-PS), a brokerless pub/sub protocol running over
NDN. In an NDN-enabled network, data consumers request
data by sending Interest packets carrying the names of desired
Data, and data publishers name and sign each generated Data
packet to cryptographically bind its name to the content. This
way, data security stays with each data packet, independent
from delivery channels. Interest packets are forwarded based
on their names towards corresponding data, and any node
with matching Data packets can reply, letting the Data packet
reverse the Interests’ paths to get back to the consumers. SVS-
PS leverages NDN’s data-centric design that enables multicast
data delivery and data muling, and NDN’s built-in security
primitives [3] to secure published content directly.

NDN’s use of application-layer names to fetch data at
the network layer enables publishers and subscribers to ren-
dezvous “in the air”. However, it is difficult to build pub/sub
services directly on top of NDN’s network-layer Interest-Data
exchanges. First, NDN Interests are forwarded as datagrams,
while pub/sub needs reliable many-to-many delivery. Second,
one must provide many-to-many transport support which,
as we explain in Section IV, requires transport identifiers
and provides 1:1 mapping between transport identifiers and
published contents. In addition, many-to-many data delivery
should accommodate heterogeneity of individual parties, es-
pecially when those parties are mobile devices which may be
hampered by intermittent connectivity or resource shortages.

The contributions of this paper are i) the design of the
brokerless pub-sub protocol SVS-PS, ii) an open-source library
implementation of the protocol, and iii) an initial evaluation of
the performance of SVS-PS, together with a comparison with
an IP-based pub/sub service that uses epidemic routing as its
DTN support. In the rest of the paper, Section II summarizes
existing TCP/IP-based and NDN-based pub/sub solutions; Sec-
tion III describes SVS, on which SVS-PS is built; Sections IV
and V elaborate on the design of SVS-PS and its pub/sub

MILCOM 2021 - Special Session on Named Data Networking

978-1-6654-3956-5/21/$31.00 ©2021 IEEE

MILCOM 2021 - Special Session on Named Data Networking

978-1-6654-3956-5/21/$31.00 ©2021 IEEE 438

M
IL

CO
M

 2
02

1
- 2

02
1

IE
EE

 M
ili

ta
ry

 C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

(M
IL

CO
M

) |
 9

78
-1

-6
65

4-
39

56
-5

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

M
IL

CO
M

52
59

6.
20

21
.9

65
28

85

Authorized licensed use limited to: UCLA Library. Downloaded on February 28,2022 at 19:21:26 UTC from IEEE Xplore. Restrictions apply.

Squad A

Squad B

Radar

Control Center

Broker

NDN

publish(camera)
subscribe(camera)

publish(movements)

subscribe(movements)
subscribe(camera)

publish(camera)
subscribe(camera)

Squad A

Squad B

Radar

Control Center

a) Broker-based publish-subscribe

b) Brokerless publish-subscribe over NDN

publish(camera)
subscribe(camera)

publish(movements)

subscribe(movements)
subscribe(camera)

publish(camera)
subscribe(camera)

Fig. 1: Broker-based and brokerless pub/sub

API, followed by the evaluation results (Section VI), additional
discussions (Section VII), and the conclusion (Section VIII).

II. BACKGROUND AND RELATED WORK

In this section, we briefly discuss the existing IP-based pub/sub
frameworks, NDN’s basic operations, and the existing NDN-
based pub/sub solutions.

A. IP-based Pub/Sub Protocols and Frameworks

IP-based pub/sub implementations can be roughly sorted into
three approaches: use of a central message broker, as repre-
sented by MQTT, brokerless message queueing, and the use
of IP multicast.
MQTT. The Message Queuing Telemetry Transport protocol
(MQTT) [4] is among the most popular pub/sub protocols,
especially in IoT systems. In MQTT, publishers publish mes-
sages classified by topics. Subscribers express their interest
in specific topics. A central message broker manages all
subscriptions (Fig. 1a). Publishers and subscribers connect to
the broker using a pre-configured IP address or hostname. Pub-
lishers send all their messages to the broker, which dispatches
the messages to subscribers according to their interests.

MQTT’s central broker represents a single point of failure,
and placing the broker can be challenging, especially when
publishers or subscribers may change over time, or when op-
erating in mobile ad-hoc (MANET) environments. MQTT has
no security protection but relies on security being added at dif-
ferent layers [5]: running MQTT over VPNs to add network-
layer security and/or over TLS channels to add transport-
layer security. One could further add application-layer security
by providing additional means for participant authentication,
access control, payload encryption, and integrity protection.
However, there is no coherent framework that coordinates
security protections across layers, in particular there is no clear
picture on how trust relations are managed to bootstrap all the
security protection.
Brokerless Message Queuing. Alternative frameworks,
such as ZeroMQ [6], provide pub/sub functionality by setting
up N×N connections instead of using a central broker. In such

frameworks, a publisher node creates individual connections
to all potential subscribers and selectively sends messages
to them based on their interests. Obvious drawbacks of this
approach include additional steps needed to discover all sub-
scribers, the overhead from sending the same message multiple
times to all interested subscribers, and, similar to broker-
based approaches, the reliance on synchronous end-to-end
connectivity in the use of TLS for security protection.
IP Multicast based Pub/Sub. IP multicast [7] aims to
provide efficient group communication. However, the deploy-
ment of IP multicast is hampered by its complexity and
usable reliable multicast solutions are yet to be developed.
The NORM protocol [8] is one attempt to provide reliable
multicast delivery over IP. NORM multicasts UDP packets
and lets receivers unicast negative acknowledgments (NACKs)
to the packet sender for retransmission. In addition, NORM
handles congestion control using an RTT-based approach;
the sender rate is set to the rate of the limiting receiver to
prevent congestion. Similarly, the Pragmatic Multicast Pro-
tocol (PGM) [9] also multicasts UDP packets and achieves
reliability using NACKs. However PGM NACKs are multicast
to the group to trigger retransmissions from closer hosts.
Experimental implementations of NORM and PGM in the
ZeroMQ framework support pub/sub on top of these multicast
protocols.

B. NDN and Existing NDN Pub/Sub Support

The basic design of NDN consists of three simple ideas: using
application layer semantically meaningful names to fetch data
at network layer, setting Interest forwarding state and enabling
in-network caching, and securing data directly. Not only every
data packet is signed by its producer to ensure the authenticity,
but also the packet payload can be encrypted so that only
authorized parties can access the carried information [10].

One main difference between IP networks and NDN net-
works is that IP names destination nodes, not packet content.
Therefore an IP network cannot make topic-based forwarding
decisions; instead applications use IP to forward all requests
for data to dedicated message brokers which run at applica-
tion layer to manage message distribution. In NDN, Interest
packets carry names that are used for topic-based forwarding
decisions at network layer, removing the need for message
brokers (Fig. 1b).
Existing NDN Pub/Sub Designs. The NDN-Lite pub/sub
framework provides a pub/sub API with the security support
embedded within [11]. However, the NDN-Lite design is
specifically tailored to support smart homes and assumes all
communications are over broadcast media. Thus, its pub/sub
support does not work over multihop network topologies.

PSync is the first protocol designed to support pub/sub in
wide-area networks [12]. It names each published data blob
B under its publisher’ name, concatenated with a sequence
number (seq#) to uniquely identify B. PSync uses such
blob names as its transport identifier to reliably synchronize
the dataset names: it encodes the publisher names together
with their latest seq#s into an Invertible Bloom Filter (IBF)

MILCOM 2021 - Special Session on Named Data NetworkingMILCOM 2021 - Special Session on Named Data Networking

439Authorized licensed use limited to: UCLA Library. Downloaded on February 28,2022 at 19:21:26 UTC from IEEE Xplore. Restrictions apply.

/platoon1/squad1/111 /platoon1/squad2/129 /platoon2/squad1/112

/platoon1/squad1/112 /platoon1/squad2/130 /platoon2/squad1/113

/platoon1/squad1/113 /platoon1/squad2/131 /platoon2/squad1/114

...

Shared Dataset

/platoon1/squad1:113State Vector /platoon1/squad2:131 /platoon2/squad1:114

/<grp-prefix>/[/platoon1/squad1:113, /platoon1/squad2:131, /platoon2/squad1:114, ...]/<signature>

Sync Interest

Multicast
Group Prefix

State Vector Interest
Signature

Fig. 2: The relation between sequentially named datasets, State
Vectors, and Sync Interests

and distributes the IBF via NDN Interest packets to inform
subscribers about data productions; the IBF is used as a means
to compress the encoding of latest data productions.

syncps [13] removes PSync’s restriction on data naming.
It allows published data blobs using arbitrary names. Similar
to PSync, syncps also encodes the names of published data
blobs into an IBF to distribute to subscribers. Since the IBF
must fit into an NDN Interest packet, this limits the size of
IBF, which in turn limits the number of data names that can be
encoded into an IBF. syncps sets a limit on the time period that
each data name will be included in the IBF. Given the dataset
covered by the IBF changes over time and syncps does not
have a transport identifier for each published data blob, syncps
does not guarantee reliable data delivery.

Unlike IP, NDN does not push data from one node to
another, but lets consumers fetch data as appropriate. To fetch
data, consumers first need to learn what new data names
have been produced. PSync solves this problem by naming
data using the synchronized sequence numbers, and syncps
automatically fetches all published data for all participants in
the same group. In our design, this need is fulfilled by the
State Vector Sync protocol, which we describe next.

III. STATE VECTOR SYNC

As a data-centric network architecture, NDN’s transport func-
tion provides dataset synchronization, dubbed Sync, among
multiple parties sharing the same dataset, where any of them
may produce data at any given time, and multiple may produce
simultaneously. NDN Sync protocol designs have evolved over
time [14], and the latest design is State Vector Sync (SVS) [15].

SVS assumes that every entity has a publishing prefix
and publishes data with increasing seq#s under that prefix
(similar to PSync). Knowing an entity’s publishing prefix
and its latest seq# allows enumeration of all its publications;
and the 〈publishing prefix, seq#〉 tuples of all the entities
in a distributed application represent the entire dataset state.
This state can be encoded into a data structure called State
Vector (SV), essentially a list of all 〈publishing prefix, seq#〉
tuples as shown in Fig. 2. In order to operate effectively
and resiliently in both infrastructure-based and infrastructure-
free environments, SVS encodes the SV in the name of an
NDN Interest packet, called Sync Interests, which are the only
message type in SVS. Each Sync Interest is multicast to all

Unit A

Radar

Control Center

①
 SV: [.

..;
/ra

dar: 1
7; ..

.]

/movement/radar/<timestamp>

Application Data Payload

Signature

A
pp

lic
at

io
n

D
at

a

② ③

① Multicast sync interest with state vector
② Outer data interest: /radar/17
③ Outer data carrying encapsulated
 application data

/radar/17

Encapsulated App
Data

SignatureO
ut

er
 D

at
a

/radar/17

Fig. 3: Encapsulation of Application Data

the entities sharing the same dataset. Since receiving a single
Sync Interest informs one of the entire dataset state, SVS is
resilient against losses of individual Sync Interests. SVS signs
all Sync Interests to prevent malicious actors from injecting
false information into the dataset state.

Sync Interests are sent in two cases: i) event-driven, to notify
dataset updates, e.g., when a new publication is produced; and
ii) periodically, to mitigate losses of event-driven messages
to ensure a consistent view of the dataset state among all
the entities. An incoming Sync Interest may also trigger the
transmission of a Sync Interest, e.g., if the incoming SV is
outdated (at least one sequence number of the incoming SV
is lower than the local SV), which means that some entity
missed the latest update, likely caused by packet losses or
network partitions, thus sending a Sync Interest helps bring
other entities state up to date. Infrastructure-free environments
may also benefit from latest SV being relayed to nodes that
may not have heard previous transmissions due to limited radio
range or mobility. We refer interested readers to [15] for a
complete description of SVS’s operations.

IV. BUILDING PUBLISH-SUBSCRIBE OVER SVS

Although one can use SVS to inform subscribers of latest
publications, the existing SVS design can only identify pub-
lished data items by publishers prefixes and seq#s, therefore
a gap exists between transport data identifiers and applica-
tions’ semantic data names needed by subscribers. This gap
is due to different functions provided by different protocol
layers. As a transport protocol, SVS uses sequence numbers
as loss-resilient data identifiers to achieve reliable delivery.
Applications, on the other hand, need semantic names for data
production and consumption.

SVS-PS resolves this gap by adopting the approach used
in syncps [13], which encapsulates published contents, named
and secured by applications, in transport data packets. How-
ever, syncps uses an ephemeral IBF value as transport identi-
fier to be carried in its Sync Interests, and sends the encapsu-
lated publications as responses to these Sync Interests. Since
the IBF value changes over time and does not offer 1:1 with
data publications, syncps cannot guarantee reliable delivery
of all publications to all interested subscribers, especially
under adverse conditions with significant packet losses or long
delays. Large size publications also cause complications when
they cannot fit into a single data reply to a Sync Interest.

Based on the lessons learned from syncps and previous

MILCOM 2021 - Special Session on Named Data NetworkingMILCOM 2021 - Special Session on Named Data Networking

440Authorized licensed use limited to: UCLA Library. Downloaded on February 28,2022 at 19:21:26 UTC from IEEE Xplore. Restrictions apply.

NDN Sync protocols, SVS uses its Sync Interests for publi-
cation notifications only. SVS-PS uses the seq# to uniquely
identify each published content, and encapsulates the con-
tent, named and secured by applications, in data packets
named by SVS seq#s (outer data packets, one data blob
may be segmented to multiple outer packets as needed).
Fig. 3 outlines this encapsulation approach. A radar unit
with the publishing prefix /radar generates movement data
with the name /movement/radar/<timestamp>. SVS-
PS encapsulates this application data in an outer data packet,
and multicasts a Sync Interest carrying the new seq# in the
SV (see ¬). After learning about the new seq#, other nodes
may choose to retrieve the outer data packet using standard
Interest-Data exchanges (see and ®). The subscribers find
the original application name by extracting the encapsulated
data. Both the encapsulated and the outer data packets are
signed by the appropriate keys provided by the application
and transport, respectively. Double signing allows executing
different security policies of the encapsulated application data
and the transport protocol (due to space limit we omit the
discussion on SVS-PS security support).

Letting SVS carry encapsulated application data allows
publishers to produce data with arbitrary application names.
However, subscribers may want to selectively retrieve pub-
lished content, e.g., matching specific sub-topics, or within
certain size limit, especially when they have constrained
connectivity or local resources. This requires subscribers to
know the published content names before retrieving the outer
data packets named by sequence numbers. Our design provides
the 1:1 mapping from sequence numbers to application data
names, and two complementary ways to retrieve this mapping.

i) Sync Interest Extension: Each data publication triggers a
new Sync Interest. This data-triggered Sync Interest can pig-
gyback the mapping between the seq# of the newly produced
data and the application data name. This immediately informs
subscribers of the application data name, enabling them to
decide whether to retrieve the new publication.

ii) Mapping Information Retrieval: Subscribers that join late
or do not receive a data-triggered Sync Interest due to packet
loss need a way to learn the mapping information. SVS-PS
meets this need by allowing subscribers to fetch the mapping
names for a given range of seq#s. We note that a round
of Interest-Data exchange for retrieving mapping information
adds overhead in terms of bandwidth usage and latency.

We also note that, once a subscriber learns the mapping
between a seq# and the corresponding data name, it may
choose to fetch the published data by using either the seq#
or the application data name, assuming the data name can be
directly used to fetch the data (i.e., the name/its prefix is in
router FIBs, or the Interest packet carries Forwarding Hints).

V. THE PUB/SUB API

One of our goals is to make the use of our publish-subscribe
protocol as easy as possible, even for NDN beginners. Our API

Publish

(BLOB, name)Application

Pub/Sub

NDN

SVS

publish(..)

State Vector
Segment
Publisher

...

Subscribe

(BLOB, name)

subscribe(..)

Segment
Fetcher

...

Segmented
Data

Segmented
Data

Mapping
Data

Sync
Interest

topic

...

Sync
Interest

Mapping
Interest-Data

State Vector

①②③ ① ② ③

A
pp

lic
at

io
n

N
D

N
 L

ib
ra

rie
s

Fig. 4: Interplay of the proposed publish-subscribe protocol
with applications and lower-level libraries.

design [16] and implementation1, as outlined in Fig. 4, hides
the use of NDN from application developers while providing
the benefits of data-centric communication. Note that the figure
and further discussion exclude the security aspects of the
protocol for the sake of simplicity and brevity.

Our API provides two interfaces to applications: one to
publish arbitrary data as a BLOB under a hierarchical name;
the second one allows the application to subscribe to a topic
and triggers the API to callback the application whenever
corresponding data are received. In the background, entirely
transparent to the application, the pub-sub API leverages
SVS for the notification of new publications and handles
naming, packetization, and congestion control. When creating
an instance of the publish-subscribe API, an application-
provided multicast group prefix specifies the SVS Sync group
(cf. Section III). The pub/sub library joins the Sync group
by initializing the underlying SVS module, which allows the
application to take part in the group communication.

On the publishing side, SVS broadcasts the new publica-
tion’s name to all communicating entities (¬). At the same
time, a mapping from the SVS sequence number to the appli-
cation name is made available (). If the actual application
data is too large to fit in a single data packet, a segmenter
utility packages the BLOB into up to multiple named NDN
data packets each within the network MTU limit (®).

On the subscriber side, SVS notifies of a new data item
in the dataset and possibly already receives the application
data name piggybacked onto the Sync Interest (¬). If not
already received, the original application data name can be
retrieved using a dedicated mapping Interest (). The appli-
cation name is matched against existing subscriptions, and
only if subscribed, the actual data is retrieved. In that case, a
fetcher utility retrieves all parts of the segmented application
data, merges them into the original BLOB, and callbacks the
application (®). The mapping information can also optionally
carry extra information about the publication, such as the size
of the data item, which the consumer can use to decide whether
to fetch the data.

MILCOM 2021 - Special Session on Named Data NetworkingMILCOM 2021 - Special Session on Named Data Networking

441Authorized licensed use limited to: UCLA Library. Downloaded on February 28,2022 at 19:21:26 UTC from IEEE Xplore. Restrictions apply.

P1, Squad 1 ...

AP1

P2, Squad n...

P4, Squad 1 P4, Squad n... P3, Squad 1 P3, Squad n...

UAV

UAV

P1, Squad n

NDN
AP2
NDN

AP4
NDN

AP3
NDN

Subscriptions:
/position/{P4,P3,P1}/
/image/P4/

Subscriptions:
/position/{P1,P4,P2}/
/image/P1/

Subscriptions:
/position/{P3,P2,P4}/
/image/P3/

Subscriptions:
/position/{P2,P1,P3}
/image/P2/

Subscriptions:
/position/

UAV

UAV

P2, Squad 1

Fig. 5: Evaluation scenario with UAV’s acting as data mules
to bridge network partitions between platoons in a battlefield.

VI. EVALUATION

This section describes the evaluation of our resilient pub-
sub protocol, including a comparison to an IP-based DTN
protocol. In the evaluation, we test SVS-PS under adverse
conditions and evaluate the protocol’s reliability in DTN
scenarios. Hence, one evaluation metric is the service relia-
bility, measured by the aggregate percentage of messages that
are successfully delivered to subscribers interested in those
messages. We also evaluate the protocol’s bandwidth overhead.

Fig. 5 depicts the evaluation scenario. We assume a battle-
field environment with four infantry platoons. Each platoon
consists of five squads, each squad is equipped with one com-
munication device. All squads in each platoon are connected
to an AP2. We assume there is no packet loss between the AP
and the squads due to physical proximity, but the bandwidth
of each link is capped to 5 Mbps to emulate a resource
constrained environment. The communication device at each
squad periodically publishes position data and an image from
an attached camera. We assume that position information is
bundled with other metadata, yielding a total payload of 1 kB,
and is shared approximately every 5 seconds by every squad.
Image data is only disseminated within each platoon and
published at random intervals from 10 to 60 seconds, with
the payload size between 30 and 50 kBytes.

The four platoons are isolated from each other and com-
municate asynchronously via a UAV, which circles between
platoons as illustrated in Fig. 5 and connects to each platoon’s
AP for 30 seconds before moving to the next. The UAV
behaves as a data mule carrying messages to subscribers.
When using SVS-PS, the UAV subscribes to position data and
caches the mapping data of all squads. Squads subscribe to
position data of their own platoon and adjacent ones, and to
image data of their platoon only. Interests sent to the Sync
group prefix are forwarded using the multicast strategy [17].

We use MiniNDN [18] to emulate the described environ-
ment. We first evaluate the pub/sub functionality of SVS-
PS, with squads publishing data under different topics. We
then compare SVS-PS with an implementation3 of the Bundle

1https://github.com/named-data/ndn-svs
2We emulate APs as wired routers connected to all squads in the platoon.
3https://github.com/dtn7/dtn7-go, accessed: 2021-08-06

0
500

1000
1500
2000
2500

Tr
af

fic
 [k

bp
s]

UA
V

RX (avg=26.48 kbps)
TX (avg=38.15 kbps)

0 60 120 180 240
0

500
1000
1500
2000
2500

Tr
af

fic
 [k

bp
s]

Pl
at

oo
n

1
Sq

ua
d

2

Time [s]

RX (avg=37.6 kbps)
TX (avg=9.55 kbps)

Fig. 6: Bandwidth utilization of the UAV and one representa-
tive squad, as observed during the evaluation.

Protocol v7 [1] running epidemic routing (ER) over IP. The
scripts used for the evaluation are available on GitHub4.

A. Showcasing Delay-Tolerant Publish-Subscribe

In this scenario, we configure a 10% packet loss for the link
between each platoon’s AP and the UAV (when connected).
The UAV mules position data among all platoons by subscrib-
ing to the /position topic and serving Interests requesting
position data. After 4 minutes, all squads stop publishing data
but continue reconciliation of all previously published data.

Our evaluation results show 100% reliability for SVS-PS5.
The theoretical average bandwidth utilization at the UAV to
deliver the position data messages to all squads (considering
Interest-Data exchanges for application data retrieval only)
can be calculated to ≈ 32 kbps taking into account interest
aggregation at the APs. The measured utilization is ≈ 38 kbps
(upper chart in Fig. 6), which includes all packets sent by the
UAV, and thus also considers the protocol overhead for Sync
Interests and mapping exchanges.

Fig. 6 visualizes the bandwidth utilization of the UAV and
one of the squads. Shaded areas denote the squad’s platoon
being connected to the UAV. As soon as the UAV moves to a
new platoon, we observe traffic spikes on both the UAV and
the squad, caused by the squads and the UAV synchronizing
position data6. While the UAV is connected, we continue
seeing smaller spikes at the squad but not at the UAV. These
spikes denote image transmissions within the platoon that
are not carried to other platoons by the UAV. The lack of
these spikes at the UAV confirms that SVS-PS’s name-based
subscriptions are handled by the network layer, and image data
is not delivered to the UAV, as it is not subscribed to the same.

B. Comparison to Epidemic Routing

While ER entities broadcast data to all other nodes, SVS-PS
allows entities to subscribe to a subset of data. To ensure a fair
comparison between the two protocols, we drop subscriptions

4https://github.com/phylib/svs-pubsub-eval
5Since squads keep publishing after the UAV moves away, the UAV requires

up to two rounds to carry all data to all platoons after publishing stops.
6The spikes may not appear immediately after the UAV moving. Receiving

a Sync Interest (which is triggered by squads publishing data) indicates out-
of-sync datasets and triggers data exchange.

MILCOM 2021 - Special Session on Named Data NetworkingMILCOM 2021 - Special Session on Named Data Networking

442Authorized licensed use limited to: UCLA Library. Downloaded on February 28,2022 at 19:21:26 UTC from IEEE Xplore. Restrictions apply.

0 60 120 180 240 300 360 420
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

De
liv

er
ed

Epidemic Routing
SVS Pub/Sub

Fig. 7: Progression of successfully delivered data items over
time, when comparing ER and SVS-PS.

of image data and only broadcast position data in this scenario.
We also reduce the packet loss rate to 5%.

As visualized in Fig. 7, SVS-PS achieves reliable delivery
of all data items. Every time the UAV moves to a different
platoon, the percentage of delivered data increases. ER, on
the other hand, loses messages continuously after some time,
resulting in a delivery rate of about 85%. This loss of data is
observed because the ER UAV does not have enough time to
synchronize all the data with the squads over TCP due to losses
and limited channel bandwidth. SVS-PS does not suffer from
this issue since the Data packets are multicast to the squads
after being received by the AP from the UAV, due to Interest
aggregation. Consequently, the average outgoing bandwidth
usage at the UAV for ER is ≈ 582 kbps, while it is much
lower for SVS-PS at ≈ 38 kbps.

The superior performance of SVS-PS can also be explained
by the use of the underlying SVS protocol. SVS commu-
nicates the entire dataset state with a single State Vector
(cf. Section III). Receiving the State Vector informs a squad
about all missed publications. Publish-subscribe then pulls
individual publications either from the UAV or directly from
another squad (achieved by multicast Interest forwarding at
the network layer). ER, on the other hand, employs a catalog
containing the list of publications. This catalog is not sequen-
tially structured, requiring the dissemination to all nodes of
the entire list of publications to identify new ones. This causes
excessive traffic overhead, as visible in Fig. 8. With SVS-PS,
the UAV’s bandwidth consumption is low while staying at a
platoon, and only increases after moving to another (lower
chart). With ER, the UAV’s bandwidth utilization is contin-
uously high, with larger spikes after moving (upper chart),
indicating the higher overhead due to catalog exchanges.

VII. DISCUSSION

A. Enabling Network Layer to Identify Data

Comparing our NDN-based publish-subscribe protocol to IP-
based implementations shows one major difference—the pro-
tocol’s position in the protocol stack. An NDN name that is
used as message topic is a data packet’s identifier throughout
the entire NDN protocol stack. In contrast, IP packets are
identified by addresses, and message topics in IP-based pro-
tocols are opaque application-layer payloads. TCP/IP’s packet
headers include endpoint addresses, not topic names, which
does not allow realizing one-to-many message distribution as

0
500

1000
1500
2000
2500

Tr
af

fic
 [k

bp
s]

Ep
id

em
ic

Ro
ut

in
g RX (avg=38.87 kbps)

TX (avg=9.61 kbps)

0 60 120 180 240
0

500
1000
1500
2000
2500

Tr
af

fic
 [k

bp
s]

SV
S

Pu
b/

Su
b

Time [s]

RX (avg=15.78 kbps)
TX (avg=2.73 kbps)

Fig. 8: Network utilization of ER and SVS-PS

required by pub/sub. Hence, topic-based message distribution
in TCP/IP has to be implemented at the application layer.

Transport functionality in the the application layer increases
the application’s complexity, but also limits efficiency consid-
erations. For instance, realizing multicast in the application
layer requires redundant unicast of packets to multiple recip-
ients (unless running application-layer code on every hop).

Having the name as packet identifier available on the
network level moves the implementation of publish-subscribe
to lower layers. For instance, the multicasting of data is an
inherent result of multiple subscribers requesting the data us-
ing Interest packets forwarded hop-by-hop. NDN Data packets
include a signature field and allow payload encryption on
a per-packet basis, which allows to secure data transparent
to the application layer. Providing these features on lower
layers of the stack removes responsibility and complexity from
applications, allowing developers to build simpler applications
that are inherently more efficient and secure.

B. Comparison with Pub/Sub over IP Multicast

Protocols such as NORM and PGM intend to provide reliable
data multicast over IP networks. Pub/sub implementations
such as ZeroMQ can run over these protocols in lieu of
establishing N ×N TCP connections. In such an implemen-
tation, all participants of the pub/sub group must connect to
a multicast group and receive all packets sent to the group IP
address. Using such a pattern is in direct conflict with publish-
subscribe. Since every publication is sent to the group address,
IP delivers the publication to all participants regardless of
whether they are subscribed to the corresponding topic, and
the filtering is done by the receiver at the application layer. As
a result, the network may potentially deliver large amounts of
data that is not required by the application. In contrast, SVS-
PS delivers data only to the consumers that are subscribed to
the topic. This is enabled by NDN’s naming of individual data
packets instead of end hosts, which allows data to be multicast
to only the consumers that requested it.

Other existing solutions such as DDS [19] provide data-
centric pub/sub over IP by exchanging data between nodes and
selectively delivering to subscribed parties. DDS can also use
IP multicast to reduce the overhead of such data delivery. Such
a design, however, relies on intermediate hosts to selectively

MILCOM 2021 - Special Session on Named Data NetworkingMILCOM 2021 - Special Session on Named Data Networking

443Authorized licensed use limited to: UCLA Library. Downloaded on February 28,2022 at 19:21:26 UTC from IEEE Xplore. Restrictions apply.

relay data for others, which must happen at the application
layer. This intermediate host effectively acts as an ad-hoc
broker in the system and creates a central point of failure. NDN
performs equivalent tasks at the network layer, thus naturally
allowing fault tolerance through the use of multiple forwarding
paths without complex application-layer logic. Furthermore,
any IP multicast solution still presents the challenges described
earlier, and these can only be partially circumvented depending
on the network topology and data generation pattern.

C. Data Centric Security

IP-based pub/sub brokers for protocols such as MQTT secure
communication between the end hosts and the centralized
broker by securing the transport channel. This is typically
achieved using point-to-point protocols such as TLS, or
CurveZMQ [20], the security protocol used by the distributed
pub/sub framework ZeroMQ. However, the point-to-point na-
ture of these protocols prevent them from being used when
data is multicast to the receiving entities, requiring applications
using IP multicast to implement complex application layer
security logic.

NDN provides built-in security primitives for data centric
applications. Since every Data packet in NDN carries a sig-
nature, the authenticity of received data can be established
regardless of the transport channel or path it was received
from. This enables SVS-PS to securely muticast data to
all subscribers in the group without any application layer
logic. Security frameworks for NDN such as the Data-Centric
Toolkit [21] also provide easy-to-use abstractions for encryp-
tion of data using a secret shared among all participants. Data-
centric security also allows for the definition of trust policies
and access control rules for various members in the group
based on data names [3].

VIII. CONCLUSION

This paper describes SVS-PS, a brokerless pub/sub protocol
over NDN. Unlike IP-based pub/sub implementations that op-
erate on the application layer, NDN supports pub/sub message
distribution at the network layer. SVS, one of the NDN Sync
protocols, uses seq#s to provide resilient publication notifica-
tions to all subscribers. SVS-PS adds application semantics
on top of SVS’s seq#s to enable subscription-based many-
to-many message distribution at network layer. Our evaluation
demonstrates SVS-PS’s resilience against packet losses and its
ability to work asynchronously in DTN scenarios. Our open-
source SVS-PS API provides a familiar pub/sub interface that
allows exploiting the advantages of data-centric networking
while sheltering developers from the low-level NDN network-
ing primitives. We hope that SVS-PS’ easy-to-use API with
resilient pub/sub support can help foster the use of NDN in
tactical scenarios, as well as broader uses in other application
areas.

REFERENCES

[1] S. Burleigh, K. Fall, and E. Birrane, “Bundle Protocol Version 7,”
Internet Requests for Comments, Delay-Tolerant Networking Working
Group, Internet Draft, Jan 2021.

[2] E. J. Birrane and K. McKeever, “Bundle Protocol Security
Specification,” Internet Engineering Task Force, Internet-Draft draft-
ietf-dtn-bpsec-27, Feb. 2021, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-dtn-bpsec-27

[3] Z. Zhang, Y. Yu, H. Zhang, E. Newberry, S. Mastorakis, Y. Li,
A. Afanasyev, and L. Zhang, “An Overview of Security Support in
Named Data Networking,” IEEE Communications Magazine, vol. 56,
no. 11, pp. 62–68, November 2018.

[4] mqtt.org, “MQTT: The Standard for IoT Messaging,” 2020, accessed:
2021-07-19. [Online]. Available: https://mqtt.org/

[5] HiveMQ GmbH, “MQTT Security Fundamentals,” 2021,
accessed: 2021-07-19. [Online]. Available: https://www.hivemq.com/
mqtt-security-fundamentals/

[6] P. Hintjens, ZeroMQ: messaging for many applications. O’Reilly
Media, Inc., 2013.

[7] S. Deering, “Host Extensions for IP Multicasting,” Internet Standard,
RFC 1654, August 1989.

[8] B. Adamson, C. Bormann, M. Handley, and J. Macker, “NACK-Oriented
Reliable Multicast (NORM) Transport Protocol,” Proposed Standard,
RFC 5740, November 2009.

[9] T. Speakman, J. Crowcroft, J. Gemell, D. Farinacci, S. Lin,
D. Leshchiner, M. Luby, T. Montgomery, L. Rizzo, A. Tweedly,
N. Bhaskar, R. Edmonstone, R. Sumanasekera, and L. Vicisano, “PGM
Reliable Transport Protocol Specification,” Experimental, RFC 3208,
December 2001.

[10] Z. Zhang, Y. Yu, R. Kaushik, A. Afanasyev, and L. Zhang, “NAC:
Automating Access Control via Named Data,” in 2018 IEEE Military
Communications Conference (MILCOM). IEEE, 2018.

[11] T. Yu, Z. Zhang, X. Ma, P. Moll, and L. Zhang, “A Pub/Sub API for
NDN-Lite with Built-in Security.” Named Data Networking, Tech. Rep.
NDN-0071, Revision 1, Jan 2021.

[12] W. Shang, A. Gawande, M. Zhang, A. Afanasyev, J. Burke, L. Wang, and
L. Zhang, “Publish-subscribe communication in building management
systems over named data networking,” in 2019 28th International
Conference on Computer Communication and Networks (ICCCN), 2019.

[13] K. Nichols, “Lessons Learned Building a Secure Network Measurement
Framework Using Basic NDN,” in Proceedings of the 6th ACM Confer-
ence on Information-Centric Networking. ACM, 2019, p. 112–122.

[14] P. Moll, W. Shang, Y. Yu, A. Afanasyev, and L. Zhang, “A Survey
of Distributed Dataset Synchronization in Named Data Networking,”
Named Data Networking, Tech. Rep. NDN-0053, Revision 2, May 2021.

[15] P. Moll, V. Patil, N. Sabharwal, and L. Zhang, “A Brief Introduction to
State Vector Sync,” Named Data Networking, Tech. Rep. NDN-0073,
Revision 2, July 2021.

[16] V. Patil, P. Moll, and L. Zhang, “Supporting Pub/Sub over NDN Sync,”
in Proceedings of the 8th ACM Conference on Information-Centric
Networking, ser. ICN’21. ACM, 2021.

[17] A. Afanasyev, J. Shi, B. Zhang, L. Zhang et al., “NDN-0021: NFD
Developer’s Guide,” Named Data Networking, Tech. Rep., 2021, rev.
11.

[18] Mini-NDN Authors, “Mini-NDN: A Mininet-based NDN emulator,”
2021, accessed: 2021-07-21. [Online]. Available: minindn.memphis.edu/

[19] omg.org, “Data Distribution Service,” 2015, accessed: 2021-10-25.
[Online]. Available: https://www.omg.org/spec/DDS/

[20] curvezmq.org, “CurveZMQ - Security for ZeroMQ,” accessed: 2021-
11-1. [Online]. Available: http://curvezmq.org/

[21] K. Nichols, “Trust Schemas and ICN: Key to Secure IoT,” in Proceed-
ings of the 8th ACM Conference on Information-Centric Networking.
ACM, 2021.

MILCOM 2021 - Special Session on Named Data NetworkingMILCOM 2021 - Special Session on Named Data Networking

444Authorized licensed use limited to: UCLA Library. Downloaded on February 28,2022 at 19:21:26 UTC from IEEE Xplore. Restrictions apply.

		2021-12-27T09:31:28-0500
	Certified PDF 2 Signature

