
2820 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 6, DECEMBER 2021

On the Prefix Granularity Problem in NDN
Adaptive Forwarding

Teng Liang , Junxiao Shi , Yi Wang , Member, IEEE, and Beichuan Zhang, Member, IEEE

Abstract— One unique architectural benefit of Named Data
Networking (NDN) is adaptive forwarding, i.e., the forwarding
plane is able to observe past data retrieval performance and
use it to adjust forwarding decisions for future Interests. To
be effective, adaptive forwarding assumes that Interest Routing
Locality is related to Interests’ common name prefix, meaning
that Interests sharing the same prefix are likely to follow a similar
forwarding path within a short period of time. Since Interests can
have multiple common prefixes with different lengths, the real
challenge is determining which prefix length should be used in
adaptive forwarding to record path performance measurements
- we refer to this as the Prefix Granularity Problem. The longer
the common prefix is, the better the Interest Routing Locality,
and the larger the forwarding table. Given the limited FIB size,
route names are designed to be considerably shorter than Interest
names. Existing adaptive forwarding designs use route names to
record path performance measurements, which looses forwarding
adaptability as it promises in the event of partial network
failures. In this work, we propose to dynamically aggregate and
de-aggregate name prefixes in the forwarding table in order to
use the prefixes that are the most appropriate given current
network situation. In addition, to reduce the overhead of adaptive
forwarding, we propose mechanisms to minimize the use of the
longest prefix matching in Data packet processing. Simulations
demonstrate that the proposed techniques can result in better
forwarding decisions in the event of partial network failures with
significantly reduced overhead.

Index Terms— Information-centric networking (ICN),
named-data networking (NDN), adaptive forwarding, prefix
granularity problem.

I. INTRODUCTION

IN NAMED Data Networking (NDN), applications produce
Data packets containing named content with names. To

retrieve data, users send Interest packets also identified by
names. Routers forward Interests based on their name, and

Manuscript received November 17, 2020; revised March 24, 2021; accepted
August 2, 2021; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor M. Schapira. Date of publication August 27, 2021; date of current
version December 17, 2021. This work was supported in part by the National
Science Foundation under Grant CNS-1629009, in part by the National Key
Research and Development Program of China under Grant 2019YFB1802600,
in part by the Key-Area Research and Development Program of Guangdong
Province under Grant 2019B121204009, in part by the Peng Cheng Laboratory
Future Greater-Bay Area Network Facilities for Large-scale Experiments and
Applications under Grant LZC0019, and in part by the Guangdong Basic
and Applied Basic Research Foundation under Grant 2019B1515120031.
(Corresponding authors: Teng Liang; Yi Wang.)

Teng Liang and Yi Wang are with the Network Communication Center,
Peng Cheng Laboratory, Shenzhen 518066, China (e-mail: liangt@pcl.ac.cn;
wy@ieee.org).

Junxiao Shi is with the National Institute of Standards and Technology
(NIST), Gaithersburg, MD 20899 USA (e-mail: junxiao.shi@nist.gov).

Beichuan Zhang is with the Department of Computer Science, The
University of Arizona, Tucson, AZ 85721 USA (e-mail: bzhang@
cs.arizona.edu.com).

Digital Object Identifier 10.1109/TNET.2021.3103187

Data packets are retrieved though the reverse path of the Inter-
est they satisfy. This stateful Interest-Data exchange pattern
enables adaptive forwarding in NDN [1], i.e., NDN’s for-
warding plane is able to observe the data retrieval performance
of past Interests and use it to improve the forwarding decisions
made for future Interests. For example, an NDN node can mea-
sure the round-trip time of Interest-Data exchanges between
multiple next hops, and use this information to dynamically
pick the best next hop to use for future Interests that share
the same name prefix. This unique forwarding adaptability
provides better network performance in the event of short-term
churns, such as network failures and congestion.

To be effective, NDN adaptive forwarding assumes that
Interest Routing Locality is related to Interests’ common
name prefix, meaning that Interests sharing the same prefix
are likely to take a similar forwarding path within a short
period of time. In addition, we assume that Interests sharing
a longer name prefix have better Interest routing locality,
meaning that they are more likely to take the same forwarding
path. This assumption is made from our observations that
applications name data based on how it is organized and
accessed, because Data packets sharing a longer name prefix
have closer connections. For example, /a/b/seg=1 and
/a/b/seg=2 refer to two segments of the same file, while
/a/b/seg=1 and /a/c/seg=1 refer to segments in two
different files.

Given that Interests can have multiple common prefixes with
different lengths, the real challenge is determining which pre-
fix length should be used when performing path performance
measurements in adaptive forwarding. Recording path perfor-
mance measurements on a longer name prefix provides better
Interest routing locality, thus helping the forwarding plane to
make better forwarding decisions. However, these records will
cover fewer Interests, meaning that the forwarding table needs
to maintain more records of different name prefixes. We define
this problem - which name prefix length is used to record
path performance measurements - as the Prefix Granularity
Problem1 in NDN adaptive forwarding. The challenge is to
balance the trade-off between Interest routing locality and
forwarding table size.

Given the limited FIB size, route names are designed to be
considerably shorter than Interest names. More specifically,
applications typically register a short common name prefix
for their data with routers, and routers may further aggregate
route names to reduce their forwarding table sizes. Short route
names lead to poor Interest routing locality in the event of

1This work has a previous version published in ACM ICN conference [2].

1558-2566 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 03,2022 at 18:50:09 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8219-7238
https://orcid.org/0000-0003-3138-0790
https://orcid.org/0000-0002-9095-6879

LIANG et al.: ON PREFIX GRANULARITY PROBLEM IN NDN ADAPTIVE FORWARDING 2821

partial network failures. This problem is inherited in NDN
adaptive forwarding. Existing adaptive forwarding designs use
route names to record path performance measurements from
past data retrievals, which is known to encounter difficulties
in handling partial network failures. For example, if the route
name is /a, but Interests within two sub-namespaces /a/b
and /a/c have different best forwarding paths, picking either
sub-namespace’s best forwarding path as the best path of
the route name will make suboptimal or incorrect forwarding
decisions for the other sub-namespace.

This work tackles the Prefix Granularity Problem by dynam-
ically expanding and collapsing forwarding table, i.e., disag-
gregating and aggregating name prefix in forwarding table
on the fly. Specifically, once the forwarding plane detects
that the traffic under a route name has different optimal
forwarding paths, it will disaggregate the route name into
several sub-namespaces, expanding forwarding table. Path
performance measurements will be recorded on these longer
names accordingly, and the traffic under each sub-namespace
will be forwarded to the optimal path of that sub-namespace.
We propose three different expanding algorithms to determine
both when and how to disaggregate a namespace. Because
packets may arrive in an unpredictable order, the proposed
expanding algorithm may create unnecessary sub-namespaces.
To address this issue, we also propose forwarding table
collapsing techniques for table optimization.

Another problem with existing adaptive forwarding designs
is that they require longest-prefix-match lookups during Data
packet processing in order to record performance measure-
ments in the Forwarding Information Base (FIB). This results
in significantly higher overhead than non-adaptive forwarding,
which does not need longest-prefix-match lookups.

To tackle the problem, we start from the observation that if
an Interest was only forwarded to the optimal path, the perfor-
mance measurement on that single path would not help adap-
tive forwarding to rank multiple next hops, so that it is unnec-
essary to record this path performance measurement. When an
Interest is forwarded to multiple next hops because of either
probing or retransmission, adaptive forwarding will collect
performance measurements for multiple next hops. However,
FIB updates are needed only if the collected route ranking
differs from the current route ranking. Therefore, we add
these two filters to limit FIB updates, which significantly
reduces the overhead of FIB updates during Data processing,
with the assumption that a majority of the traffic will be
forwarded on the optimal path within a short period of time.
Specifically, we store a copy of performance measurements
within the Pending Interest Table (PIT) entry, which is already
accessed during Data processing. The forwarding plane locates
and updates the FIB entry only if the next-hop ranking has
changed, after which it triggers FIB expanding algorithms as
necessary.

To summarize, the two major contributions of this work
are:

• We tackle the Prefix Granularity Problem with dynamic
FIB expanding and collapsing (FIB name disaggrega-
tion and aggregation) algorithms to improve forwarding
decisions with moderate overhead. More specifically,

we design, implement and, evaluate FIB expanding tech-
niques.

• We optimize the current data retrieval performance mea-
surement process in adaptive forwarding, which improves
Data processing performance by eliminating a majority
of the longest-prefix-match name lookups in the Data
forwarding pipeline.

Simulations demonstrate that the proposed techniques can
make better forwarding decisions during partial network fail-
ures with significantly reduced overhead. The rest of paper
is organized as follows. Section II introduces related work
and elaborates the Prefix Granularity Problem by examining
a concrete example, and introduces related work. Then, our
design rationale is explained in Section III, which is followed
by design details (Section IV). We evaluated our proposed
solution in Section VI. Finally, Section VII concludes the
paper.

II. PROBLEM STATEMENT

A. NDN Adaptive Forwarding
NDN uses a pull communication model, and it has two

major types of network packets, Interest and Data; both packet
types carry a variable-length hierarchical name. The data
receiver, called a consumer, transmits an Interest packet with
the desired Data packet name to the network. Upon receiving
an Interest, the NDN router first queries the Content Store
(CS) for a locally cached Data packet. If no matched Data
exists, it then queries the Pending Interest Table (PIT) to
identify whether the Interest is new, looped, or retransmitted.
Finally, the router forwards the Interest according to the
Forwarding Information Base (FIB), which contains a ranked
list of next hops from which forwarding strategies can make
forwarding decisions. Forwarded Interests are buffered in the
PIT, allowing Data packets to be returned to consumers via
the reverse path. Data packets are cached in the CS to satisfy
future Interests requesting the same data.

This stateful Interest-Data exchange pattern enables adap-
tive forwarding in NDN [1]. Specifically, with PIT states,
NDN forwarding plane is able to explore and measure
multiple paths without worrying about loops. To utilize mul-
tiple paths, the adaptive forwarding plane performs Interest
Retransmission Processing by forwarding retransmitted Inter-
ests to alternative paths that have not been tried, as well as
Interest Probing by occasionally forwarding an Interest to
multiple next hops. Given that each Interest-Data exchange
takes path performance measurements (e.g., round-trip time
and throughput) on one next hop, these two mechanisms
enable the forwarding plane to measure path performance on
multiple next hops, and to make a route ranking. With a route
ranking, NDN’s forwarding plane can make better forwarding
decisions, thus improving data retrieval performance on the
fly.

One benefit of NDN adaptive forwarding is to better handle
link failures. Regarding link failures, if link layers can quickly
detect them and inform the network layer, routing proto-
cols can propagate new routing announcements, which will
remove failed links from FIB. In other cases where lower-level
detection is unavailable, network layers can rely on routing

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 03,2022 at 18:50:09 UTC from IEEE Xplore. Restrictions apply.

2822 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 6, DECEMBER 2021

Fig. 1. The adaptive forwarding (i.e., the ASF forwarding strategy) packet
processing workflow.

protocols’ periodic keep-alive messages to detect failures,
which usually takes seconds or even tens of seconds. In NDN,
adaptive forwarding can quickly react to link failures without
relying on link layer failure detection mechanisms or routing
protocols. Because the failed link will not bring back data,
it will be marked as the lowest ranked next-hop. In addition,
if consumers retransmit Interests that have not retrieved Data,
e.g., after a round-trip timeout, the retransmitted Interests will
be sent to an alternative path. Therefore, the damage of link
failure is minimized with NDN adaptive forwarding.

In the current adaptive forwarding design [1], [3] and
implementation, such as Adaptive Smoothed RTT-based For-
warding (ASF) strategy [4], performance measurements are
recorded in the Measurement Table (MT) (Figure 1). More
specifically, during Interest processing, MT lookup occurs
after FIB lookup to find the ranking of next hops based on
the latest measurements. During Data processing, the MT
is updated on each Data packet reception. The overhead of
managing MT is analyzed in Section II-C.

B. The Prefix Granularity Problem

In this section, we introduce the Prefix Granularity Prob-
lem in NDN adaptive forwarding. First, a simple scenario is
used to demonstrate this problem, and the limits of the current
design. Then, the root cause of this problem - route name
prefix granularity is discussed. Next, we argue that simply
using a routing protocol has limits in solving this problem.
In addition, a comparison to IP anycast is made for a better
understanding of the uniqueness of this problem in NDN.
Last, an alternative solution without adaptive forwarding is
discussed.

1) A Simple Scenario: The Prefix Granularity Problem is
elaborated using an example shown in Figure 2, in which
two consumers C1 and C2 are connected to three producers
(i.e., applications that serve data) P0, P1 and P2, and a data
repository P3, through routers R1, R2 and R3.

In this example, P0, P1 and P2 are producers that serve
data under name prefixes /a/a, /a/b and /a/c respectively,
and they are connected to the site router R2. R2 announces
the common name prefix /a to its neighbors. P3 is a data
repository that serves data under name prefix /a, and it is

Fig. 2. A simple scenario to demonstrate the FIB prefix granularity problem.

connected to the site router R3. Through a routing protocol,
router R1 learns a FIB entry /a with the initial next-hop
ranking such that R2 is preferred to R3, because of a shorter
delay.

Consumers C1 and C2 start sending Interests to
retrieve data under name prefixes /a/b/<#seq> and
/a/c/<#seq> respectively. Initially, routers forward Inter-
ests from C1 to P1 (the blue flow), and Interests from C2 to
P2 (the green flow), because R1 picks R2 as the best next
hop. Then, the network link between R2 and P2 fails.

Because of NDN adaptive forwarding, when the network
link fails, ideally R1 should start forwarding Interests from
C2 to P3, given that the timed-out Interest resulted from the
link failure would move R2 to a lower ranking in adaptive
forwarding. However, the current design records next-hop
performance measurements at FIB entry level, i.e. /a, which
associates the /a prefix with either the existing next-hop
ranking (R2, R3) or the new ranking (R3, R2). In the former
case, C2 is unable to retrieve data, even if there exists a
working path to P3. In the latter case, both consumers can
retrieve data, but C1 is retrieving data from R3, which has a
higher round-trip time than retrieving data from R2.

This scenario is simulated with ASF strategy in
Section VI-B. The simulation results match the first aforemen-
tioned case, that R1 continues to forward Interests from C2
to R2 after the link failure. This is because the Interest-Data
exchange between C1 and P1 (the blue flow) is still working
after the link failure, and each Data reception at R1 triggers
adaptive forwarding to update round trip time at FIB name /a.
Although the Interest-Data exchange between C2 and P2 (the
green flow) breaks after the link failure, and the sent Interests
of the green flow after the link failure are eventually timed
out, which mark R2 with a lower ranking at R1. However,
because the updates from the blue flow are more frequent than
the updates from the green flow, hence R1 still considers R2
to be a better choice than R3 for the name prefix /a.

2) Route Name Prefix Granularity: In an NDN network,
routes not only can be location names, but also can be data
name prefixes, referring to paths toward specific collections
of data. Given that each segment of a file has its own unique
name, and the number of file segments in a network can be
gigantic, it is unscalable to use file segment name as route

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 03,2022 at 18:50:09 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: ON PREFIX GRANULARITY PROBLEM IN NDN ADAPTIVE FORWARDING 2823

name in an NDN network. To reduce the size of FIB table,
a producer normally registers a short name prefix to a router,
and routers may further aggregate route names to a shorter
common name prefix. Therefore, there exists a difference
between route name granularity and data name granularity,
and this name difference leads to insufficient Interest routing
locality in the situation of partial routing failure (e.g., a file is
deleted on one site).

This problem is inherited in NDN adaptive forwarding,
but is not addressed by existing designs, which use static
route name to record path performance measurement. More
specifically, path performance measurement collected from
one Interest-Data exchange only indicates the network situ-
ation for a specific data name, not necessarily reflecting the
network situation for the whole route name, hence recording
performance measurement at route name may make subopti-
mal or wrong forwarding decisions (e.g., Fig 2). As a result,
adaptive forwarding becomes ineffective in this scenario. This
work intends to address this issue by dynamically expanding
route names to record path performance measurement.

3) Why Does a Routing Protocol Not Help: One common
argument is that the problem demonstrated in the simple
scenario (Fig 2) can be solved with the help of a routing
protocol, e.g., if R2 announces /a/b through a routing protocol
after the link fails, then R1 will forward traffic under /a/c to
the only available next-hop R3.

There are three issues in this solution. First, as analyzed
in the previous section, to reduce FIB size, route names are
designed to be short, and R2 may be configured to announce
route name only at level-one granularity, i.e., /a. Second, even
if R2 is able to announce a longer route name prefix, it may
not be able to detect the unreachability of /a/c, which can
be one of many file names in the producer. Last, relying on
a routing protocol, R2 not only needs to announce /a/b, but
also to announce /a/a; there can be more name prefixes to be
announced at level-two, and they should be announced as well.
As a result, the size of routing announcement, RIB, and FIB
may be significantly increased at each router in the network.

Instead of relying on a routing protocol to propagate finer
route name prefixes, this work intends to address this problem
in adaptive forwarding, which relies on local path perfor-
mance measurement and make local forwarding decisions
accordingly.

4) Comparing to IP Anycast: The given scenario can be
implemented in an IP network via IP anycast [5], which
allows multiple hosts to have and announce the same unicast
IP addresses to the network. IP anycast is widely used for
DNS and CDN. In practice, IP anycast can be announced
as a subnet of the fixed size /24 to BGP, then an IP router
will forward packets to the closest matched IP anycast net.
Given that IP forwarding has no adaptability, if the destination
machine or the link to a subnet fails, an IP router is unable to
detect the failure or forward traffic to an alternate IP anycast
location. In NDN, although the fixed-length address becomes
a variable-length data name, the prefix granularity problem
of “anycast” still exists. NDN adaptive forwarding treats one
route name prefix as a unit for path performance measurements
and path selection, which is similar to the fixed size /24

Fig. 3. Three data structures to store name-based entries.

address in IP anycast. However, the network may have a failure
that affects a finer name prefix granularity, but the current
adaptive forwarding is unable to detect or handle it. This work
is intended to tackle this problem.

5) An Alternative Solution Without Adaptive Forwarding:
Last, we discuss an alternative solution to this problem. Instead
of using data name prefixes as routes, the alternative solution
uses location names as routes. For example in Fig. 2, R1 has
two routes with names /R2 and /R3, pointing to sites R2 and
R3 respectively. Within each site, R2 and R3 have their data-
name-based routes. In addition, consumers require a global
DNS-like lookup system to find the locations for a given data
name, such as NDNS [6].

In the alternative solution, C2 first queries NDNS, and finds
that both R2 and R3 sites have data start with name /a; then
C2 sends an Interest with name /a/c with a forwarding hint
/R2; the Interest containing the forwarding hint is sent to
router R1, and is forwarded based on the forwarding hint,
thus it will be forwarded to R2 to retrieve data. Once there is
a link failure and data cannot be retrieved from site R2, C1
will try to retrieve data from site R3 by choosing its site name
as the forwarding hint.

The alternative solution requires consumers to support the
forwarding adaptability logics, inter-sites routers to support
forwarding-hint based forwarding mechanism, and a global
DNS-like lookup system. In contrast, this works intends
to solve the problem by only improving NDN adaptive
forwarding.

C. Table Lookup in Adaptive Forwarding

The second problem of the current adaptive forward-
ing design is its performance overhead introduced to the
Data processing pipelines. To understand the problem, this
section analyzes how NDN adaptive forwarding stores various
states, their relationships, and mechanisms to improve their
processing performance.

NDN adaptive forwarding stores various states in CS, PIT,
FIB and MT. All these table are indexed by names. One
example of their relationships is in Figure 3(a). Specifically,
Data packets are identified by their complete names
(e.g. /edu/ua/cs/v9/s0). Most Interests have the same name as
Data, but NDN also allows an Interest name to have a shorter
prefix of the Data name, which enables in-network name

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 03,2022 at 18:50:09 UTC from IEEE Xplore. Restrictions apply.

2824 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 6, DECEMBER 2021

discovery [7]. FIB entry names are prefixes of Interest names,
and are considerably shorter than typical Interest names,
because an application usually registers a smaller number of
name prefixes to cover all the data it serves, and routers
can further aggregate prefix registrations to fewer routing
announcements. Finally, existing adaptive forwarding designs
record path performance measurements along with FIB name.

After briefly summarizing the relationships among table and
packet names, we list detailed packet processing pipelines for
each table, to better understand the overhead of each table
lookup and the bottleneck.

In Interest processing:
• CS Lookup: conducts Exact Match against Interest name.

NDN allows Interest to retrieve Data with a longer
name. Supporting such name lookup in CS provides
one use case, i.e., CS can provide a matched Data
with any version to an Interest without version number.
However, this use case is needed only in limited scenar-
ios. Therefore, CS lookup can get rid of such support
to reduce processing overhead, since exact match is
considerably more efficient than finding Data with a
longer name. In addition, this allows CS and PIT to be
stored on the same data structures, and merge the two
table lookups into one name lookup [8].

• PIT Lookup: conducts Exact Match against Interest name.
• FIB Lookup: conducts the Longest Prefix Match (LPM)

against Interest name, because LPM can provide the most
accurate routes. LPM is considered as the bottleneck of
name lookup performance, and various data structures
have been proposed to make it more efficient.

• MT Lookup: conducts LPM against Interest name,
because existing designs record path performance mea-
surements with FIB name. Therefore, FIB and MT
lookups can be merged into one LPM name lookup.

In Data processing:
• PIT Lookup: expects a Data packet to satisfy any Interest

whose name is a prefix of Data name, e.g., Data with
name /a/1 should satisfy Interests with either name /a or
/a/1. For major cases, Interest name and Data name are
the same. For minor cases, Interest name is a prefix of
Data name. These two types of cases require processing
with significantly different overhead, the former one only
needs exact match, while the latter one requires to look up
all prefixes of data name in PIT. To distinguish these two
types, CanBePrefix flag is tagged on Interest if its name
can be a prefix of data name [9]. To further improve this
lookup performance, PIT token [10] is introduced as an
index carried by both Interest and Data. This work does
not rely on the usage of PIT token.

• CS Lookup: conducts Exact Match against Data name.
• MT Lookup: conducts LPM against Data name to find a

FIB name, because path performance measurements are
bound with FIB name in existing designs. This lookup
becomes the bottleneck in Data processing.

To summarize, without sacrificing the major forwarding
semantics, table lookups use simpler matching rules to reduce
memory access. More specifically, PIT and CS use exact match

(PIT token is used in Data processing), while FIB and MT use
LPM which is the bottleneck of packet processing. In addition,
the same matching rules allow them to share the same data
structure and merge table lookups into one name lookup. This
work proposes a different technique to manage MT, in order
to reduce LPM in Data processing (Section III-C).

Another major research topic is to design data structures to
improve name lookup performance, such as to use trie [11],
hash table [8] and Bloom filter [12]. Figure 3 gives an
example of three different data structures. Regarding a tree
data structure, LPM requires tree traversal from root to leaf.
To reduce the traversal distance, trie-based data structures are
proposed to merge nodes for parents that have one child.
However, the worse case still incurs massive memory access
to visit a leaf node in the tree, proportional to the height
of a name trie. Another idea is to use hash table to store
names, which changes leaf lookup in tree-like structures to
constant time. The challenge is that LPM can be inefficient
as the name prefix of descending length has to be checked.
2-stage LPM algorithm [8] is proposed to reduce the number
of prefix to be checked. This work is not arguing which data
structure is better. Although a tree structure is used to explain
the proposed algorithms, the algorithms are independent of
any data structure.

III. DESIGN RATIONALE

In this section, we consider the design rationale of the
proposed FIB expanding and collapsing techniques.

A. Dynamic FIB Expanding

As elaborated in Section II-C, existing adaptive forwarding
designs use static FIB name to address the Prefix Granularity
Problem, which has been proved to be ineffective in handling
partial network failures. This problem can be solved by
disaggregating FIB name into longer names to record the
observed path performance measurements. In other words,
the measurements can be recorded at a finer grained-prefix
that better matches network conditions. Figure 4 demonstrates
how disaggregating FIB names solves the Prefix Granularity
Problem in the given scenario; after the link failure, R1 records
the measured path performance on a longer name prefix /a/c,
so that the green flow for /a/c will be forwarded to an
alternative working path, while the blue flow for /a/b sticks
to the best path.

We refer to this solution as Dynamic FIB Expanding. The
challenge is how to quickly disaggregate FIB name to the
accurate name prefix granularity, so that it matches the current
network situation, while the introduced overhead is minimized.
Figure 5 gives three examples of FIB update after observing
the past path performance measurements. Example (1) updates
the next-hop ranking on FIB name directly, which is how exist-
ing adaptive forwarding designs work. Examples (2) and (3)
update the next-hop ranking on disaggregated names that are
finer grained than the original FIB name.

One question is how long should the FIB name be disag-
gregated to. Example (2) expands the original FIB name with
one more name component, while example (3) expands it with

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 03,2022 at 18:50:09 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: ON PREFIX GRANULARITY PROBLEM IN NDN ADAPTIVE FORWARDING 2825

Fig. 4. Use FIB expanding to solve the prefix granularity problem in the
simple scenario.

Fig. 5. Three examples to update FIB after measuring the next-hop ranking
of multiple paths: (1) no FIB expanding, (2) FIB expanding with the accurate
name prefix, and (3) FIB expanding with the name prefix longer than the
accurate one.

two more name components. The goal is to expand the FIB
name long enough so that all traffic under the expanded name
share the same best path, but not too long to unnecessarily
increase FIB size. We define the shortest expanded name that
reflects the new network situation as the “accurate” name
prefix. Therefore, a good FIB expanding algorithm should be
able to find the accurate name prefix.

Another metric to evaluate a FIB expanding algorithm is
the number of FIB updates required to find the accurate name
prefix. Given that the accurate name prefix is not known in
advance, and there are different ways to expand a name, e.g.,
adding one or two more name components, FIB expanding
algorithms may need several rounds of measurements to find
the accurate name prefix. Before approaching the accurate
name prefix, each FIB expanding implies that a portion of traf-
fic has not been forwarded via the optimal path. A good FIB
expanding algorithm should be able to find the accurate name
prefix with a smaller number of FIB updates. In this work,
three different expanding algorithms are proposed (Section IV)
and evaluated (Section VI) by the aforementioned metrics.

B. FIB Expanding Triggering

FIB expanding is triggered when the network situation has
changed (e.g. a link failure in Figure 2), and the current

next-hop ranking on a FIB name is not accurate anymore,
meaning that a sub-namespace of the FIB name uses a different
next-hop ranking that represents the current network situation
the best. Therefore, FIB expanding is triggered only when a
different next-hop ranking on a FIB name is observed.

We first make an assumption that a majority portion of
traffic follows the first ranked path to retrieve data. The
performance measurement on the single path is unable to gen-
erate a next-hop ranking. Only when traffic explores multiple
paths, the measurements can generate a ranking of next hops,
which then triggers FIB expanding if it is different from the
current one. This analysis motivates us to rethink the usage of
measurement, which is to generate the ranking of next hops.
Therefore, if an Interest-Data exchange only measures a single
path, the information is of little value. Based on this idea,
we propose measurement management optimization in next
section.

C. Measurement Management Optimization
The current adaptive forwarding design records path perfor-

mance measurements on FIB entries, thus each Data reception
will trigger a FIB lookup, which requires the longest prefix
match, introducing significant performance overhead to the
Data processing pipelines (Section II-C). Given that a majority
of Interest-Data exchanges only use the first ranked path,
the path performance measurement of the single path has little
value because it cannot change the ranking among multiple
next hops. Therefore, we propose to remove the binding
between path measurement and FIB names.

Instead, the adaptive forwarding can record path measure-
ment along with the PIT entry. If only one path has been
used, the measurement is discarded along with the PIT entry;
if multiple paths have been explored, and their measurement
information generates a new next-hop ranking, FIB entry
update and FIB expanding will be triggered.

The optimized packet processing workflow is depicted
in Figure 6. With the optimization, path measurements are
recorded with PIT entries, so that Data processing only
requires one exact match lookup instead of separate lookups in
PIT and FIB. Since only a small portion of traffic triggers FIB
expanding, the majority of longest-prefix-match name lookups
are avoided. More detailed analysis is in Section VI-D.

D. Dynamic FIB Collapsing
The FIB expanding algorithm adds more FIB entries when

rankings are changed. The next two questions are when to
remove the expanded FIB entries and how to manage the
number of expanded FIB entries.

One possible mechanism is to add timers on newly expanded
FIB entries, and these entries will be removed once the timers
are expired. The timers may be set to match the routing
announcement interval, because routing announcements can
supply the latest next hop ranking according to routing pro-
tocol. However, periodical routing announcement update may
not exist in environments such as a local network using self-
learning [13], [14]. Moreover, the FIB expanding algorithm
could generate more FIB entries than necessary, such as the
example shown in Figure 7.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 03,2022 at 18:50:09 UTC from IEEE Xplore. Restrictions apply.

2826 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 6, DECEMBER 2021

Fig. 6. Optimizing measurement management in the packet processing
pipelines.

Fig. 7. An example of a FIB collapsing algorithm.

We propose a FIB collapsing algorithm to optimize the
number of FIB entries created by FIB expanding algorithms.
This algorithm not only removes invalid expanded FIB entries,
but also optimizes FIB to reduce the number of FIB entries
while keeping the same forwarding effects. For example,
Figure 7 demonstrates that the FIB collapsing algorithm
can consolidate four FIB names into two without changing
forwarding behaviors for the specific name tree. Moreover,
this algorithm does not rely on timers, but instead checks the
ranking of next hops on its parent node and children nodes.
More details are specified in Section IV.

E. Security Considerations

The original routes learned from either routing protocols
or self-learning mechanisms are verified and trusted. The
expanded FIB entries are created based on the measurements
of real-time network conditions within the original route
namespace. Therefore, FIB expanding mechanisms would not
admit malicious routes creation.

If the Prefix Granularity Problem is not handled correctly,
one potential vulnerability is “traffic hijacking”. This was
observed from a real scenario, that an NDN video streaming
service was deployed on NDN Testbed [15]; multiple sites
deployed NDN video servers serving the same name prefix,
and one of them was serving an exclusive subnamespace for
status collection, and this server is “hijacking” video requests
that are supposed to be forwarded to other sites. One argument
is that the status collection name prefix should be announced
separately to the routing system, but this subnamespace can
be any video file. The proposed FIB expanding techniques

Fig. 8. An example to explain FIB expanding algorithms.

can solve this problem, and the real scenario was simulated
in Section VI-C.

After introducing FIB expanding techniques, one concern
is that attackers may design subtle Interest timeouts to trigger
FIB expanding actions, which consumes both computation and
storage resources on routers. However, this requires attackers
controlling traffic. Moreover, this can be countered with better
naming designs and smarter FIB expanding triggering. More
study is needed for this topic.

IV. DESIGN DETAILS

A. FIB Expanding Detection
As analyzed in Section III-B, upon receiving a Data packet,

the adaptive forwarding collects path performance measure-
ment regarding the incoming face on the specific Interest
name, and bounds it with the PIT entry. Based on our
assumption that the majority of Interests are forwarded to the
best path only, most observed path performance measurements
are collected on a single path, which is unable to generate a
route ranking, thus it will not trigger FIB expanding.

As introduced in Section II-A, Interest Retransmission
Processing and Interest Probing are two mechanisms that can
measure multiple paths. Interest Retransmission Processing
forwards retransmitted Interests to different next hops in
round-robin manner; Interest Probing occasionally forwards
copies of Interests to alternative next hops. Both mechanisms
allow the adaptive forwarding plane to measure the perfor-
mance of multiple next hops, and generate a route ranking
list. If the new ranking differs from the existing one in the
FIB entry, the FIB expanding algorithm will be triggered.

B. FIB Expanding Algorithms

This section defines three potential FIB expanding algo-
rithms. Each algorithm decides how to create new FIB entries
with longer names to record the path performance measure-
ment. Figure 8 shows a name hierarchy, which has an existing
FIB entry /a with the initial ranking r1. Suppose the Interest
/a/b1/c1/#1 was forwarded to multiple next hops and
generated a different ranking r2 on the PIT entry p1, this
new ranking would trigger the FIB expanding algorithm.

1) Top-Down Expanding Algorithm: This algorithm creates
a new FIB entry at FIB + 1 level and records the new ranking.
In Figure 8, the top-down expanding algorithm would create
a FIB entry at /a/b1, one level down (L2) from the existing

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 03,2022 at 18:50:09 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: ON PREFIX GRANULARITY PROBLEM IN NDN ADAPTIVE FORWARDING 2827

Fig. 9. Expanded FIB results generated by the top-down expanding algorithm
and the bottom-up expanding algorithm.

FIB entry (L1), and record the ranking r2 on this FIB entry.
The name “top-down” reflects the behavior that it starts from
the “top”, which is the existing FIB entry.

2) Bottom-Up Expanding Algorithm: This algorithm creates
a new FIB entry at PIT-1 level and records the new ranking.
In Figure 8, the bottom-up expanding algorithm would create
a FIB entry at /a/b1/c1, one level up (L3) from the PIT
entry (L4), and record the ranking r2 on this FIB entry.

Both algorithms are simple to implement, but take the
opposite strategies. The top-down expanding algorithm is more
aggressive while the bottom-up expanding algorithm is more
conservative when inserting new FIB entries. However, either
algorithm may generate more FIB entries than the optimal
number. Figure 9 demonstrates two examples of FIB table
expanded by these two algorithms. In Figure 9a, the next-hop
ranking should have been changed at /a, but both the
top-down expanding and the bottom-up expanding algorithms
generate more FIB entries. Specifically, the top-down expand-
ing algorithm creates FIB entries with the new ranking at all
L2 names, while the bottom-up expanding algorithm creates
FIB entries with the new ranking at all L3 names. In Figure 9b,
the optimal FIB expanding should have added a FIB entry
at /a/b1/c1, but the top-down expanding algorithm will be
triggered twice to reach the accurate name prefix, while the
bottom-up expanding algorithm can get the optimal results
right away. These examples demonstrate that the effectiveness
of top-down and bottom-up expanding algorithms depend on
the distance between the accurate name level, the existing FIB
name level, and the PIT name level. If the accurate name level
is closer to the FIB name level than its distance to the PIT
name level, the top-down expanding algorithm works better
than the bottom-up expanding algorithm.

Fig. 10. An example of FIB expanding using the SS expanding algorithm.

Because the accurate name prefix depends on the network
situation and is unknown a priori, neither algorithm can
provide a guaranteed performance. Therefore, we intend to
design an algorithm that can better locate the accurate name
prefix.

3) Shortest Name Prefix With the Solo Route Ranking (SS)
Expanding Algorithm: The accurate FIB name to be expanded
has two characteristics. First, all Interests under this FIB name
share the same route ranking. If a FIB name has different
route rankings observed, the FIB name needs to be expanded.
Second, the accurate FIB name has to be the shortest name
prefix, so it is able to cover the whole name subtree that share
the same route ranking; otherwise, more FIB names need to
be added to cover the name subtree. Based on the analysis,
the goal is to find the shortest name prefix that has the solo
route ranking, and we name the algorithm as the SS expanding
algorithm.

To achieve the goal, our idea is to add the measured route
ranking on the path from the FIB name to the PIT name. By
collecting more path measurement on the name tree, the SS
expanding algorithm is able to find the shortest name prefix
that has the solo route ranking, which is the accurate FIB name
to be expanded.

In Figure 10, suppose the PIT node p2 with name
/a/b1/c1/2 has a route ranking r2 that differs from the
ranking r1 at the FIB name /a. When the PIT node p3 with
the name /a/b1/c2/1 records the route ranking r1 first, r1
is recorded on the p3’s name path (i.e., /a/b1/c2, /a/b1,
and /a) in the measurement table. Then, when the PIT node
p2 measures a new route ranking r2, r2 will be recorded
on p2’s name path (i.e., /a/b1/c1, /a/b1, and /a). After
this update, the SS expanding algorithm finds that the FIB
name /a/b1 is the longest name that has two different route
rankings, therefore its child node /a/b1/c1 will be created
with the ranking r2 in FIB, as this child node is the shortest
name prefix with a different solo route ranking. Eventually,
the SS expanding algorithm results in FIB entries /a = r1
and /a/b1/c1 = r2.

The SS expanding algorithm may have different outcomes,
depends on the order of the route ranking observations.
In Figure 11, if the PIT node p2 with the ranking r2 arrives
first, the route ranking r2 at p2 will be updated on its name
path, (i.e., /a/b1/c1, /a/b1, and /a). After this update,
the route ranking at the FIB node /a will be changed to r2,
because /a is the shortest name prefix that has observed
only one route ranking. Next, the PIT node p3 observes the
route ranking r1, which will be recorded on p3�s name path

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 03,2022 at 18:50:09 UTC from IEEE Xplore. Restrictions apply.

2828 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 6, DECEMBER 2021

Fig. 11. An example of FIB expanding using the SS expanding algorithm
with a different measurement order.

Fig. 12. Two FIB collapsing scenarios.

(i.e., /a/b1/c2, /a/b1, and /a), then a new node with
the name /a/b1/c2 and the ranking r1 will be added to
the FIB. Eventually, this results in FIB entries /a = r2 and
/a/b1/c2 = r1.

Having different outcomes depending on route ranking
observation order is an expected behavior, because FIB
expanding algorithms react to the past observed route ranking.
For each new observed route ranking, the FIB name tree will
be expanded to match the current network situation.

C. FIB Collapsing Mechanisms

Using FIB expanding algorithms alone may cause the FIB
to grow indefinitely and the router would eventually run out
of memory. As explained in Section III-D, deleting dynamic
FIB entries using timers may not work in all network envi-
ronments. Moreover, our simulations show that FIB expanding
algorithms may generate FIB trees with local optimum, such
as those shown on the left side of Figure 4.3. We propose
a FIB collapsing algorithm to optimize FIB tree to have
a global optimum, shown on the right side of Figure 4.3,
which has fewer entries but keeps the same forwarding
behaviors.

The FIB collapsing algorithm requires each FIB name to
remember ranking counters: how many of its children have
the same route ranking. For example, on the upper left tree
in Figure 12, entry /a should have records stating that it has
1 child with ranking r1 and 3 children with ranking r2.

The FIB collapsing algorithm works in two stages. The first
stage is collapsing triggering. When a new FIB name with a
route ranking is inserted in the FIB, the ranking counters on
the parent nodes should be updated. If the difference among
counters of different rankings exceeds a threshold (e.g., 2),
and the most popular ranking differs from the ranking used
on that node, the FIB collapsing execution is triggered.

The second stage, collapsing execution, has three
steps:

1) Remove FIB entries from children that have the most
popular ranking. In Figure 12, FIB entries /a/b2,
/a/b3, and /a/b4 are removed.

2) Add FIB entries to children that share the current
ranking of the parent node. In Figure 12, a new FIB
entry /a/b1 is added with ranking r2.

3) Update the node’s FIB entry with the most used ranking
if needed. In Figure 12 (top), the FIB entry /a is updated
with ranking r1. In Figure 12 (bottom), the FIB entry
/a is removed before it has the same ranking as its
parent /.

As these collapsing execution may change ranking coun-
ters on the parent node, the collapsing algorithm is recur-
sively applied to the node ancestors until no collapsing is
needed.

V. IMPLEMENTATION

We choose NFD [16] to implement the proposed techniques,
because it is a widely-used open-source forwarding software
running NDN protocols. More specifically, we modify the
ASF adaptive forwarding strategy [4] to be able to plug
FIB expanding and collapsing algorithms. Both NFD and
the ASF strategy have been deployed and tested on NDN
Testbed [17].

Thanks to its modular design and high-quality code,
the ASF forwarding strategy is easy to extend. In addition,
NFD has the core features supported. More specifically,
the data structure of MT is a tree, with the lookup and
insertion operations implemented in NFD; our implementation
extends the operations on MT in three pipelines, via adding
methods and logics of using low-level APIs. Note that the
ASF forwarding strategy follows the packet processings shown
in Figure 1.Evaluation details are discussed in Section VI-F.
The modified modules are explained in the following.

Interest Forwarding: uses getBestFaceForForwarding
method to find the best Face based on its measured
performance information at the FIB name node. Given that
FIB expanding creates new measured Face information
at longer names, the measured Face information must
be retrieved from the name node with the longest prefix
match. More specifically, we add getLPMFaceInfo to replace
getFaceInfo method to get Face information.

Interest Probing: is managed by the NamesapceInfo at the
FIB name node. FIB expanding creates new measurement node
as well as NamespaceInfo. Interest Probing is then managed
by the NamespaceInfo retrieved from the name node with the
longest prefix match.

Data Receiption: is the procedure to check and expand FIB
when necessary. The new logics of processing Data packets are
added to beforeSatisfyInterest method, whose pseudocode is
shown in Algorithm 1. FIB expanding algorithms are triggered
when the new measured route ranking is different from the
current route ranking, which is implemented as FIBExpanding
method, while FIB collapsing algorithm (implemented
as FIBCollapsing method) is checked after each FIB
expanding.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 03,2022 at 18:50:09 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: ON PREFIX GRANULARITY PROBLEM IN NDN ADAPTIVE FORWARDING 2829

Algorithm 1 FIB Expanding Framework
1: procedure BEFORESATISFYINTEREST

2: namespaceInfo← getNamespaceInfo()
3: curRanking← namespaceInfo.routeRanking
4: newRanking← makeRanking()
5: if newRanking! = curRanking then
6: newNamespaceInfo← FIBExpanding()
7: newNamspaceInfo.updateRouteRanking()
8: newNamspaceInfo.updateFaceMeasurement()
9: FIBCollapsing()

10: else
11: namespaceInfo.updateFaceMeasurement()

VI. EVALUATION

A. Evaluation Setup
The evaluation is conducted in three major aspects, includ-

ing network simulation, model analysis, and implement eval-
uation. First, we use a network simulator to evaluate the
impact of FIB expanding on consumer performance in two
different scenarios. The simulator is ndnSIM [18], which is
built on top of NS-3 with NFD ported. Routers in both
scenarios are running NFD that is configured to use ASF for-
warding strategy with and without FIB expanding algorithms
implemented. Then, we theoretically analyze measurement
management optimization. Next, we compare and analyze
the cost of the proposed FIB expanding algorithms using a
name tree simulator. Last, we evaluate our implementation.
All simulation results presented in this paper are confirmed
after five runs with different seeds.

B. FIB Expanding in the Simple Scenario
In the first evaluation, we simulate the simple scenario

shown in shown in Figure 2 in ndnSIM. The consumer
applications use BIC congestion control scheme (implemented
as PCON [19] consumers). The throughput bottleneck for both
consumers are 8 Mbps. All applications start running at 0s.
A link failure happens between R2 and P2 at 6s. Data retrieval
rates, data retrieval delay, and Interest timeouts are measured
at both consumers to demonstrate the how application perfor-
mance is affected by the proposed FIB expanding algorithms.

The consumer performance of the current ASF forwarding
strategy (no FIB expanding) is shown in Figure 15a. The
left side shows the consumer goodput, and the right side
shows data delay and Interest timeouts at consumers. The
figure demonstrates that the adaptive forwarding is unable to
retrieve data for the application on C2 after the link failure,
even there exists an alternative path. This is because the
Interest-Data flow between C1 and P1 keeps the adaptive
forwarding plane on R1 believe that R2 is the best next hop
for traffic under /a, which makes a wrong forwarding decision
for Interests from C2. Therefore, the consumer goodput drops
to 0 after 6s, and an Interest timeout exists at 6s without any
delays measured afterwards.

In contrast, Figure 15b demonstrates that if the adaptive
forwarding is able to add FIB entry at an accurate name prefix,
R1 is still able to help C2 to retrieve data from an alternative

Fig. 13. Application data retrieval rates with the adaptive forwarding in
the topology shown in Figure 2 under two cases: no FIB expanding and FIB
expanding with the accurate name prefix hard-coded.

Fig. 14. The simulation topology of iVisa video streaming service on the
NDN testbed.

path, without affecting traffic from C1. This is because the
adaptive forwarding added a new FIB name /a/c with the
next hop P3 in the FIB on R1, which forwards traffic from
C2 to P3.

C. A Real Scenario Observed From NDN Testbed

Next, we simulate a real scenario observed from NDN
Testbed [17]. Ghasemi developed an adaptive video streaming
service using NDN, and deployed it on NDN Testbed [15]. The
video data repositories are put at multiple different sites, so as
to satisfy nearby consumers. However, an observation is made
that consumers are not always retrieving data from the nearest
video repository. Based on this observation, we find and define
the Prefix Granularity Problem, and propose dynamic FIB
expanding techniques to solve it in this work.

To reproduce the observation, we simulate the partial net-
work topology of NDN Testbed in Figure 14. Video servers
are set up at two sites, connecting to the hub UA and NEU
respectively. Both servers are serving data starts with name
prefix /ndn/ivisa/web, except that NEU is serving an

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 03,2022 at 18:50:09 UTC from IEEE Xplore. Restrictions apply.

2830 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 6, DECEMBER 2021

Fig. 15. The simulation results of consumer goodput and delay for the real scenario of running iVisa video streaming service on the NDN testbed (Fig. 14).

exclusive subnamespace /test. In the real scenario, this
unique subnamespace was used for status collecting. In theory,
this subnamespace can represent any video file only serving
at NEU site. A consumer connects to the hub UCLA, and it
generates two Interest-Data flows, in addition to the common
name prefix /ndn/ivisa/web, one flow is requesting data
starts with name prefix /video/ip_vs_ndn_1080p.mp4,
and the other one is requesting data starts with name prefix
/test. For the former name prefix, the consumer is retrieving
data of 2-second video frames every 2 seconds, which is
to simulate the behavior of adaptive video streaming. For
the latter name prefix, the consumer is sending 96 Interests
per second constantly, which is to simulate status collec-
tion. The ideal behavior is that the consumer is retrieving
video /video/ip_vs_ndn_1080p.mp4 from the hub UA
(using the lower path), while collecting status at the hub NEU
(using the upper path). As a result, the delay of video retrieval
is lower and the delay of status collection.

The simulated consumer performance results are illustrated
in Figure 15. The simulation purpose is to demonstrate the
impact of FIB expanding and Interest probing in handling the
Prefix Granularity Problem. Figure 15a and 15b plot consumer
performance results with the current adaptive forwarding
design (i.e., ASF forwarding strategy) and different Interest
probing intervals (2s and 5s). Given that the delay of most
data retrieval is above 100ms, both flows are retrieving data
from NEU (the upper path). When the Interest probing interval
is smaller, it is more likely and frequently for Interest starting
with name prefix /video or /test to be forwarded to the
UA. For probing Interests requesting for video, it retrieves
data with a lower delay, which then changes the route ranking
in ASF strategy, and causes a timeout for Interest starts with

name prefix test afterwards. The timeout leads to the route
ranking changing back. Therefore, Interests for test has
more timeouts and Interest for video retrieves data with more
lower delays, when the Interest probing interval is smaller.

To demonstrate the effectiveness of FIB expanding,
we can make a comparison between Figures 15a, 15b
and Figures 15c, 15d. With FIB expanding, Interests for test
are forwarded to the upper path only, while Interests for
video are forwarded to the lower path. This conclusion is
proved by Figures 15c and 15d, in which the consumer has no
timeouts for Interests starting with name prefix test, and has
lower delay for Interests retrieving video data. The different
probing intervals have an impact on how fast the video flow
can be forwarded to the lower path with shorter delay. The
shorter the probing interval, the sooner the shorter path will
be probed which then will trigger FIB expanding.

D. Measurement Management Optimization Analysis

As described in Section III-C, this work optimizes mea-
surement management as shown in Figure 6. The current
adaptive forwarding design updates measurements at FIB
entries on receiving each Data packet. Therefore, it introduces
one FIB lookup, i.e., LPM in Data processing pipelines, which
is significant overhead comparing to the pipelines without
measurement that only involves exact name matching, i.e., PIT
and CS (Section II-C).

With the proposed design, measurements are made along
with PIT entries, so it introduces no extra name lookup.
Assume 1%2 traffic measures multiple next hops and generates

2Because lack of real traffic, this work is not intended to give a specific
number of how much traffic that will measure multiple next hops, which can
also be 0.1% or 10%.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 03,2022 at 18:50:09 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: ON PREFIX GRANULARITY PROBLEM IN NDN ADAPTIVE FORWARDING 2831

Fig. 16. A 5-depth 3-out-degree name tree.

a ranking list, then only 1% traffic triggers FIB lookup, which
reduces FIB lookups to 1%.

Comparing both processing logics, existing implementation
(i.e., the ASF strategy) updates MT on each Data reception.
Because MT is bound with FIB, hence this is equivalent to
adding a FIB lookup in Data processing. In our design, MT is
bound with PIT, therefore their lookups can be merged into
one, thus no extra lookup is added. FIB lookup is needed
only when new routes ranking is observed, which means that
the network situation is changed. As a result, FIB lookup is
significantly reduced.

E. FIB Expanding Algorithms

Next, we evaluate the performance of three different FIB
expanding algorithms, the Top-down expanding algorithm,
the Bottom-up expanding algorithm, and the SS expanding
algorithm (Section IV-B). Because the FIB collapsing algo-
rithm (Section 12) is able to optimize the results of FIB
expanding algorithms. This section evaluates the results of FIB
expanding algorithms before the FIB collapsing algorithm is
triggered.

The assumption is that during a short period of time, only a
small portion of FIB names suffer from the Prefix Granularity
Problem (e.g., less than 5%). The evaluation is made on one
FIB entry, and it can be applied to the estimated number of
FIB entries to evaluate the overall performance during a short
period of time.

As analyzed in Section IV-B, two parameters determine
the expanded FIB tree starting from one FIB root node,
the accurate name granularity level and the observed route
ranking order. Therefore, our idea is that to give a name tree
with the root node as a FIB entry (e.g., /a) with a ranking list
of next hops (e.g., r1), then we pick a name (e.g., /a/b) that
uses a different route ranking (e.g., r2), and the traffic under
this picked name will report their route ranking (r2), while
the traffic not under the picked name will report the original
route ranking (r1). Using this rule, we generate different traffic
traces (i.e., PIT name and route ranking) in random orders. The
proposed FIB expanding algorithms will be evaluated using
these traffic traces.

More specifically, after studying the name tree design in
two NDN applications [20], [21], we use a similar name
tree structure, which is a 5-depth 3-out-degree name tree
(Figure 16). This specific data structure is simple but good
enough to represent the name tree design of several existing
applications. Moreover, it is good enough to evaluate the
performance of the proposed FIB expanding and collapsing
algorithms.

Fig. 17. An example of two sets of random traffic trace containing PIT
names and the measured route ranking after a partial network failure.

The initial FIB entry (generated from routing protocols)
is /a at level 1 with the route ranking r1. PIT names are
generate at level 5 of the name tree. Then, we generate a new
route ranking (r2) at different levels as a parameter (e.g., /a,
/a/b1, /a/b1/c1, and /a/b/c1/1), which reflects the
new route ranking at different name granularity after partial
network failures. Next, we generate 5 sets of traffic traces with
the deserved path performance measurements (i.e., a sequence
of PIT name with route ranking) in the event of the given
network failure in random orders. The ranking of PIT is either
the route ranking at the original FIB or the newly added
route ranking, depending on the longest prefix matching. For
example, Figure 17 shows two random sequences of PIT name
with its measured route ranking. The original route ranking
was r1 at /a, and the new route ranking r2 was given to
/a/b1/c1. Traffic traces within these namespaces should
observe the longest prefix matched route ranking, which will
be the input to our simulator.

The described scenario is implemented in a name-tree simu-
lator3 with FIB and measurement entries. The simulator is able
to do FIB/MT insertion and lookup. In addition, a sequence
of PIT name with measured ranking can be inputted, and the
simulator is able to expand and collapse FIB with the proposed
algorithms.

To quantify the expanded FIB tree, two metric are used:
• The Number of Newly Inserted FIB Names: the smaller

this value is, the better the performance. First, newly
inserted FIB entries increase the size of FIB table and
write operations, thus the smaller the number of the
inserted FIB entries is, the smaller the FIB operational
overhead. Moreover, a newly inserted FIB entry indicates
that a better forwarding path is found, which means
a certain amount of Interests has been forwarded to a
non-optimal path, hence the smaller of this value means
less non-optimal forwarding.

• The Average Height of Newly Inserted FIB Name in
Name Tree: the smaller this value is, the less FIB lookup
overhead (Section II-C).

The simulation results are shown in Figure 18 and 19.
The number of the newly inserted FIB entries inserted is
predictable for both the Top-down and the Bottom-up expand-

3The simulator in implemented in Python with open source link:
https://github.com/philoL/MT-simulator

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 03,2022 at 18:50:09 UTC from IEEE Xplore. Restrictions apply.

2832 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 6, DECEMBER 2021

Fig. 18. The number of newly inserted FIB entries.

ing algorithm no matter which order of measurements is
fed. In general, if the new ranking is generated near the
FIB name, the Top-down expanding algorithm generates less
FIB entries than the Bottom-up expanding algorithm. On the
contrary, if the new ranking is generated near the PIT name,
the Bottom-up expanding algorithm generates less FIB entries
than the Top-down expanding algorithm. However, the worst
case for the Bottom-up expanding algorithm generates a big
number of FIB entries, i.e., when the new ranking is at
applied at level-1. This is because the tree has exponentially
more nodes at higher levels. Overall, the Top-down expand-
ing algorithm performs better than the Bottom-up expanding
algorithm.

The SS expanding algorithm may generate a different num-
ber of FIB entries giving a different order of path performance
measurements. The figures show both the best case and the
worst case for the SS expanding algorithm. In the best case,
the SS expanding algorithm generates the optimal (OPT)
number of FIB entries. In the worst case, it generates slightly
more entries than Top-down algorithm.

Figure 19 shows the average height of newly inserted FIB
entries by the proposed FIB expanding algorithms. The results
should be analyzed together with Figure 18. For example, after
one FIB entry with height of 3 (/a/b1/c1) is newly inserted,
PIT names under this subtree are infected by this FIB entry
because of LPM. Combine the number of newly inserted FIB
entries with their average height, we can speculate how many
PIT names will incur more overhead on FIB lookups. The
result shows that Bottom-up algorithm has the most overhead;
the SS expanding algorithm has the least overhead (optimal) in
the best case, but has similar overhead to Top-down algorithm
in the worst case.

The SS expanding algorithm expands FIB into different tree
results, depending on the order of measurements. The best
case happens when another measurement path (first recorded)
intersects with the new measurement path at the target name
granularity, e.g., if the first measurement at /a/b1/c1/d1/0
has ranking r1, and the second one at /a/b1/c1/d2/0 has
ranking r2, the SS expanding algorithm will insert FIB entry
with ranking r2 at /a/b1/c1/d2 as the best case. On the

Fig. 19. The average height of newly inserted FIB entries.

contrary, if the order changes, the SS expanding algorithm may
update FIB at /a with r2, and falls into the worst case that
inserts more FIB entries.

Note that the SS expanding algorithm has more overhead
than the other two algorithms on MT insertion, as each PIT
updates leaves a MT entry on the whole path.

To conclude, all three algorithms are able to expand
FIB to make better forwarding decisions than no expanding
algorithms. In this evaluation, given a namespace similar
to Figure 16 under a FIB entry, the Top-down expanding
algorithm is better than the other two algorithms regarding the
introduced overhead and its implementation simplicity. Note
that an important assumption is that only a small portion of
traffic triggers FIB expanding algorithms. Although the SS
expanding algorithm can expand FIB with the minimum over-
head in the best case, the SS expanding algorithm introduces
massive overhead in MT update. One potential future study is
to improve the SS expanding algorithm.

F. Implementation Evaluation

Because NFD is modular and uses the same tree data struc-
ture as the index for CS, PIT, FIB, and MT, thus adding new
logic and operations on MT becomes simple with low-level
APIs supported. Our implementation (Section V) is evaluated
in three folds. First, we add unit tests for our added functions,
thanks to NFD’s testing framework. Second, our network
simulations are conducted in ndnSIM, which uses the source
code of NDN forwarding and management, to ensure the
simulations are maximally realistic and can be reproduced in
real environments. Therefore, our previous simulations have
tested the implementation. Last, we reproduce the simple
scenario (Fig. 2) using three connected virtual machines; each
virtual machine runs the modified NFD. The results show that
the implemented techniques are as effective as observed in the
simulation.

VII. CONCLUSION

In NDN, route names can be the prefixes of hierarchical data
names. Given the limited FIB size, route names are designed
to be considerably shorter than Interest names. Therefore,

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 03,2022 at 18:50:09 UTC from IEEE Xplore. Restrictions apply.

LIANG et al.: ON PREFIX GRANULARITY PROBLEM IN NDN ADAPTIVE FORWARDING 2833

it leads to poor Interest routing locality in partial network
failures. This problem is inherited in NDN adaptive forward-
ing. Adaptive forwarding is an important feature of NDN, that
the forwarding plane is able to observe past data retrieval
performance and use it to adjust future Interest forwarding.
Because of the difference between route name and data name,
there exits the Prefix Granularity Problem - what prefix
length should be used to record path measurement. Existing
adaptive forwarding designs fail to solve this problem as they
use a static name prefix to record path measurement. This
work tackles the Prefix Granularity Problem by dynamically
disaggregating and aggregating FIB names, allowing path
performance measurement to be recorded at a fine-grained
name prefix granularity that best reflects the network situation.
In addition, this work optimizes MT storage and operations
in Data processing, by storing MT with PIT instead of FIB,
and adding a filter for FIB updates, hence limiting FIB’s the-
longest-prefix-match lookups. Evaluation results show that the
top-down FIB expanding algorithm is a good candidate to
address the Prefix Granularity Problem in NDN adaptive for-
warding, because of its simple implementation, low cost, and
efficient expanding results. The challenge of proposing a new
FIB expanding algorithm is to ensure its effectiveness while
reducing its overhead. This work should be the beginning of
more significant work in this area. Future work can add more
comprehensive evaluation, including more complex network
topologies, more realistic naming designs, and bigger traffic
traces.

ACKNOWLEDGMENT

The authors are grateful for invaluable suggestions made
by Ken Calvert and Lixia Zhang. Any findings, discussions,
and recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
sponsor.

REFERENCES

[1] C. Yi, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang, “Adaptive
forwarding in named data networking,” ACM SIGCOMM Comput.
Commun. Rev., vol. 42, no. 3, pp. 62–67, Jul. 2012.

[2] T. Liang, J. Shi, and B. Zhang, “On the prefix granularity problem in
NDN adaptive forwarding,” in Proc. 7th ACM Conf. Inf.-Centric Netw.,
2020, pp. 41–51.

[3] C. Pu, “Adaptive forwarding strategy based on MCDM model in named
data networking,” TechRxiv, 2020, doi: 10.36227/techrxiv.13296128.v1.

[4] V. Lehman et al., “An experimental investigation of hyperbolic routing
with a smart forwarding plane in NDN,” in Proc. IEEE/ACM 24th Int.
Symp. Qual. Service (IWQoS), Jun. 2016, pp. 1–10.

[5] W. Milliken, T. Mendez, and D. C. Partridge, Host Anycasting Ser-
vice, document RFC 1546, Nov. 1993. [Online]. Available: https://rfc-
editor.org/rfc/rfc1546.txt

[6] A. Afanasyev et al., “NDNS: A DNS-like name service for NDN,” in
Proc. 26th Int. Conf. Comput. Commun. Netw. (ICCCN), 2017, pp. 1–9.

[7] NDN Project Team. NDN Protocol Design Principles.
Accessed: Nov. 17, 2020. [Online]. Available: http://named-
data.net/project/ndn-design-principles/

[8] W. So, A. Narayanan, and D. Oran, “Named data networking on a
router: Fast and DoS-resistant forwarding with hash tables,” in Proc.
Architectures for Netw. Commun. Syst., Oct. 2013, pp. 215–225.

[9] NDN Project Team. (2020). NDN Packet Format Specification Ver-
sion 0.3. [Online]. Available: https://named-data.net/doc/NDN-packet-
spec/current/interest.html

[10] J. Shi, D. Pesavento, and L. Benmohamed, “NDN-DPDK: NDN for-
warding at 100 Gbps on commodity hardware,” in Proc. 7th ACM Conf.
Inf.-Centric Netw. (ICN), 2020, pp. 30–40.

[11] C. Ghasemi, H. Yousefi, K. G. Shin, and B. Zhang, “On the granularity
of trie-based data structures for name lookups and updates,” IEEE/ACM
Trans. Netw., vol. 27, no. 2, pp. 777–789, Apr. 2019.

[12] M. Varvello, D. Perino, and J. Esteban, “Caesar: A content router for
high speed forwarding,” in Proc. 2nd ed. ICN Workshop Inf.-Centric
Netw., 2012, pp. 73–78.

[13] J. Shi, E. Newberry, and B. Zhang, “On broadcast-based self-learning
in named data networking,” in Proc. IFIP Netw., 2017, pp. 1–9.

[14] T. Liang et al., “Enabling named data networking forwarder to work
out-of-the-box at edge networks,” in Proc. IEEE Int. Conf. Commun.
Workshops (ICC Workshops), Jun. 2020, pp. 1–6.

[15] C. Ghasemi. (2019). Visa NDN Video Streaming. [Online]. Available:
https://ivisa.named-data.net/

[16] A. Afanasyev et al., “NFD developer guide,” Dept. Comput. Sci., Univ.
California, Los Angeles, NV, CA, USA, Tech. Rep. NDN-0021, 2014.

[17] J. Hartman. (2014). NDN Testbed. [Online]. Available: https://named-
data.net/ndn-testbed/

[18] A. Afanasyev et al., “NDNSIM: NDN simulator for NS-3,” Univ.
California, Los Angeles, NV, USA, Tech. Rep. 4, 2012.

[19] K. Schneider, C. Yi, B. Zhang, and L. Zhang, “A practical congestion
control scheme for named data networking,” in Proc. 3rd ACM Conf.
Inf.-Centric Netw., Sep. 2016, pp. 21–30.

[20] T. Liang, J. Pan, and B. Zhang, “Ndnizing existing applications:
Research issues and experiences,” in Proc. 5th ACM Conf. Inf.-Centric
Netw., 2018, pp. 172–183.

[21] H. Zhang et al., “Sharing mhealth data via named data networking,” in
Proc. 3rd ACM Conf. Inf.-Centric Netw., 2016, pp. 142–147.

Teng Liang received the B.S. degree from Beijing
Institute of Technology and the Ph.D. degree from
The University of Arizona in 2020. He is cur-
rently an Post-Doctoral Researcher with Peng Cheng
Laboratory. He also contributes to NFD and the
NDN software forwarder codebase. His research
interests focus on named data networking, including
forwarding, deployment, applications, and security
in challenging scenarios.

Junxiao Shi received the Ph.D. degree in computer
science from The University of Arizona. He is
currently a Guest Researcher with the Advanced
Network Technologies Division, National Institute
of Standards and Technology. His research interest
includes named data networking.

Yi Wang (Member, IEEE) received the Ph.D.
degree in computer science and technology from
Tsinghua University in July 2013. He is currently
a Research Associate Professor with the Sustech
Institute of Future Networks, Southern University
of Science and Technology. His research interests
include future network architectures, information
centric networking, software-defined networks, and
the design and implementation of high-performance
network devices.

Beichuan Zhang (Member, IEEE) received the B.S.
degree from Peking University and the Ph.D. degree
from UCLA. He is currently a Professor with the
Department of Computer Science, The University
of Arizona. His research interest is in internet rout-
ing architectures and protocols. He has been work-
ing on named data networking, green networking,
and inter-domain routing systems. He received the
Applied Networking Research Prize in 2011 by
ISOC and IRTF and the Best Paper Awards at IEEE
ICDCS in 2005 and IWQoS in 2014.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 03,2022 at 18:50:09 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.36227/techrxiv.13296128.v1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

