
Supporting Pub/Sub over NDN Sync
Varun Patil

varunpatil@cs.ucla.edu
UCLA, Computer Science

Philipp Moll
phmoll@cs.ucla.edu

UCLA, Computer Science

Lixia Zhang
lixia@cs.ucla.edu

UCLA, Computer Science

ABSTRACT
Distributed dataset synchronization, or Sync, plays the role of a
transport layer protocol in Named Data Networking (NDN). The
role of Sync is to synchronize the namespace of all data productions
by multiple entities running the same application. NDN application
developers desire a high level API, such as the commonly used
pub/sub API that hides transport and network layer details. This
poster explores the design of such an API built on top of State
Vector Sync (SVS), one of the NDN Sync protocols, along with
a low-latency data fetching option. With this API, SVS provides
fast and resilient dataset synchronization, enabling developers to
work with a familiar pub/sub API while benefiting from NDN’s
capabilities of built-in data security, multicast data delivery, in-
network caching, and consumer driven flow control.

CCS CONCEPTS
• Networks → Programming interfaces; Transport protocols.

KEYWORDS
Named Data Networking, NDN Sync, Publish-Subscribe
ACM Reference Format:
Varun Patil, Philipp Moll, and Lixia Zhang. 2021. Supporting Pub/Sub over 
NDN Sync. In 8th ACM Conference on Information-Centric Networking (ICN 
’21), September 22–24, 2021, Paris, France. ACM, New York, NY, USA, 3 pages. 
https://doi.org/10.1145/3460417.3483376

1 OVERVIEW
Today’s distributed applications running over TCP/IP are not di-
rectly built on top of the TCP transport. Instead, most applications 
utilize higher-level communication frameworks that offer more 
developer-friendly transport semantics. Examples of such higher-
level frameworks are publish-subscribe (pub/sub) communication 
over MQTT [5] or high-throughput message queues, such as Ze-
roMQ [1]; both utilize TCP for packet transport. Similar to TCP,
Sync, the transport service in NDN also does not directly offer 
high-level communication primitives that developers desire.

In this poster, we present a design for supporting such a higher-
level API desired by developers. We identify the gap between the
requirement and what Sync provides in §2.1. To bridge this gap, 
we sketch the design of a pub/sub API in §2.2, and a low-latency 
data fetching option in §2.3, built over State Vector Sync (SVS) [4],
one of the NDN Sync protocols. This way, we provide developers

ICN ’21, September 22–24, 2021, Paris, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8460-5/21/09.
https://doi.org/10.1145/3460417.3483376

/alice
/bob

B0

Em

B1 ... Bn

Outer Data Packet [Dm]

FinalBlockId=n

/alice/grp/5/seg=m

Bm

FinalBlockId=n

/topic/alice/mid/seg=m

Sync Interest

/grp/[/alice:5]

Data Interest

/alice/grp/5/seg=0

/topic/alice/mid

/topic/alice/identifier

publish(name, blob)
Sync

Retrieve all
segments

1
2

3

4

5

E0 E1 ... En
B0 B1 ... Bn

/topic/alice/mid

Encapsulated Data Packet [Em]

Producer Consumer

Figure 1: Data distribution over SVS

with a familiar interface for data communication over NDN, while
hiding network and transport layer details beneath the pub/sub
library. Our open source implementation of the API is available at
https://github.com/named-data/ndn-svs.

2 DESIGN
SVS uses sequence numbers to represent each participant 𝑃 ’s data
production state. Whenever 𝑃 produces a new piece of data, it
increments its sequence number by one. SVS keeps all the com-
municating parties in an application (the “Sync group”) up-to-date
about new data production, by propagating 𝑃 ’s latest sequence
number to the group. Developers, however, require higher-level
APIs for multiparty communications, as elaborated below.

2.1 Data Distribution
One of the simplest APIs required by a distributed application is the
ability to distribute data to all the other participants. We organize
all the participants in a Sync group, and provide a publish API,
which accepts a binary blob with an NDN name, and makes it
available to the entire Sync group. The name provided with the
blob should reflect the content of the blob semantically (we further
discuss semantic naming in §2.2).

The process of data distribution over SVS is illustrated in Fig. 1,
and follows the following steps:

(1) When the application calls the publish method, a new SVS
sequence number is assigned for the blob to be published. If the
application’s blob is larger than the network MTU size, the blob will
be segmented, with each segment fitting into an NDN Data packet,
as we describe below, whose size is within the network MTU limit.
An NDN Data packet 𝐸𝑚 is created for each such blob segment 𝐵𝑚 ,
named under NDN’s segmented data naming conventions [7]. Each
𝐸𝑚 is then encapsulated inside another data packet 𝐷𝑚 , named
using the name identifying the producer, the new SVS sequence
number, and the segment number of the blob segment, as shown in
Fig. 1. Both the inner packet 𝐸𝑚 and outer packet 𝐷𝑚 are signed
with appropriate signing keys as defined by the application. The
outer packets 𝐷𝑚 are then published.

133

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3460417.3483376
https://doi.org/10.1145/3460417.3483376
https://creativecommons.org/licenses/by/4.0/


ICN ’21, September 22–24, 2021, Paris, France Varun Patil, Philipp Moll, and Lixia Zhang

(2) After segmenting and encapsulating the data, the publisher’s
sequence number is incremented. SVS propagates this change to
all other participants.

(3) A consumer that receives the new sequence number con-
structs the name of the first outer Data packet 𝐷0 to fetch it.

(4) The FinalBlockId of the segmented data blob is carried in
the first data packet, following the NDN packet encoding conven-
tion, informing the consumer to fetch all segments up to 𝐷𝑛 .

(5) Once all segments are received, the consumer reconstructs
the producer’s blob by concatenating the content of the encapsu-
lated application data packets, which is then passed to the applica-
tion.

This process is executed by every Sync group participant, thereby
getting the published data blob to all. Note that the approach of
using Sync data packets to encapsulate app data is adopted from
DCT [6]. Although similar APIs have been created in the past,
in particular by DCT and PSync [8], our design differs in that it
delivers not only small app data blobs, but also arbitrarily large ones,
without needing the Sync client to keep track of blob segmentation.

We also note that signing each data packet twice ensures (along
with the naming scheme) that both the encapsulated and outer
data packets are semantically complete and secured. This allows
for executing different security policies for the transport protocol
and the encapsulated application data1.

However, the above mechanism has two limitations. First, a
consumer may wish to see the actual application data name to
decide whether it wants to fetch the blob or not, however it cannot
see the inner data name before the using sequence number to
retrieve the outer packet. Second, retrieving a newly produced
data takes 1.5 round trip times (0.5 for learning the new sequence
number from Sync Interest, and another RTT to retrieve data). Our
pub/sub API and low-latency enhancement address these issues.

2.2 The Pub/Sub API
To allow participants selectively retrieving only the data they are
interested in, we provide a subscribe API, which accepts a name
prefix, and selectively fetches the data objects that match the prefix.

SVS notifies new data productions of a producer with sequence
numbers, without providing the application data names that corre-
spond to these sequence numbers. We address this issue by provid-
ing a mapping between the two. To get this mapping, the consumer
sends a mapping query Interest as shown in Fig. 3a. This query
includes the producer’s identifier and the sequence number range
for which the mapping is requested. The pub/sub library at the
consumer decides the requested range of sequence numbers by
identifying the published sequence numbers of each publisher for
which the mapping information is missing. The publisher replies
with the corresponding application data names. Based on these
names, the consumer can now selectively retrieve the data objects
it subscribes to, using the mechanism described in §2.1.

To further optimize the mapping retrieval, when a publisher
sends out a Sync interest to notify others after producing a new
data blob, we can use this Sync Interest to piggyback the mapping

1Note that the overhead for signing the packet twice depends on the used signature
algorithm, and different algorithms may be used for both packets. (e.g. asymmetric
signature for application data; symmetric algorithms for outer data, e.g. AEAD [3])

/news/location/weather/timestamp

/news/location/health/timestamp

sub-topic

sub-sub-topic

subscribe(/news/location)

subscribe(/news/location/weather)

Figure 2: Semantic naming of application data

/alice/bob /cathy
Producer Prefetching SubscriberSubscriber

Prefetch Data Interest

Prefetched Data

Sync InterestSync Interest

Mapping Data

Data

Mapping Interest

Data Interest

Optional

Data Publish

Multicast
Interest

{
}

(a) Pub/Sub API (b) Low-latency API

Interest Pending

Figure 3: Sequence of protocol messages

between the new sequence number and the newly produced data
name, by carrying the data name in the ApplicationParameters
field, as illustrated in Fig. 3a, which marks the mapping retrieval
optional. A consumer receiving this Sync Interest receives the map-
ping, without having to retrieve the mapping separately.

While the pub/sub API allows fetching objects matching cer-
tain prefixes, semantic naming by applications for the published
data objects is critical for best results. Hierarchically structured
names allow fetching narrow subsets of data, allowing consumers
to fetch only the data they require. An example of a semantic nam-
ing scheme for a news application and how pub/sub can be used to
selectively retrieve its subsets is illustrated in Fig. 2.

2.3 Low-Latency Data Fetching
To support applications with low-latency requirements, we adopt
a data prefetching approach introduced by PLI-Sync [2]. We pro-
vide a subscribeToProducer method, accepting a producer name
prefix and a callback. This call assumes that a consumer wants to re-
ceive all data matching a producer prefix with low latency, and the
consumer would filter the received data objects if it only requires
a subset of the publications. On receiving this call, the pub/sub
library prefetches the next Data packet by sending an Interest with
the next sequence number, before knowing the data is produced, as
shown in Fig. 3b. The Interest lifetime of the prefetching Interest
can be determined by the application based on the data production
pattern, with a default of 4sec in our implementation. This prefetch-
ing Interest will be pending at the producer until it publishes the
packet, and may need to be refreshed before its Interest lifetime
expires. Data prefetching is made possible by SVS’s usage of se-
quence numbers, enabling the consumer to construct the interest
for next outer data packet before it is generated. Depending on the
frequency of data publication, the consumer could also prefetch
multiple future sequence numbers, forming a prefetching pipeline.

ACKNOWLEDGEMENTS
This work is partially supported by the National Science Foundation
under award 1719403, and by Operant Networks.

134



Supporting Pub/Sub over NDN Sync ICN ’21, September 22–24, 2021, Paris, France

REFERENCES
[1] Pieter Hintjens. 2013. ZeroMQ: messaging for many applications. O’Reilly Media,

Inc.
[2] Yi Hu, Constantin Serban, Lang Wang, Alex Afanasyev, and Lixia Zhang. 2021.

PLI-Sync: Prefetch Loss-Insensitive Sync for NDN Group Streaming. In IEEE
International Conference on Communications (ICC). IEEE.

[3] D. McGrew. 2008. An Interface and Algorithms for Authenticated Encryption. RFC
5116. RFC Editor. https://www.rfc-editor.org/info/rfc5116

[4] Philipp Moll, Varun Patil, Nishant Sabharwal, and Lixia Zhang. 2021. A Brief
Introduction to State Vector Sync. Technical Report NDN-0073, Revision 2. Named

Data Networking. 1–4 pages.
[5] mqtt.org. 2020. MQTT: The Standard for IoT Messaging. https://mqtt.org/

accessed: 2021-07-19.
[6] Kathleen Nichols. 2021. Trust Schemas and ICN: Key to Secure IoT. In Proceedings

of the 8th ACM Conference on Information-Centric Networking. ACM.
[7] NDN Project Team. 2019. NDN Technical Memo: Naming Conventions. Technical

Report NDN-0022, Revision 2. Named Data Networking. 2–3 pages.
[8] Minsheng Zhang, Vince Lehman, and Lan Wang. 2017. Scalable name-based

data synchronization for named data networking. In IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications. 1–9. https://doi.org/10.1109/INFOCOM.
2017.8057193

135

https://www.rfc-editor.org/info/rfc5116
https://mqtt.org/
https://doi.org/10.1109/INFOCOM.2017.8057193
https://doi.org/10.1109/INFOCOM.2017.8057193

	Abstract
	1 Overview
	2 Design
	2.1 Data Distribution
	2.2 The Pub/Sub API
	2.3 Low-Latency Data Fetching

	References

