
Mnemosyne: An Immutable Distributed Logging Framework
over Named Data Networking

Siqi Liu
siqi.liu@ucla.edu

UCLA Computer Science

Philipp Moll
mollph@cs.ucla.edu

UCLA Computer Science

Lixia Zhang
lixia@cs.ucla.edu

UCLA Computer Science

ABSTRACT
This poster describes the design of Mnemosyne, a distributed logger
running over Named Data Networking. Mnemosyne utilizes proof
of authenticity instead of proof of work. It assures immutability of
logged events by interlocking all event records in a DAG mesh. By
using a distributed design,Mnemosyne provides both a high logging
throughput and system resiliency in face of network component
failures.

CCS CONCEPTS
• Networks → Security protocols; • Information systems → In-
formation storage systems.

KEYWORDS
Distributed Logging, Named Data Networking, Distributed Ledger

ACM Reference Format:
Siqi Liu, Philipp Moll, and Lixia Zhang. 2021. Mnemosyne: An Immutable
Distributed Logging Framework over Named Data Networking. In 8th ACM
Conference on Information-Centric Networking (ICN ’21), September 22–24,
2021, Paris, France. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3460417.3483375

1 INTRODUCTION
As a proposed new Internet architecture, Named Data Networking
(NDN) [7] provides secure networking primitives for building dis-
tributed data-centric applications. Examples of such applications
include the distributed Data repository Hydra [6], distributed online
game architecture [4], and distributed computing designs [2].

Distributed applications share a common need with single-server
applications: event logging for system monitoring. However, a log-
ger for distributed applications brings new requirements. Taking
the distributed repository Hydra as an example, the logging over
the network must meet the following requirements: i) the logger
system should be resilient against node failure and network insta-
bility; ii) only authorized Hydra application instances are allowed
to submit log events; and iii) no entity, including Hydra application
instances or loggers, is allowed to remove or tamper with existing
log events.

ICN ’21, September 22–24, 2021, Paris, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8460-5/21/09.
https://doi.org/10.1145/3460417.3483375

This paper introduces the design of Mnemosyne, a distributed
immutable logger over NDN. Mnemosyne supports the aforemen-
tioned requirements from Hydra, which we hope are generally
applicable to logger designs for other distributed applications. In
addition to authenticating all entities that insert log events, Mnemo-
syne ensures immutability by inserting log events into a DAG-based
distributed ledger, taking after DLedger [8]. In this DAG, each log
event is indirectly signed by subsequent log events that hold digests
of previous log events. This DAG structure makes changing past
log events infeasible while avoiding performance bottlenecks by
allowing parallel logging.

2 THE DESIGN OF MNEMOSYNE
The Mnemosyne design takes the following steps to meet the re-
quirements mentioned earlier. First, to ensure resiliency, Mnemo-
syne comprises a federation of loggers, and all loggers have the same
privileges and responsibility for keeping Mnemosyne functioning.
All the loggers communicate via NDN Sync protocol State Vector
Sync (SVS) [3] which assures reliable dataset synchronization even
under adverse conditions.

Second, the assurance of authenticity in all Mnemosyne oper-
ations is build on the NDN security framework [9], where each
entity in the system, including the loggers, goes through a security
bootstrapping process to obtain the Mnemosyne system’s trust
anchor, its own certificate, and a set of security policies that defines
the criteria of legit users and their allowed operations.

Third, Mnemosyne assures the immutability of log events by
borrowing the idea of linking individual log events together us-
ing cryptographic digests, as done by blockchain approaches [1].
However, instead of arranging log events as a chain, Mnemosyne
adopts a directed acyclic graph (DAG) approach [5], which is used
in DLedger [8]. The DAG approach enables merging partitions and
allowing parallel insertion to support system resiliency and high
throughput.

Mnemosyne follows a layered design, as illustrated in Figure 1.
Loggers accept log events by listening to an SVS-based publish-
subscribe interface [3] that reliably transports log events from an
application instance to all loggers (indicated by the green boxes in
the figure). Log events published by the application are encoded into
NDN data packets, signed by the application entity’s key (shown
as a green lock in Fig. 1). Loggers authenticate each log event, then
encapsulate the entire log event including the application signature
in a record and insert the record into the DAG. Digests in the DAG
ensure that no party can modify Hydra’s events, and that events
cannot be removed once inserted into the DAG. The conversion of
log events to DAG records is covered in Section 3.

To mitigate the impact of node failure or network partition,
all loggers receive all log events by running SVS.Keeping the log

130

This work is licensed under a Creative Commons Attribution-ShareAlike
International 4.0 License.

https://doi.org/10.1145/3460417.3483375
https://doi.org/10.1145/3460417.3483375
https://doi.org/10.1145/3460417.3483375
https://creativecommons.org/licenses/by-sa/4.0/

ICN ’21, September 22–24, 2021, Paris, France Siqi Liu, Philipp Moll, and Lixia Zhang

Logger 1 Logger 2 Logger n

SVS-based
Publish-Subscribe

.

ApplicationApplicationApplicationApplication

Shared DAG
Log Event

 By Logger 1

Record Name
Name+Digest
Name+Digest

Log Event
 By App Node

Figure 1: Overview of Mnemosyne’s Design

event persistent, however, requires only a single logger to create
a DAG record. Section 4 discusses a backoff mechanism to avoid
storage and communication overhead resulting from redundant
record generation.

3 IMMUTABLE LOGGING USING A DAG
A log event is inserted into the DAG mesh by converting it to a
record, as indicated by the blue box in Figure 1. A record is a regular
NDN data packet having a unique record name and encapsulates
the application-generated log event. In addition, a record contains
at least two1 links to previous records in the DAG. These links
are implemented as the names of the corresponding DAG records
including their implicit digests (visualized as purple and orange
elements). Also, each record contains a signature created by the
corresponding logger as proof of authenticity, proving the record
is generated by a legitimate logger. Once created, DAG records
are synchronized among all loggers using the NDN sync protocol
SVS [3], while each logger keeps the entire DAG, and thereby all
logged events, persistent.

The usage of a DAG-based distributed ledger avoids two limi-
tations of a chain-based structure: i) a chain-based structure only
allows additions of one new entry on top of the last entry. This
prevents parallel insertion and represents a performance bottle-
neck. A DAG offers the flexibility of appending entries in parallel.
ii) Network partition cuts a chain into multiple forks, which can-
not be stitched together later. The same partition can cut a DAG
into multiple sub-DAGs, which can merge automatically after the
network partition heals, retaining all records from the partition.

To demonstrate the immutability of the DAG, we consider a mod-
ification of a logged event in the DAG, which changes the record’s
digest. This change invalidates the digests of all links pointing to
this record, and thus, exposes the modification. To modify a log

1Mnemosyne can work with a configurable number ≥ 2 of links. For clarity, our
visualization uses exactly two links for each record.

event without being exposed to others, all subsequent records are
required to be recalculated. Besides the required computational
effort, the recalculation requires the signing keys of the log event,
the DAG record and any subsequent records that need to be re-
stored. Therefore, the DAG structure ensures the immutability of
the logged events.

4 INSERTING EVENTS INTO THE DAG
To increase Mnemosyne’s resiliency against node or network fail-
ure, log events from the application are delivered to all loggers. This
redundant delivery, however, could lead to multiple loggers gen-
erating redundant records for the same log event. Although such
redundant entries do not affect Mnemosyne’s functionality, but
they increase the processing and storage overhead. In the following,
we describe a solution that can avoid redundant record generation,
so that only one logger appends the record (blue envelope) to the
DAG.

We develop a timed backoff algorithm that functions in the fol-
lowing way. Loggers determine an order for inserting DAG records
based on the log event’s digest. This insertion order assigns a wait-
ing period to every logger. During this period, the logger continues
receiving new DAG records and thereby detects whether a record
for the new log event is created by another logger or not. If no such
record was received by the end of the waiting period, the logger
inserts a new DAG record for the log event. Letting all loggers
retrieve a new DAG record 𝑅 ensures that 𝑅 will be inserted even
when some loggers might fail, or fail to retrieve 𝑅, while continued
communication among the loggers makes 𝑅 being inserted once
only in general.

This procedure creates a single DAG record for each log event
under stable network conditions, which ensures a low processing
and storage overhead resulting from redundant record creation. At
the same time, active loggers try inserting the event if other loggers
have failed, ensuring the log event is eventually added to the DAG.

5 DISCUSSION AND FUTUREWORK
Mnemosyne uses data structure and verification techniques similar
to DAG-based distributed ledgers. Mnemosyne diverges from these
distributed ledgers and proof of work approach for the following
reasons: i) Mnemosyne is a permissioned ledger. This design allows
Mnemosyne to utilize the NDN security design for identifying log-
gers and application entities, simplifying the record generation and
verification. ii) Mnemosyne aims to log all authenticated records.
Instead of focusing on double-spending prevention as in cryptocur-
rencies, Mnemosyne focuses on retaining all information. Therefore,
instead of having the rate-limiting capability of proof of work, proof
of authenticity allows any legitimate record to be inserted.

As the next step, we plan to quantitatively evaluateMnemosyne’s
performance and overhead in large-scale networks, and to explore
the applicability of Mnemosyne to other distributed applications
that have similar logging needs.

ACKNOWLEDGMENTS
This work is partially supported by the National Science Foundation
under award 1719403, and by Operant Networks.

131

Mnemosyne: An Immutable Distributed Logging Framework over Named Data Networking ICN ’21, September 22–24, 2021, Paris, France

REFERENCES
[1] Muhammad Nasir Mumtaz Bhutta, Amir A. Khwaja, Adnan Nadeem, Hafiz Farooq

Ahmad, Muhammad Khurram Khan, Moataz A. Hanif, Houbing Song, Majed
Alshamari, and Yue Cao. 2021. A Survey on Blockchain Technology: Evolution,
Architecture and Security. IEEE Access 9 (2021), 61048–61073. https://doi.org/10.
1109/ACCESS.2021.3072849

[2] Daniel Meirovitch and Lixia Zhang. 2021. NSC – Named Service Calls, or a Remote
Procedure Call for NDN. Technical Report NDN-0074, Revision 1. Named Data
Networking. 1–10 pages.

[3] Philipp Moll, Varun Patil, Nishant Sabharwal, and Lixia Zhang. 2021. A Brief
Introduction to State Vector Sync. Technical Report NDN-0073, Revision 2. Named
Data Networking. 1–4 pages.

[4] Philipp Moll, Sebastian Theuermann, Natascha Rauscher, Hermann Hellwagner,
and Jeff Burke. 2019. Inter-Server Game State Synchronization Using Named
Data Networking. In Proceedings of the 6th ACM Conference on Information-Centric
Networking (Macao, China) (ICN ’19). ACM. https://doi.org/10.1145/3357150.
3357399

[5] Huma Pervez, Muhammad Muneeb, Muhammad Usama Irfan, and Irfan Ul Haq.
2018. A Comparative Analysis of DAG-Based Blockchain Architectures. In 2018
12th International Conference on Open Source Systems and Technologies (ICOSST).
27–34. https://doi.org/10.1109/ICOSST.2018.8632193

[6] The ndn-hydra authors. 2021. ndn-hydra. https://ndn-hydra.readthedocs.io/
accessed: 2021-07-23.

[7] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patrick
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
Data Networking. ACM SIGCOMM Computer Communication Review (CCR) 44, 3
(July 2014), 66–73.

[8] Zhiyi Zhang, Vishrant Vasavada, Xinyu Ma, and Lixia Zhang. 2019. DLedger:
An IoT-Friendly Private Distributed Ledger System Based on DAG. CoRR
abs/1902.09031 (2019). arXiv:1902.09031 http://arxiv.org/abs/1902.09031

[9] Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mastorakis,
Yanbiao Li, Alexander Afanasyev, and Lixia Zhang. 2018. An Overview of Security
Support in Named Data Networking. IEEE Communications Magazine 56, 11
(November 2018), 62–68. https://doi.org/10.1109/MCOM.2018.1701147

132

https://doi.org/10.1109/ACCESS.2021.3072849
https://doi.org/10.1109/ACCESS.2021.3072849
https://doi.org/10.1145/3357150.3357399
https://doi.org/10.1145/3357150.3357399
https://doi.org/10.1109/ICOSST.2018.8632193
https://ndn-hydra.readthedocs.io/
https://arxiv.org/abs/1902.09031
http://arxiv.org/abs/1902.09031
https://doi.org/10.1109/MCOM.2018.1701147

	Abstract
	1 Introduction
	2 The Design of Mnemosyne
	3 Immutable Logging using a DAG
	4 Inserting Events into the DAG
	5 Discussion and Future Work
	Acknowledgments
	References

