
GitSync: Distributed Version Control System over NDN
Xinyu Ma

UCLA
Los Angeles, California, USA

xinyu.ma@cs.ucla.edu

Lixia Zhang
UCLA

Los Angeles, California, USA
lixia@cs.ucla.edu

ABSTRACT
Git is designed as a distributed version control system and has been
widely used. However, most of the existing projects use a workflow
where developers have to synchronize with a central server. This
poster explores the possibility of a truly distributed git platform,
dubbed GitSync, by making git run over Named-data Networking
(NDN). GitSync uses a peer-to-peer protocol to remove the need
for central servers, therefore enabling higher availability when not
all users are connected to the cloud all the time. GitSync eliminates
single point of failure and can continue operation over unstable
connectivity and network partition.

CCS CONCEPTS
• Information systems → Distributed storage.

KEYWORDS
Named Data Networking, Version Control System
ACM Reference Format:
Xinyu Ma and Lixia Zhang. 2021. GitSync: Distributed Version Control 
System over NDN. In 8th ACM Conference on Information-Centric Networking 
(ICN ’21), September 22–24, 2021, Paris, France. ACM, New York, NY, USA, 
3 pages. https://doi.org/10.1145/3460417.3483372

1 INTRODUCTION
Git is a distributed version control system widely used by develop-
ers. Git is designed for peer-to-peer collaboration. However, nowa-
days, most developers rely on a git server, such as GitHub, GitLab, 
etc., to host their codebase for synchronization. At the time of this
writing, GitHub has over 200 million projects [3]. These git servers 
may become a single point of failure in a collaborative development
project. The Named Data Networking (NDN) architecture [1, 8] 
allows applications to use data names directly to fetch data from
anywhere in the network. This inspires us to explore the possibility 
of implementing a git platform over NDN that removes the reliance
on any single server.

In this poster, we present the design of GitSync, a distributed git
platform over NDN. Instead of using a centralized node to serve as 
the rendezvous point for all the collaborating developers to synchro-
nize with, GitSync enables direct peer-to-peer Git synchronization. 
Such an approach allows developers to collaborate in Git wherever 
and whenever they are connected, improving Git’s availability. In

ICN ’21, September 22–24, 2021, Paris, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8460-5/21/09.
https://doi.org/10.1145/3460417.3483372

this poster we first give a brief description of Git together with the
limitation in its usage, then describe GitSync and a new issue in
conflict resolution GitSync encountered, followed by a discussion
on the root cause of the problem and potential resolutions.

2 BACKGROUND
2.1 How Git Works
To enable distributed collaboration, git stores the full history of a
repository on every peer, so that each peer can synchronize with
another peer whenever they get connected. Different from central-
ized systems such as SVN, git uses connectivity between peers for
codebase synchronization only; editing can be done offline.

Git uses a DAG to store invariant objects, each is referred to by
its SHA-1 hash, as shown in Figure 1. Git branches and tags with
human-readable names are called refs which point to git commits
uniquely identified by the hashes. Every file is pointed to directly
or indirectly by some refs. The path to a file can be resolved by
a traversal starting from its ref. For example, the file README in
master branch can be resolved to 51db3. Therefore, when two
peers synchronize, they can start with synchronizing refs, and then
fetch all the missing objects referred to by the refs.

<<ref>>

master

98ca9

<<commit>>

98ca9

tree 92ec2

parent 39ec7

author XM 2021-08-20

committer XM 2021-08-20

<<commit>>

39ec7

... ...

<<tree>>

92ec2

blob 51db3 README

blob 911e7 LICENSE

blob cba0a test.rb

<<blob>>

51db3

File Content 
...

<<blob>>

911e7

File Content 
...

<<blob>>

911e7

File Content 
...

Figure 1: Git object storage
When two peers synchronize their local changes, it is possible

that both of them have modified the codebase. Since commits have
pointers towards their parent commits, git can discover the tempo-
ral relations among commits. If neither version is an ancestor of
the other, there is a conflict. Conflicts generally need to be resolved
manually. In the default setting, git can merge two changed code-
base only if there is no single file that has been modified by both
peers.

2.2 Centralized Git Server
Although git is designed to run as a distributed system, in its actual
deployment, developers collaborating in the same project rely on

1

121

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3460417.3483372
https://doi.org/10.1145/3460417.3483372
https://creativecommons.org/licenses/by/4.0/


ICN ’21, September 22–24, 2021, Paris, France Xinyu Ma and Lixia Zhang

a centralized git server to synchronize, because the following two
factors in today’s Internet make direct peer-to-peer communication
infeasible.

Connectivity Most personal computers do not have fixed IP
addresses. Many of them are behind routers which reject
external connections.

Security There is no widely available, usable peer-to-peer pub-
lic key infrastructure for peer authentication.

Therefore, it is difficult to establish an SSH or HTTPS connection
to another peer, with its identity verified.

3 DESIGN
3.1 GitSync Overview
GitSync benefits from three basic features of NDN. First, NDN com-
municates by names, and each peer obtains its security credentials
in bootstrapping stage, which enables secure peer-to-peer synchro-
nization via any available connectivity between them. Second, NDN
lets each Git process secure its data directly, thus peers only need
to verify the authenticity of received data, not the data contain-
ers connected to.Also, secured data can be stored online, without
requiring specific peer to be online.

The design of GitSync has two parts1: one runs as a daemon on
every peer, which acts as a local git server; the other git-remote-helper
is a plugin to Git which implements NDN on the client side, as
shown in Figure 2.

git

Daemon

git-remote-ndn

Alice

Daemon

Bob

Daemon

Carlo

Figure 2: GitSync overview

The local client pushes to, and pulls from, the local GitSync dae-
mon in the same way as if it connected to the existing git server.
GitSync daemon takes the responsibility for git object storage syn-
chronization with any connected peers. It keeps a local copy of the
repository, and runs a sync protocol that resembles the State Vector
Sync (SVS)in the background [4]2. The Sync protocol broadcasts
a synchronization Interest both periodically and after a change is
made, carrying the root hash of the local storage which enables
connected peers to detect changes and synchronize up as needed.

3.2 Conflict Resolving
Conflicts in git often needs to be resolved manually. This is not
an issue today, because git only pushes or pulls from the central
server upon a user’s request, and the user is responsible for resolve
any conflicts with the central server. In contrast, GitSync daemon
runs in the background, the user may not be present when a conflict
is detected with another peer; furthermore, there is no clear rule
which peer should be responsible for the conflict resolution.
1Proof-of-concept GitSync code is available at https://github.com/JonnyKong/GitSync.
2GitSync implementation uses a slightly modified sync protocol to exploit the hash
names and parent relations of git commits.

In our current design, GitSync simply marks the merge conflict
and waits for users’ to resolve. Formally, a GitSync daemon tries
the following steps in order when it identifies a conflict:

(1) If one commit is a dependent of the other, the dependent is
always taken as the new head.

(2) If there does not exist a single file that both commitsmodified,
GitSync creates an automatic merge commit.

(3) Otherwise, GitSync daemon marks this conflict and requires
the user to solve it when next time the user fetches from, or
pushes to, the GitSync daemon.

672882 157461
64dc06

eed8a1

A's head B's head

NEW HEAD

672882

157461

A's head

B's head
NEW HEAD

64dc06
672882

157461

A's head

B's head

MARK 
CONFLICT

(1) Take dependent (2) Automatic Merge (3) Mark conflict

Figure 3: Conflict in sync

4 DISCUSSION
One most asked question about GitSync is why conflicts cannot
be resolved automatically, given multiple successful collaborative
editing algorithms exist, such as Conflict-free replicated data types
(CRDT) [6, 7], operational transformation (OT) [2], and Diff-Match-
Patch [5]. Unfortunately, GitSync cannot directly use them due to
two reasons:

• Git has no knowledge on what type of data is stored in a file.
Therefore, we cannot decide the correct strategy to merge
when a file is modified by both parties.

• Though it is not required by git, in practice, a commit is sup-
posed to be meaningful. For example, the code of a commit
is expected to compile. However, a code file merged by a
collaborative editing tool may not compile because the tool
is unlikely to understand the code semantics.

In a different scenario where operations are applied to specific
data types, automatic merging is possible. For example,

• Collaborative editing of a shared text file, where users make
text change asynchronously. In this case, any aforemen-
tioned algorithm can be used.

• A key-value database, where named objects can be added
and removed. Here, operations are commutative.

The usage of hash names in git is also worth mentioning. Since
they do not contain semantics, every name resolution must start
from some ref, which is a pointer with a human-readable, seman-
tically meaningful name towards a hash-identified commit. Git’s
design of making every machine store everything allows git to
recognize the relationship among hash-named commits by walking
down the tree structure and inspecting the reference of each object.
However there is no fast and easy way to identify specific files, that
some application may be interested in, without walking down the
tree.

ACKNOWLEDGEMENT
This work is partially supported by the National Science Foundation
under award 1719403.

2

122

https://github.com/JonnyKong/GitSync


GitSync: Distributed Version Control System over NDN ICN ’21, September 22–24, 2021, Paris, France

REFERENCES
[1] Alexander Afanasyev, Tamer Refaei, Lan Wang, and Lixia Zhang. 2018. A Brief

Introduction to Named Data Networking. In Proc. of MILCOM.
[2] Daniel Berlin and Joe Gregorio. 2009. Google Wave. In 23rd Large Installation

System Administration Conference (LISA 09). USENIX Association, Baltimore, MD.
https://www.usenix.org/conference/lisa-09/google-wave

[3] GitHub, Inc. 2021. The world’s leading software development platform · GitHub.
https://github.com/

[4] Tianxiang Li, Zhaoning Kong, Spyridon Mastorakis, and Lixia Zhang. 2019. Dis-
tributed Dataset Synchronization in Disruptive Networks. In 2019 IEEE 16th In-
ternational Conference on Mobile Ad Hoc and Sensor Systems (MASS). 428–437.
https://doi.org/10.1109/MASS.2019.00057

[5] Eugene W Myers. 1986. AnO (ND) difference algorithm and its variations. Algo-
rithmica 1, 1-4 (1986), 251–266.

[6] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. 2016. Near
Real-Time Peer-to-Peer Shared Editing on Extensible Data Types. 39–49. https:
//doi.org/10.1145/2957276.2957310

[7] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011. Conflict-
Free Replicated Data Types. In Stabilization, Safety, and Security of Distributed
Systems, Xavier Défago, Franck Petit, and Vincent Villain (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 386–400.

[8] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patrick
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
Data Networking. SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 66–73.
https://doi.org/10.1145/2656877.2656887

3

123

https://www.usenix.org/conference/lisa-09/google-wave
https://github.com/
https://doi.org/10.1109/MASS.2019.00057
https://doi.org/10.1145/2957276.2957310
https://doi.org/10.1145/2957276.2957310
https://doi.org/10.1145/2656877.2656887

	Abstract
	1 Introduction
	2 Background
	2.1 How Git Works
	2.2 Centralized Git Server

	3 Design
	3.1 GitSync Overview
	3.2 Conflict Resolving

	4 Discussion
	References



