NDN-MPS: Supporting Multiparty Authentication over Named
Data Networking

Zhiyi Zhang Siqi Liu
UCLA UCLA
Los Angeles, USA Los Angeles, USA
zhiyi@cs.ucla.edu sigi.liu@ucla.edu
ABSTRACT

Modern digitally controlled systems require multiparty authenti-
cation to meet the security requirements. This paper describes the
design and development of NDN-MPS, an automated solution to
support multiparty signing and verification for NDN-enabled ap-
plications. NDN-MPS proposes three basic changes to the existing
NDN security solutions. First, it introduces a new type of trust
schema that supports the semantics for multiparty singing and
verification. Second, it extends the NDN signing process design to
accommodate multisignature schemes such as BLS signature and to
ensure the data consistency across signers. Third, NDN-MPS pro-
vides options for different application scenarios to coordinate the
joint signing process of multiple signers. We evaluate NDN-MPS
by assessing its security properties and measuring its performance.
Our results show that NDN-MPS provides resistance against differ-
ent types of attacks and is practical to be deployed.

CCS CONCEPTS

» Networks — Security protocols; Security and privacy —
Authentication.

KEYWORDS

multiparty authentication, multisignaure, named data networking

ACM Reference Format:

Zhiyi Zhang, Siqi Liu, Randy King, and Lixia Zhang. 2021. NDN-MPS:
Supporting Multiparty Authentication over Named Data Networking. In
8th ACM Conference on Information-Centric Networking (ICN ’21), Septem-
ber 22-24, 2021, Paris, France. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3460417.3482971

1 INTRODUCTION

For reasons such as multiparty contractual policies and mitigat-
ing single points of failure, many real-world systems require a
joint decision-making process where multiple parties are involved.
For example, in grid-connected distributed energy resources (DER)
systems, the conventional way of having single proprietary con-
nections to secure grid assets will no longer be sufficient due to the
business model change [17, 35]. Therefore, smart devices like solar

This work is licensed under a Creative Commons Attribution International 4.0 License.

ICN 21, September 22-24, 2021, Paris, France

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8460-5/21/09.
https://doi.org/10.1145/3460417.3482971

83

Randy King
Operant Networks UCLA

Santa Rosa, USA Los Angeles, USA

randy.king@operantnetworks.com lixia@cs.ucla.edu

Lixia Zhang

inverters will have multiple parties, including customers, manufac-
turers, grid operators, who need to access and send jointly-approved
remote commands, often over the public Internet.

Recently, Named Data Networking (NDN) [38] started being ex-
plored to provide secure networking support for DER systems. The
diversity and number of stakeholders and DER service provider busi-
ness models [17] require a multiparty trust model with expressive
and flexible trust policies. While NDN has developed supporting
mechanisms to secure producer-consumer communications by us-
ing cryptographic signature schemes such as RSA and ECDSA, the
existing NDN security solutions [42] support single party data sign-
ing only. The security model considers only two types of parties: a
consumer (verifier) authenticates its received data generated by a
producer (signer) based on given policies.

Compared to the existing single party authentication solutions,
supporting multiparty authentication brings up three different as-
pects. First, multiparty signing involves third-party signers in the
system who need to sign data produced by others. Second, the
verifier will need to verify the data’s signatures against a given
set of signers, so a new type of trust schema is needed to define
the acceptable set of signers that can jointly produce a legitimate
signature. Third, effective and secure coordination among multiple
signers is required to ensure the correctness of the joint signing
process.

Regarding the cryptographic implementation, a straightforward
approach to multiparty authentication would be collecting a list of
signatures from individual signers. However, this approach may
suffer from high network overhead and low efficiency, because
a verifier needs to retrieve and validate all individual signatures.
Multiparty signature schemes like BLS [7] and its later variant [4]
provide an efficient alternative, with which individual signatures
can be aggregated into a single one (i.e. signature space complexity
from O(n) to O(1)) and the aggregated signature only requires one
verification operation (i.e. verification time complexity from O(n)
to O(1)).

Contribution. This paper proposes NDN-MPS, a multisignature
based multiparty authentication toolset over NDN. NDN-MPS pro-
vides applications with the support of signing, verification, and
orchestration of the signing process among multiple signers. More
specifically,

e NDN-MPS develops a new type of trust schema that supports the
semantics for multiparty signing and verification. The schemas
can also realize threshold-based policies (e.g., legitimate if signed
by any k out of n signers).

o NDN-MPS designs a new type of key locator scheme to accommo-
date multiple signers and ensure the consistency of data object
to be signed in the multiparty signing process.

https://creativecommons.org/licenses/by/4.0/

ICN ’21, September 22-24, 2021, Paris, France

o NDN-MPS provides two options to coordinate the joint signing
among multiple signers, a Remote Procedure Call (RPC) based
signature collection protocol and the use of an existing NDN
sync protocol. We discuss how they may be used in different
application scenarios and what are the trade-offs.

Our design is based on the latest NDN Specification v0.3. We have
implemented NDN-MPS in C++ with the multisignature scheme
BLS [7]. The library can be easily extended to other non-interactive
multisignature schemes such as MSP multisignature [4] and the
Bitcoin ECDSA threshold signature [13, 15].

NDN-MPS makes use of the network and security support of
NDN in several aspects. First, the Interest and Data exchange allows
the asynchronous transmission of unsigned and signed packets in
the multiparty signing process. Second, NDN lets each entity have
its own identity managed by the local authority and uses trust
schemas to explicitly define the trust relationship. This simplifies
the development and deployment of multiparty authentication so-
lutions compared to today’s network security practice, where user
authentication mostly relies on the public key infrastructure which
is largely managed by commercial certificate authorities (CAs) and
the application layer credentials (e.g. username and password) that
are verified by a centralized service.

Outline. In the rest of the paper, we first introduce the background
of our work and an example application scenario that will be used
throughout the paper in §2. We then define the system model of
the NDN-based multiparty signing and verification in §3. In this
section, we will also analyze the trust schemas needed by the model
and describe the security objectives and technical challenges in
realizing this model in NDN After that, we present the design of
NDN-MPS in §4 and describe NDN-MPS’s support of threshold
policies in §5. We then assess the security properties of NDN-MPS
in §6, evaluate NDN-MPS in §7, and discuss a number of design
choices and issues in §9. Finally, we conclude our work in §10.

2 BACKGROUND

2.1 NDN Producer-Consumer Model

The producer-consumer trust model is adopted by the existing NDN
security support. Under this model, each NDN data object is assem-
bled, named, and cryptographically signed by its producer. To help
consumers to verify the data, each data object carries a signature
information field to keep the meta information of the signature; the
most important information is the key locator, indicating which
key should be used to verify the signature value. A key locator is
usually the name of the verification key so that a consumer can
fetch the corresponding key to verify the received data.

Verifying the signature against a trustworthy public key only
ensures authenticity. To further verify the authorization of the
producer, a trust schema is used to determine whether the producer
is legitimate to produce the named data (Figure 1). NDN’s semantic
naming enables the trust schemas to use names to systematically
define the relationship between the signing key and data object of
each step in an acceptable certificate chain. Trust schema rules for a
specific application system usually contains the following elements:
(i) the format or structure of the data names that the rules apply
to, (ii) the name pattern of the expected signing key name at each

84

Z. Zhang et al.

Data Name = Packet name that

the schema is applied to
= Expected signing key
name

= Trusted certificates
(trust anchors)

Content

Key Locator:
signing key name

Signature Value

Data Packet Trust Schema

Figure 1: Trust schemas are based on names

step in the certificate chain, (iii) the acceptable trust anchors that
certificate chains end with. If a signature is generated by a party
whose key name is not allowed for signing such data or the signer’s
identity cannot be certified by an acceptable certificate chain to a
trusted anchor, the signature will be rejected.

Importantly, the producer-consumer trust model only assumes
two parties, the producer and the consumer, both of which are
directly involved with the data.

In a multiparty signing scenario, the existing trust scheme is
insufficient to clearly describe the policies of the new trust model
because (i) there are multiple signers, (ii) (at least some) signers are
not the producer of the data to be signed; and (iii) multisignature
requires a new party that coordinates the signing, which the trust
schemas should clearly define. The current protocol specification
and implementation of NDN libraries also need enhancement to
support multiparty signing. For example, the current key locator
cannot carry sufficient meta information of multiple signers, and
the trust schema does not support the signing and verification of
multisignatures.

2.2 Multisignature Scheme

We follow the definition of Boneh et al. [4, 6] and define the mul-
tisignature scheme that is used for multiple parties to sign the same
message with the following algorithms:

Parameter Generation. The system generates the public system
parameters param.

Key Generation. Each signer generates its key pair (pk, sk) «
KeyGen(param).

Individual Sign. Each signer generates a signature of a given
message m: o « Sign(sk, m).

Signature Aggregation. Multiple signatures can be aggregated
into one signature: ¢’ « SigAgg(o1, ..., on)

Verification. An aggregated signature can be verified with the sign-
ers’ public keys: VALID or INVALID « Verify(c’,m, pky, ..., pkn).

An example construction is the BLS signature scheme [6, 7].
Compared with other multisignature schemes like identity-based
aggregate signatures [14] and fast multiparty threshold ECDSA
signatures [12], BLS does not require additional negotiation among
signers nor a trusted key generator in the key generation step. In
addition, an arbitrary number of BLS public keys and signatures
can be easily aggregated without knowing the private keys. For
these reasons, BLS is more practical than other schemes and thus
is used in the design description in the rest of this paper.

NDN-MPS: Supporting Multiparty Authentication over Named Data Networking

)

Quality Assurance Team
/Mfr/QA/
A

Manufacture
A

\
Solar Site \ t‘&\
\
\“ Collect v

_‘6’. \ Signature -7 Operation Team
70 \nverter Fi Y -7 /Site/operation/
nverter Firmware Collect

% Update « Signature
-—> .- __
____ »

/Site/inverters
(Verifier)

Alice from Maintenance Team
/Site/maintenance/Alice

Site Owner
/Site/owner/

Figure 2: Solar inverter firmware update requires multiparty
authentication

2.3 An Example Application Scenario

We introduce an example scenario used throughout the paper to
ease the reader’s comprehension of various concepts. In a grid-
connected distributed solar network system, solar devices are man-
aged by a local solar site for power production. At the same time,
the manufacture of solar devices provides technical support of the
device firmware update.

Consider a typical use case where the manufacturer requests the
solar site to upgrade an inverter’s firmware to correct a security
vulnerability. To make the update, the solar site’s maintenance
operator, Alice “/Site/maintenance/Alice”, will need to issue a
command, an NDN data object, to be jointly signed by the following
parties:

o The solar site’s operation team to ensure they know the inverters
will be offline for some time. Their prefix is “/Site/operation”

o The site’s owner will permit the possible production reduction, if
the process cannot be completed promptly. The owner will have
a prefix “/Site/Owner”.

o An operator from the equipment manufacturer’s quality assur-
ance department for certifying the upgrade is of release quality.
This is a third party and thus its prefix “/Mfr/QA” is different from
other parties.

The inverters will verify the signed data to ensure that it can safely
proceed with the update before executing the firmware update.
Therefore, in this command issuance process, Alice is the pro-

ducer, the inverter is the verifier, and the signers are “/Site/operation”,

“/site/Owner”, and “/Mfr/QA”. Note that under each prefix, there
can be multiple entities; for example, under “/Mfr/QA” there can be
“/Mfr/QA/operatorX” and “/Mfr/QA/operatorY”.

3 NDN MULTISIGNATURE BASED
MULTIPARTY AUTHENTICATION MODEL

With multisignature, there are three basic types of parties in each
multiparty authentication process:

o Producer The producer generates the data object that will be
signed by the signers. We consider that by default, the producer
will also collect signatures from the signers and then aggregate

85

ICN °21, September 22-24, 2021, Paris, France

them into a multisignature to finish the data production. Never-
theless, in certain scenarios, other parties allowed by the applica-
tion systems can also collect and aggregate signatures.

e Signers. Signers will sign the data object created by the producer
individually. The signers can come from different organizations
and have different trust anchors. If a signer approves the data
to be signed, either through in-band operations (e.g., database
query) or out-of-band operations (e.g., human decisions), that
individual will make a signature piece for aggregating with other
signers’ pieces.

o Verifier. The verifier will verify a multisignature along with
the data object covered by the signature. The verification suc-
ceeds if the multisignature is valid and if its signers satisfy the
application’s requirements as defined in the trust schema.

The above roles are separated based on their functional logic. In
practice, one entity can serve multiple roles. Normally, a producer is
expected to be one of the signers given the producer is responsible
for the content and is directly involved in the signing process.

Under the system model, the multiparty authentication process
can be abstracted into the following steps.

(1) The producer decides the signers based on the trust schema and
publishes the data object to these signers.

(2) Each signer first obtains the data object and then authenticates
the data object against the trust schema. After that, each signer
will verify the data object against the application logic (e.g.
defined by the business model). If all checks are successful, the
signer will generate the signature and publish the signature
value.

(3) The producer (or any authorized party allowed by the trust
schema) collects and aggregates all the signature pieces into one,
and appends it to the data object to finalize the data production.

(4) The verifier obtains the final data object and verifies its signa-
ture against the signers’ public keys.

Trust Relationships. We first assume that all entities have gone
through the standard NDN bootstrapping process [42], through
which each entity will obtain identity with a certificate issued by
the application system and install the system’s trust anchors.

To finish the multiparty signing process, it is required that sign-
ers can authenticate the producer’s identity, for example, by veri-
fying a signature over the unsigned data object that is generated
by the producer’s identity private key. To verify an aggregated
signature, the verifier needs to obtain the public key certificates of
all the signers. Nevertheless, multiparty signing does not require
that signers know each other.

These trust relationships are defined in the NDN trust schema
by the application system and are securely installed to the entities.

Other Assumptions. We assume all the signers’ key types should
be compatible with NDN-MPS and generated with the same public
parameters (e.g. the same pairing-friendly elliptic curve, the same
type of hash function, etc.), so that their signatures can be aggre-
gated. We also assume the producer’s awareness of the signers
from which the producer can select appropriate signers to generate
legitimate signatures.

This model does not restrict how packets are delivered in the
signing or verification process, which makes our model general

ICN ’21, September 22-24, 2021, Paris, France

and can be used in different application scenarios. For example, the
model does not specify how should a verifier obtain the final data
object; in the solar inverter example, the final data object can be
sent to the inverter as a signed Interest packet, or be fetched by the
inverter as a Data packet, or be synchronized with an NDN sync
protocol.

3.1 Trust Schema Needed by the Model

As stated, the trust relationships are defined in the trust schema.
To be more specific, the following policies should be explicitly and
rigorously defined.

e Producer Trust Schema. When verifying the data object cre-
ated by the producer, the producer trust schema can decide
whether the producer is legitimate to generate such a data object.

e Multisignature Trust Schema. When verifying the final data
object, the multisignature trust schema can specify how many
and which signers can generate a legitimate signature for a given
named data.

Note that these trust schema rules do not only guide the veri-
fication process but also can facilitate the signing process. To be
more specific, (i) a producer with multiple identities can use the
producer trust schema to decide which identity should be used to
deliver the data object to signers; (ii) the producer can also use
the multisignature trust schema to decide the list of signers; (iii) a
signer can also check the multisignature trust schema whether her
signature is truly needed for such a data object.

It is noteworthy that when deciding whether to sign a data object,
the signer will not only query trust schema but also the application
logic. This is because the trust schema does not guarantee the
correctness of the data content. In the solar inverter example, when
deciding whether to sign the inverter firmware update command,
the maintenance team needs to ensure that, when the inverter is
offline, the remaining power supplies can still meet the demand,
e.g., by querying some databases and calculators. If not, the signer
should reject the data object.

Producer Trust Schema. When delivering the data object from
the producer to signers, a regular signature generated by the pro-
ducer is sufficient for authentication. Therefore, the producer trust
schema can be expressed using the existing trust schema languages
or tools [25, 34]. In our solar inverter example, the trust schema
defines that the signature request must originate from maintenance
operators, who are under the prefix of “/Site/maintenance” and
derived from the anchor certificate “/Site/maintenance/KEY/123”.
The pseudo-code of such a trust schema policy is shown below.

Signature Request Name:
/<SignerPrefix>/MPS/request/Site/maintenance/<operator>/<>

Key Name: /Site/maintenance/<operator>/KEY/<>

Anchor: /Site/maintenance/KEY/123

Multisignature Trust Schema. The multisignature trust schema

requires additional semantics for legitimacy verification of multiple

signers for a single signature. In particular, a multisignature trust

schema should contain three pieces of information.

e Data Profile. A profile specifies which data object the policy
should be applied to. In NDN, the data name or the name pattern
with the packet type (i.e., Interest or Data packet) will suffice.

86

Z. Zhang et al.

e Legitimate Signer List. A legitimate signer list specifies the
signers required to make a legitimate signature for the given
data. This list can be effectively expressed by a list of the signers’
names or name patterns.

o Known Signers. The known signers are the complete set of all
potential signers in the system, a subset of which can make a
legitimate signer list for a given signature. The known signers
are similar to the trust anchor field in Yu et al’s schematized
trust design [37] with the difference that in a multisignature
trust schema, each known signer’s identity (i.e,, name and public
key) can be either directly listed as a trust anchor or indirectly
included if it can be authenticated by a known trust anchor with
an acceptable certificate chain.

In the solar inverter example, the data profile will match the
name of the firmware update command Data packet, the legitimate
signers are the prefixes of three required parties, and the known
signers are all the candidate signers from three required parties.

In some application scenarios, the legitimate signer list is not
specified; instead, a threshold of the number of signer is given. To be
more specific, a threshold-based policy can express the legitimate
signers as any k out of n known signers. We will discuss how
to extend the syntax of multisignature trust schemas to support
threshold-based later.

3.2 Security Objectives

The security objectives of a multiparty authentication system can
be summarized as follow.

o Authentication of multiple signers, which is the basic goal of the
system. When illegal signers are present or the signers do not
satisfy the trust schema, the authentication must be rejected.
Integrity and authenticity of the multiparty signing process.
When coordinating multiple signers, the integrity and authen-
ticity of (i) the data object and (ii) signatures from individual
signers should be ensured.
Confidentiality of the multiparty signing process. In a traditional
producer-consumer model, the content of a data object is not
available before the data is published by the producer. In a multi-
party signing process, the same level of confidentiality should be
achieved, considering the adversaries may increase their advan-
tages by obtaining useful information before the signed data is
finalized.

o Basic resistance to denial-of-service and record-and-replay at-
tacks in the multiparty signing and verification process. For ex-
ample, a recorded request asking for a signature from a signer
should not result in a new signature, and a recorded aggregated
signature should not be used in a new data object.

3.3 Technical Challenges

Signature Coverage in Multiparty Signing. To be aggregated
correctly, each signer’s signature should cover identical data for
the compactness of the finalized data. However, by the latest speci-
fication (i.e. NDN Packet Format Specification version 0.3) of the
signing process, the signer will customize the signature informa-
tion file of the data packet by writing the signing key name into
the key locator field [32]. A key locator contains the signing key

NDN-MPS: Supporting Multiparty Authentication over Named Data Networking

information to help the verifier to check against the trust schema
and use the correct public key for verification. Consequently, each
signer will sign the data with customized signature information,
thus leading to inconsistent data signed by different signers and a
broken final signature after an aggregation.

A strawman solution is to let the producer pre-provision the
signature information, and each signer signs without modifying it.
However, it is insufficient because the signer list cannot be finalized
before contacting the signers, considering a signer may be offline
or reject to sign the data. For example, to meet the requirement
of a signer under the prefix “/Mfr/QA”, assume the producer Alice
decides to contact “/Mfr/QA/operatorX” and thus put this name into
the key locator field. However, operator X may be offline, and thus
Alice needs to find an alternative signer, say “/Mfr/QA/operatorY”.
As such, Alice needs to change the signature information halfway
through the signature collection and lead to the inconsistency of
the signed data.

In this work, we address the issue with a late-binding key locator
name as described in §4.3.

Threshold Signature. Threshold signature scheme [16] is a type
of multiparty signature, which supports a flexible access structure:
instead of explicitly defining the signer combinations for a legal
signature, k arbitrary signers out of a signer set of size n can jointly
generate a legal signature. A common approach to support the
threshold scheme is to directly utilize threshold signature schemes.
For example, a typical construction of threshold signature schemes
is to combine traditional signature schemes with Linear Secret Shar-
ing [28]. However, this solution suffers from a few disadvantages.
First, to bootstrap the system, either (i) a centralized trusted dealer
is usually needed for key distribution or (ii) the signers need to
exchange a large number of messages for setting up their keys in
a distributed manner. In addition, the key maintenance is compli-
cated because when a key is compromised, or when there is a new
signer, it may require a new bootstrapping process where all signers
must be online and update their keys. Lastly, the key aggregation is
relatively slow, which takes O(k?) traditionally and O(k log k) [36]
to perform the interpolation to construct the secret.

As described in §5, NDN-MPS takes a system approach with the
multisignature trust schema, bypassing the aforementioned issues.

4 DESIGN OF NDN-MPS

We describe the design of NDN-MPS by first giving an overview
and then introducing each main component of the NDN-MPS.

4.1 An Overview

NDN-MPS is designed as a security support toolset for applications.
NDN-MPS consists of three main components (Figure 3). First, a
new type of trust schema, multisignature trust schema, that allows
applications to express the signing and verification policies for
multiparty authentication. Second, an extension of the key locator
in NDN data objects to keep the to-be-signed data consistent across
signers and allow complex signature information. Third, a signature
collection protocol, which is based on RPC or NDN sync, for the
producer (or any other authorized party) to collect signatures from
multiple signers.

87

ICN °21, September 22-24, 2021, Paris, France

Producer
Trust Schema

.+ Guide *
+ producer *,

, verification “ Affect signing
decision
I I Multisignature
Trust Schema
Dellver B
data - GU|de signer + Guide signature
object selectlon “ verification

data e __ -
m eVermcatlon
Figure 3: An Overview of NDN-MPS

These three components are used in the process of multisignature
signing and verification. Note that while it may not be the producer
who collects signatures from signers, but for simplicity, in the rest
of this section, we assume the collection is done by the producer.

Multiparty Signing. The producer starts a signing process with
the unsigned data object and the multisignature trust schema pro-
vided by the application. From the trust schema, the producer iden-
tifies a list of signers and then starts the coordination process. In a
nutshell, it consists of (i) the delivery of the data object to be signed
and (ii) collection of signature value from signers. NDN-MPS allows
applications to select from an RPC based approach or an NDN sync
based approach.

e When using the RPC based approach, the producer will issue a
signed request to each signer to start an RPC and presents the
unsigned data as the request parameter. Once the signature is
generated, the producer can fetch it as the RPC result.

e When using an NDN sync protocol, it is required that the pro-
ducer and all the signers are already in the same sync group. The
producer publishes the data object to be signed and then each
signer publishes the signature value. The producer or any signer
can synchronize to the latest state and collect all the signatures.

There are tradeoffs between the two options: The RPC based ap-
proach puts more reliance on the producer; if the producer goes
offline, the signing process will fail. Nevertheless, this approach
is simple and the overhead is low. In contrast, the sync based ap-
proach requires a sync group, which indicates additional overhead
for maintaining the sync group, e.g., group membership manage-
ment, security of the group messages, periodic message exchange
for synchronization, and so on. However, the sync based approach
allows any group member to get all the signatures and thus prevents
the producer to be a single point of failure.

To ensure the consistency of the data to be signed among signers,
the producer will fill the key locator field with a placeholder name
called late-binding key locator. Such a placeholder allows the data
to be signed deterministic and consistent across multiple signers.
When the signers are finalized, for example, after all the individual
signatures are collected, the producer can produce a Data packet
whose name is the placeholder name and whose content is the
signer information.

Upon receiving the request, each signer will first verify the pro-
ducer’s identity against the producer trust schema. After that, the

ICN ’21, September 22-24, 2021, Paris, France

signer can decide on whether to sign the data or not. In this pro-
cess, besides checking against known multisignature trust schema
policies, the signer may also need to go through some application-
specific procedures. If the application agrees to sign the data, it will
generate the signature over the data, without modifying the key
locator or any other fields.

In an unstable network or in an attack, signers may be forced
offline, unable to be reached by the producer. In this case, the
producer can try to reach an alternative signer permitted by the
trust schema, e.g., the producer Alice can try “/Mfr/QA/operatorY”
when “/Mfr/QA/operatorX” is unavailable. This design provides a
certain degree of resiliency that even if some signer fails, the signing
can continue. Importantly, the change of signers will not affect the
value of the late-binding key locator name as it is a placeholder, so
the consistency of the data being signed among signers is preserved.

Signature Aggregation. After collecting sufficient signature pieces
from signers, the producer aggregates them to generate a single
signature and attach it to the original unsigned data (Figure 4). In
addition, the producer will generate another Data packet, called
a SigInfo packet, to carry the signer information, i.e., signers’ key
names. Importantly, Signfo is named with the placeholder key lo-
cator name. As such, a SigInfo packet can be linked from the signed
data’s key locator, overcoming the limitation of the existing key
locator design, which does not support multiple signers.

| Signature 1 | | Signature 2 | | Signature 3 |

signature
y aggregation

+ multisignature

Name

Content

Key Locator:
late-binding name

Figure 4: Aggregate signatures and finalize the data object

Signature Verification. To verify a piece of multiparty signed
data, the verifier first needs to obtain both the signed data and
the SigInfo packet. The signed data retrieval process is defined by
the specific application and the SigInfo packet can be fetched with
an Interest carrying the key locator name specified in the signed
data. After that, the verifier first checks the signer list from the
SigInfo packet against the multisignature trust schema to ensure
the signers are legitimate to sign such a piece of data. Finally, the
verifier validates the multisignature using the public keys of the
signers.

4.2 Multisignature Trust Schema

As the baseline, the multisignature trust schema should allow appli-
cations to specify multiple required signers; that is, a signature is
valid only when required signers R; to Ry, are present. To support
this, multisignature trust schema rule has an attribute called “all-of”
to hold the list of the key name of Ry to Ry,. In a verification process,
if any key listed in the “all-of” attribute is missing, the signature is
considered invalid.

In many scenarios, applications do not need to or cannot require
specific signers; instead, they only need a certain type of signers.
For example, in the solar network system, any operator from the

88

Z. Zhang et al.

manufacture’s quality assurance department can represent that
party. To support such flexibility, NDN-MPS’s multisignature trust
schema allows the use of name patterns. To be more specific, when
specifying a required signer, the application can use wildcard char-
acter *, which can match any name component. Using the same
example, the wildcard character in “/Mfr/QA/*/KEY/*” allows any
operator under the equipment manufacturer’s quality assurance
team to participate in the joint signing.

The pseudo-code of a multisignature trust schema for the exam-
ple use case is shown below.

Data profile: /Site/inverters/firmware/update
All-of { /Mfr/QAx/KEY/*
/Site/operation/*/KEY/*
/Site/Owner/*/KEY/* }
Known-signer {

}

The rule applies to the command to update the solar inverter
firmware. The known signers should be the registered operators un-
der each responsible organization’s prefixes, which are abbreviated
for simplicity.

4.3 Late-binding Key Locator Name

As stated, since the signers may not be finalized during the multi-
party signing process, it is infeasible for the producer to include the
signer list in the original data object. At the same time, the signature
information of the data object, including the key locator, needs to
be deterministic and consistent among all signers so that signature
pieces can be aggregated. To address the issue, NDN-MPS lets the
producer put a placeholder Data packet name as the key locator.
Such a placeholder is called a late-binding key locator name.

This name is late-binding because there is no Data packet bound
to this name at the time of the signature collection phase. After
completing the signing process, the SigInfo packet containing the
signature information will be published under the key locator name.
This packet typically contains the key name list of the signers; infor-
mation that can potentially facilitate the verification process, such
as the trust schema name or the aggregated public key, can also be
included. The SigInfo packet is also signed by the producer for data
integrity. Note that an adversary cannot cheat with a forged SigInfo
packet because due to the underlying multisignature primitive, only
correct signers’ public keys can lead to a successful verification.

4.4 Remote Procedure Call based Coordination

The first option to coordinate multiple signers is to apply RPC
between the producer and each signer, where the producer is the
caller and the signer is the executor. A straightforward solution is
to directly apply existing NDN-based RPC protocols between the
producer and each signer, for example, RICE [18], the RPC used in
DNMP [25], and Named Service Call (NSC) [20]. However, while
RICE provides sufficient security and privacy protection, it requires
modification of the underlying NDN forwarding pipeline. DNMP
RPC requires an NDN synchronization protocol which is excessive.
In comparison, NSC is lightweight and requires no modification of
the NDN forwarding, but it does not provide payload encryption

NDN-MPS: Supporting Multiparty Authentication over Named Data Networking

Request Interest: /signer/MPS/request/<producer info>/<hash>
ParameterName: /<repo1>/<randomnessi1>, >
DH Pub Parameter, forwarding hint
i) Signature
=
o
g' Acknowledgement Data:
8 DH Pub Parameter
=% - status, milliseconds, forwarding hint 195
result name: /<repo2>/<randomness2>/v0, Q@
Signature 8
@
us)
8 ¢ Parameter Interest: /<repo1>/<randomnessi>
le] Forwarding Hint
—
Parameter Data:
data object to be signed >
HMAC
20
Result Interest: /<repo2>/<randomness2>/v0 .
Forwarding Hint '8
T
3 N
A Result Data:
(C) * status, * Signature value
Q - * (if not yet ready) milliseconds
* (if not yet ready) result name: /<repo2>/<randomness2>/v1
HMAC

Figure 5: Remote procedure call in NDN-MPS (The gray area
refers to the encrypted payload)

and result confidentiality as needed by NDN-MPS. Therefore, in

this work, we extend the design of NSC to fit our needs.

We design the NDN-MPS RPC for signature collection based on
NSC but provides stronger security and privacy. NDN-MPS has the
following features that are different from the original NSC.

o Besides signed Data packets, Interest packets are also signed for
authenticity and integrity. Producer trust schema will be applied
when a signer verifies the first RPC request from the producer.

o Diffie-Hellman key exchange protocol [11] is applied to negotiate
a per-RPC shared secret for packet payload encryption. As such,
all the sensitive information exchanged in the RPC is encrypted
for privacy protection.

e The RPC parameter (i.e., the data object to be signed) and the
result (i.e., individual signature value) will be wrapped into Data
packets whose name is meaningless and content is encrypted for
stronger confidentiality.

Through the NDN-MPS RPC, attackers cannot know what content

is signed in the signature collection and have no idea about the

result of each RPC. The design of NDN-MPS RPC is visualized in

Figure 5.

RPC Request and Acknowledgment. To start the signing pro-
cess, the producer first expresses a signed request Interest to the
signer. This Interest carries a name, called ParaName, pointing to
a parameter Data packet, which will encapsulate the unsigned data
object. Such a name comprises randomly generated components, re-
vealing no information about the unsigned data object. In addition,
a forwarding hint to the parameter packet should be carried as well.
To provide resistance to traffic analysis, the parameter Data packet
can be published to a third party repository, and accordingly, the
forwarding hint should point to the repository. In addition, the In-
terest will carry the public parameters used for the Diffie-Hellman
key exchange.

89

ICN °21, September 22-24, 2021, Paris, France

On receiving the request Interest, the signer will first verify the
producer’s signature against the producer trust schema. Then, the
signer will also generate a pair of public and private keys for the
Diffie-Hellman key exchange, and derive from the negotiated secret
a message authentication code (MAC) key Kjnqc and a symmetric
encryption key Kene. A key derivation function is usually used
together with the Diffie-Hellman key exchange for better security.
After that, the signer will generate an acknowledgment Data packet
containing the following information. (i) A status code indicating
whether the request is accepted. Since the signer has not seen the
data to be signed, the status mainly relies on the producer identity
verification result and the signer’s availability. (ii) The estimated
time for the RPC result to be available. (iii) The name of the re-
sult Data packet called Result Name. This name is supposed to be
randomly generated. Similar to a parameter packet, to prevent infor-
mation leakage by traffic analysis, the result Data can be published
to a third-party repository, and a forwarding hint to that repository
will be added to the acknowledgment Data as well. Importantly, all
the above parameters are encrypted with the Kep. In addition, the
acknowledgment Data also contains the signer’s public parameters
for Diffie-Hellman key exchange in plain text. The acknowledgment
packet will be signed by the signer’s private key and replied to the
RPC request the Interest packet.

If the signer rejects the RPC request, the status code in the ac-
knowledgment will indicate the reason. To prevent an adversary
from learning the rejection, the signer can pad the Data packet con-
tent to the size similar to a success response, and send an Interest
to retrieve the parameter packet.

Parameter Retrieval. After replying with the acknowledgment,
the signer will issue an Interest to fetch the parameter.

On the producer side, upon receiving the acknowledgment packet,
the producer first verifies the signature, calculates the same K¢
and Kepc from the shared secret established in the Diffie-Hellman
key exchange, and decrypts the payload carried in the acknowledg-
ment Data content. Then, the producer will finalize the parameter
Data packet by (i) naming it as ParaName, (ii) encrypting the un-
signed data object with Kp. into the content field of the Data
packet, and (iii) signing it with Kp,4c. The producer will make the
parameter Data packet available, e.g., by publishing it to an NDN
repo, and it will be fetched by the signer.

Result Retrieval. After knowing the ResultName and time for
fetching the result from the acknowledgment packet, the producer
can schedule a data fetch accordingly.

After fetching the parameters, if the signer agrees to sign the data
object, a signature value will be generated. Note that the signer will
not modify any field of the data object, including the signature in-
formation field. Then the signer will (i) encrypt the signature value
with Kepe, (ii) wrap the it into a Data packet named as Reault Name,
and (iii) signed with Kj,4¢. The result Data packet will then be pub-
lished, e.g., on to an NDN repo, and fetched by the producer.

4.5 NDN Sync based Coordination

The second option to coordinate the multiparty signing in NDN-
MPS is to utilize NDN sync. Moll et al.’s work [23] provides a good
survey of existing NDN sync protocols. In general, any NDN sync
protocol with group membership management and group-level

ICN ’21, September 22-24, 2021, Paris, France

packet encryption is sufficient. Some of the sync protocols already
utilize packet encapsulation where the published Data packets are
wrapped into sync Data packets. Sync Data packets are named with
a different naming convention and do not reveal information of the
encapsulated Data packet. With packet encryption, the adversaries
cannot learn the signing process by eavesdropping on the packet
exchange in the sync group.

In this section, we use State Vector Sync (SVS) [22] as an example
to illustrate the process. SVS uses Data packets named with the
sequence number to encapsulate Data packets created by group
members. In addition, symmetric key encryption schemes like AES
can be easily applied to the group messages.

Prerequisites. The producer and all signers should already be in
the same sync group. The group manager should ensure that no
unauthorized parties can join this group. An encryption key should
be negotiated within the group to encrypt all the group messages.

Data Object Publication. The producer publishes the data object
with a list of signer names to the sync group. As mentioned, the
data object should contain the late-binding key locator. In addition,
both of them should be signed by the producer. After receiving
the data object and the list, if a signer is listed, the signer should
publish an acknowledgment indicating whether she agrees to sign
it or not. Through this process, the producer can update the signer
list to add or remove signers accordingly.

Signature Result Publication. A signer who agrees to sign the
data object will publish the signature value when it is ready. Through
the NDN sync protocol, the producer will be notified when a new
Data packet is generated by the signer. The producer can then
synchronize and fetch the signature. After collecting all individual
signatures, the producer can move on to aggregate the signatures
and finalize the data object.

5 SUPPORT OF THRESHOLD POLICY

NDN-MPS provides support of threshold policy by a system means.
To be more specific, the multisignature trust schema allows the
application to specify the threshold used for the signature veri-
fication process. Specifically, in NDN-MPS multisignature trust
schema, applications are allowed to specify the threshold k in an
attribute called “at-least-num” and the information of n signers in
the attribute “from”. In a verification process, only when k out of n
signers listed in the “from” participant in the signing, the signature
is considered valid.

Consider a typical application scenario in a solar network system:
to minimize the human-made faults in critical operations, certain
commands like power plant shutdown require at least two man-
agers’ approvals before it can be operated. In this case, we have
k = 2 and the identities of all the team managers in the system will
form the signer list in the “from” attribute. The multisignature trust
schema is shown below (known signers omitted for compactness).

Data profile: /site/operation/command/shutdown/x

At-least-num 2

From { /Site/operation/manager1/KEY/*
/Site/operation/manager2/KEY/*
/Site/operation/manager3/KEY/*
/Site/operation/manager4/KEY/* }

90

Z. Zhang et al.

More flexibility can be supported by combining the regular mul-
tisignature policy and threshold policy. To be more specific, appli-
cations can specify that a signature needs m required signers and k
out of n optional signers. Using the same solar shutdown command
example, besides any two manager’s approvals, the command may
also require the owner’s awareness. For this purpose, the policy
can be written as follows (known signers omitted for compactness).

Data profile: /site/operation/command/shutdown/*

All-of { /Site/Owner/x/KEY/* }
At-least-num 2
From { /Site/operation/manager1/KEY/*

/Site/operation/manager2/KEY/*
/Site/operation/manager3/KEY/*
/Site/operation/manager4/KEY/* }

Compared with the solutions that rely on additional crypto-
graphic schemes like secret sharing or dedicated threshold sig-
natures, NDN-MPS’s use of multisignature trust schema enjoys
following benefits:

o It does not rely on the underlying signature scheme. Thus, there
is no need for applications to support a dedicated threshold sig-
nature scheme specially for threshold scenarios, reducing the
overall key management complexity.

o There is no centralized trusted dealer for secret sharing. Each
signer’s key can be managed individually. For example, a signer’s
key can be renewed or revoked without bothering other signers.

o It supports more flexible policies as described, in which both
certain signers and k out of n are required. In contrast, using a
threshold signature scheme to support such policies is nontrivial.

6 SECURITY ASSESSMENT

We start the security analysis of NDN-MPS against the desired prop-
erties as stated in §4.4 Then, we consider several attacks potentially
conducted by attackers.

Multiparty Authentication. The verifier can authenticate the
signers of the aggregate signature and judge whether the signa-
ture is legitimate by the features of the underlying multisignature
scheme and the multisignature trust schema. To be more specific,
the signature verification will guarantee the following properties:

o The signers are qualified to generate a legitimate signature re-
quired by the multisignature trust schema.

o The signature value can be verified by public keys of the claimed
signers. This is ensured by the underlying multisignature scheme
in which the signature can only be verified with the known signer
keys defined in Section 3.1.

e The data object covered by the signature has not been altered.
If data has changed after the signature pieces are created, the
signature value cannot be verified successfully.

If signature verification succeeds, it means all the involved signers
are authenticated successfully.

Integrity and Authenticity of the Signing Process. In the signer
coordination process, regardless of using RPC or NDN sync, a signer
can verify the producer’s identity and ensure the integrity of the
data object by the signature. Similarly, the producer can also ver-
ify each signer’s identity and the signature value. Therefore, any
alteration to the exchanged data object or signature value will be

NDN-MPS: Supporting Multiparty Authentication over Named Data Networking

identified and an unauthorized party cannot impersonate a pro-
ducer or a signer because he does not have the right secret keys.

Confidentiality of the Signing Process. When using NDN sync
protocol, confidentiality is ensured by encrypting all the messages
in the sync group. Here, we mainly analyze the confidentiality of
the RPC protocol used in NDN-MPS. Specifically, we assume the ad-
versary can eavesdrop on the Interest and Data packets exchanged
in the RPC between the producer and signers. The first possible fail-
ure of confidentiality can come from the plain-text information of
the NDN packets, including packet names, key locator names, and
the payload of the RPC request Interest and acknowledgment Data
packet. We iterate the revealed information from these sources.

e Packet names contain the prefixes of producer and signers, thus
revealing their identities. Since the prefix is used for forward-
ing, it is inevitable unless additional infrastructures are used,
e.g. NDN-based VPN or onion routing. The rest of the name
components are either statically defined by the protocol or gener-
ated from the hash function of the payload, revealing no further
information than the payload itself.

e Among the plain text payload, most of the information reveals
no useful application information, e.g., the public parameters for
Diffie-Hellman key exchange and the salt for the key derivation
function. The rest of the available information is the parameter
packet name and the forwarding hint. However, since the param-
eter packet will be encrypted and the packet name is generated
irrelevantly to the data object. It will not break the confidentiality
of the signing process.

o In the exchange of the RPC request, key locators can reveal the
identity of the signer and the producer, but as stated, they are al-
ready revealed by the names for forwarding purposes. Therefore,
the key locators do not reveal more than the public information.

Another potential means for an adversary to learn the signing
process is via traffic analysis. In NDN-MPS’s RPC, the parameter
packets and result packets are named randomly and can be pub-
lished to a third-party repository. When there exists a sufficient
anonymity set!, it is not easy for an adversary to infer the RPC
result by the traffic pattern.

Therefore, by observing the public information carried in the
RPC packets, an adversary cannot learn the data object nor track
the result of the signing process.

Resistance to Denial-of-service Attack. An attacker may try to
deny the service of a signer by flooding RPC request Interests. In
general, the request Interest is signed and carries public parameters
for Diffie-Hellman key exchange, which consumes a certain amount
of computation at the sender side. In addition, these Interests cannot
be copied from a recorded valid request, as stated before. These
facts can discourage the attack.

However, the attacker may forge a large number of request Inter-
ests that are correct in the format but contain incorrect signature
values or Diffie-Hellman key exchange parameters. Note that this is
not a specific problem for NDN-MPS but a general issue for many

1A insufficient anonymity set results in easy compromise of privacy. For example, if
the producer only has contacted one signer in a given time period, it is easy to link
a later Interest to the result fetch Interest. We acknowledge this assumption is less
quantitative, but this is a general open issue for many privacy-enhancement systems.

91

ICN °21, September 22-24, 2021, Paris, France

protocols, including TLS. In NDN, such attacks can be mitigated by
the DDoS defense mechanisms like FITT [41].

Resistance to Record-and-replay Attack. We consider a threat
where an eavesdropper may record the signed RPC request Interest
sent by the producer and attack a signer by replaying this Interest.
Such an attack can be effectively prevented by adding a timestamp
and nonce into the Interest packet signature. At the signer side,
the signer can verify the timestamp of each incoming RPC request
Interest against a predefined grace period. In addition, the signer
can keep a small state, say a bloom filter [2], of the nonce values
seen from the recent legal requests. In this way, the attacker cannot
replay because there is no Interest packet whose timestamp is before
the current time by the grace period and whose nonce has not been
seen by the signer.

7 IMPLEMENTATION AND EVALUATION

We have implemented NDN-MPS into an open-source prototype
library [40] in C++. Our library depends on ndn-cxx [31] and a BLS
library [29] that has been fully examined and is compatible with
the BLS API specification defined by Ethereum 2.0 [26]. The library
has also been used to implement a multisignature based identity
verification challenge module in NDNCERT [39]. The multisigna-
ture trust schema is implemented in the library as a trust schema
configuration file parser. To support more complicated use cases
where multiple legitimate signer sets are valid, one can simply cre-
ate multiple trust schema files applying to the same data prefix. In
the signature verification process, the signature is accepted if there
is at least one trust schema rule that is satisfied. The known signers
are implemented with a separate configuration file that contains a
list of NDN certificates.

In the rest of the section, we report the evaluation of our NDN-
MPS prototype implementation. Our evaluation result shows that

e NDN-MPS requires low-memory and low-network overhead to
support multiparty authentication over NDN.

o The cryptographic operations of multisignature over NDN pack-
ets (e.g., packet encoding and decoding) are computationally
efficient. Thus, NDN-MPS is practical to be deployed.

o NDN-MPS provides resilience to unavailable signers.

Bandwidth and Network Overhead. A BLS signature piece from
a single signer and an aggregate signature are of the same size when
transmitted in the network. With BLS12-381 elliptic curve [27]
(providing about 128 bits of security), the BLS signature size is 96
bytes, which is slightly larger than an ECDSA signature (about 72
bytes) and much smaller than an RSA signature (256 bytes) while
providing similar bits of security. Regarding the size of public key
certificates, a BLS public key over BLS12-381 is only 48 bytes, which
is much smaller than public keys in ECDSA and RSA that provide
a similar level of security.

The NDN-MPS RPC requires at least two round trip times (RT Ts)
when all signers are available. If a signer is unavailable, the producer
will notice it after the first Interest’s timeout. When using an NDN
sync protocol, the latency is to synchronize at least two rounds of
messages and the RTTs depend on the specific protocol design.

NDN Packet Signing/Verification Overhead. We compare the
NDN Data packet signing and verification performance of BLS

ICN ’21, September 22-24, 2021, Paris, France

g £
4 > :
q§>2 —— signing E3 —— signing
: 2° aggregation - aggregation
£ verification £ verification
[P APPSR g g)
@
<3 -
o, o
2
20 2 4 6 8 10 12
0 10 20 30 40 50 60 2 2 2 2 2 2

of Signers. Data Size

(a) Different # of Signers (b) Different data Size

Figure 6: Scalability to Signer Number and data Size

multisignature with conventional public key signatures, including
ECDSA (on elliptic curve secp256r1) and RSA (with 2048 bits key).
ECDSA and RSA signatures are realized by ndn-cxx’s keychain
with OpenSSL [31]. The data object is 16 bytes of random data.

Operation | BLS ECDSA RSA
Signing an NDN packet 1.38ms 0.15ms 1.58ms
Verifying an NDN packet | 4.32ms 0.43ms 0.14ms

As shown, although slower than ECDSA and RSA (OpenSSL has
specialized hardware and software optimization), the performance
of BLS signature in NDN is still acceptable for practical use.

Scalability to Signer Number and Data Size. We also evaluate
the scalability of NDN-MPS by increasing the number of signers
needed for the signature generation and the size of data to be signed.
As shown in Figure 6a, only aggregation time is linearly affected
by the signer number while the signing and verification time stays
almost constant. As reported in Figure 6b, when increasing the
data size with two signers, the time of signing, aggregation, and
verification stay mostly constant.

8 RELATED WORKS

Our proposed architecture relates to two main branches of research
efforts: multiparty authentication systems in today’s Internet and
in Information-Centric Networking (ICN).

Multiparty Authentication in Today’s Internet. While the con-

cept of multiparty signing [10] and different multisignature schemes [3,

7, 16, 30] have existed for years, most of the existing works focus on
using them for compactness rather than multiparty authentication.
A shred od evidence is that in most of these proposed systems,
there is a lack of multiparty trust schema in the verification process.
Therefore, the joint signature can be viewed as a compressed collec-
tion of unrelated signatures instead of a means to authenticate the
signers for a certain data object. For example, Zhao et al. suggests
aggregating signatures to reduce the message length for signing
connection path messages in Secure BGP [43]. Maxwell et al. pro-
poses the use of BLS signature in bitcoin or in general blockchain
systems to save space in a block [19]. Multisignature has also been
used to optimize the permissioned distributed ledger by combining
multiple endorsements from different peers into one [9].
Multisignatures have also been recently used in the digital wallet
design in blockchain systems, such as Bitcoin [24] and Ethereum [8],
to increase security by avoiding single points of failure. The main

92

Z. Zhang et al.

idea is to split an account secret to storing in multiple entities (e.g.
multiple devices owned by users). Any transaction from the wallet
must be jointly signed by a certain number of secret holders [13, 15].
However, the trust policies in these systems are largely static (e.g.,
1-out-of-2 account always assumes a 1-out-of-2 policy), and the
signature collection process is usually application-specific and not
automated (e.g., copy and paste signature pieces from other devices).

Multiparty Authentication in ICN. Asami et al. has proposed a
moderator-controlled information sharing system for ICN [1]. In
their system, the application uses Identity-Based Aggregate Signa-
ture to combine signatures from (i) the message producer and (ii) the
message’s moderator who will update the message and forward it
to subscribers. However, their multiparty authentication approach
is tightly coupled to their application use case, i.e., a message is
signed sequentially by the producer and the moderator with con-
tent modification, and is nontrivial to be used by other applications
systems. In addition, due to the specific use case, their authenti-
cation does not allow applications to customize the trust schema.
Also, since the moderator will modify the message, their approach
will change the default NDN encoding and verification pipeline
so that the aggregate signature can cover different portions of the
data content. In contrast, NDN-MPS is general enough to support
different applications scenarios and allows to define fine-grained
multisignature trust schema.

9 DISCUSSION

9.1 Features of NDN used in NDN-MPS

We discuss how NDN-MPS benefits from the unique features of
NDN. In the meanwhile, it is noteworthy that the need for multi-
party authentication is required by the application logic, indepen-
dent of using NDN or not.

First, the multiparty coordination can benefit from NDN’s sup-
port of asynchronous communication. For example, in NDN-MPS
RPC, the parameter packets or the result packets can be generated
and transmitted asynchronously to tolerate long latency or intermit-
tent connectivity and to allow the use of third party NDN reposito-
ries for high availability and privacy. Compared with TCP/IP based
RFC protocols, while they can also support asynchronous result
fetching at the application layer, the underlying network imple-
mentation using TCP and TLS is much more complicated (e.g. TCP
connection state, keep-alive signals, etc.) than using connection-
less Interest-Data exchange. When using NDN Sync, as already
described in existing literature [23], NDN can facilitate the group
communication compared with the TCP/IP architecture that dis-
courage multicast.

Second, NDN lets each entity have its own identity and uses trust
schema to explicitly define the trust relationship. This makes the
development and deployment of multiparty authentication easier
because the identity and trust schema can directly be used and
easily adjusted for multiparty use cases. In contrast, in today’s
Internet, security is largely implemented in a centralized service
(e.g., cloud server) at the application layer, and the deployed public
key infrastructure (PKI) usually relies on the commercial certificate
authorities (CAs) and not all entities have identities (e.g., most
HTTPS clients have no identity keys and certificates). Thus, to
support multiparty authentication, one either needs to rely on the

NDN-MPS: Supporting Multiparty Authentication over Named Data Networking

centralized application layer services, which defeats the purpose of
having multiple parties, or to make considerable changes to today’s
PKI, which is impractical.

9.2 Selection of the Multisignature Scheme

Many multisignature schemes have been proposed. We discuss sev-
eral common types of multisignature schemes and the differences
when being applied with NDN-MPS.

One type of signatures requires an interactive negotiation pro-
cess among signers in the key generation phase. To be more specific,
the signers broadcast certain public parameters for their key pair
generation so that their signatures can later be aggregated. A typ-
ical negotiation process can be based on Shamir’s secret sharing
scheme [28]. For example, fast multiparty threshold signature pro-
posed by Gennaro et al. requires a broadcast channel for secret
sharing among signers [12]. When using such a multisignature
scheme, the key pairs of signers are generated together and thus
when a new signer joins or a signer is revoked, the keys will be
regenerated. Therefore, when used with NDN-MPS, an additional
key negotiation process and key management service are needed.

Another type of multisignature schemes rely on a trusted key
generator. Instead of generating one’s own key pair, the trust key
generator will secretly deliver the secret key to each signer. This is a
common requirement when a centralized party is used in Shamir’s
secret sharing or the multisignature schemes are based on identity-
based encryption (IBE) [5], e.g., the identity-based aggregate sig-
nature scheme [14] proposed by Gentry et al.. When using such a
multisignature scheme in NDN-MPS, an additional key generator
implementation is required.

In comparison, some multisignature schemes neither require an
interactive negotiation process nor any trusted key generator, e.g.,
the BLS signature used in the prototype implementation of NDN-
MPS. Thus, keys can be generated and managed individually. Note
there is a known attack called rogue key attack to BLS signature but
this can be addressed when a piece of additional information (called
a proof of possession) is carried with each signer’s public key certifi-
cate [6]. A later version of BLS can resist the rogue attack without
any additional information [4]. When using such multisignature
schemes in NDN-MPS, no additional components are needed.

9.3 Data Object in Multiparty Signing

NDN-MPS helps to sign a data object which can mainly be in two
different forms. If the data object can fit into a single NDN Data
packet, it can be directly embedded in the RPC parameter packet.
A data object can also be larger than the NDN maximum packet
size. In this case, the object cannot be directly embedded into one
RPC parameter packet, e.g., a large file or stream data. Instead, it
needs to be segmented into multiple packets. To avoid multiple
signers from signing each segment, we can introduce a manifest
Data packet [21], which contains the hash values of all segments in
the form of a Merkle Tree and their names. Then, only the manifest
Data needs to be embedded in the RPC parameter packet and signed
by multiple parties.

When a Interest packet needs to be signed, a data object can be
an Interest packet as well, in which the multiparty signing result
will be a signed Interest [33].

93

ICN °21, September 22-24, 2021, Paris, France

9.4 Design Choices in NDN-MPS RPC

We discuss some of the design choices in NDN-MPS RPC and pro-
vide the rationale behind.

Which packet should carry the parameters? In NDN-MPS, the
initial request Interest to the signer contains the name of the un-
signed data instead of the data itself for the following reasons. First,
in the initial request Interest packet, the producer has not finished
the Diffie-Hellman key exchange and thus does not know how to
encrypt the unsigned data. Second, directly carrying the unsigned
data does not scale well when the data is large.

How to fetch the result? NDN-MPS uses separate Interest packets
for the request and the result. An alternative design would be to
let the signer directly reply with the RPC result to the request
Interest (i.e., the first Interest packet sent by the producer in the
RPC). However, this does not work when the signer’s processing
time is longer than the Interest timeout. Given that the producer
needs to determine the signer’s availability quickly, the producer
cannot set the timeout of the request Interest to be too long.

How to publish the result? In NDN-MPS, the result signature and
status code are encapsulated in a result Data packet. An alternative
method would be to directly publish the signed data as a Data packet
for fetching; however, this design may result in several issues. For
one, this approach may result in cache poisoning because the result
Data packet shares the same name as the Data packet carrying
the aggregate signature. Additionally, directly publishing the result
data can reveal the signed content and disclose that the signer has
signed the data, which can break the confidentiality of the signing
process. Even though the data content can be encrypted, the data
name still cannot be hidden for the data retrieval purpose.

10 CONCLUSION

NDN-MPS is designed as an application-independent multisigna-
ture toolset to support and automate multiparty signature signing
and verification. Our design shows how NDN-MPS leverages exist-
ing NDN features to support more complex trust models beyond
the conventional producer-consumer model.

The security support of today’s TCP/IP network, e.g., the TLS,
is limited to the point-to-point secure communication. Thus, new
security models or cryptographic tools such as multisignatures can
only be implemented at the application layer. In contrast, NDN’s
data-centric security, which is based on application layer semantic
naming, enables a coherent overall system security framework,
which poses no limitations to new trust models. It provides a simple
yet graceful platform to explore new security models and tools with
coherent network application support.

ACKNOWLEDGMENTS

This work is partially supported by the National Science Foundation
under award CNS-1719403. We would like to thank our shepherd,
Ken Calvert, for his valuable suggestions for improving this paper.

ICN ’21, September 22-24, 2021, Paris, France Z. Zhang et al.

REFERENCES [27

Yumi Sakemi, Tetsutaro Kobayashi, Tsunekazu Saito, and Riad Wahby. 2020.

(1]

=
&Ly

&

(1]

[12

[13]

[14]

=
i)

[16]

[17]

[18

[19]

[20

[21]

[22

[23]

[24

[25

[26]

Tohru Asami, Byambajav Namsraijav, Yoshihiko Kawahara, Kohei Sugiyama,
Atsushi Tagami, Tomohiko Yagyu, Kenichi Nakamura, and Toru Hasegawa. 2015.
Moderator-Controlled Information Sharing by Identity-Based Aggregate Sig-
natures for Information Centric Networking. In Proceedings of the 2nd ACM
Conference on Information-Centric Networking (San Francisco, California, USA)
(ACM-ICN °15). Association for Computing Machinery, New York, NY, USA,
157-166. https://doi.org/10.1145/2810156.2810163

Burton H. Bloom. 1970. Space/Time Trade-Offs in Hash Coding with Allowable
Errors. 13,7 (1970). https://doi.org/10.1145/362686.362692

Alexandra Boldyreva. 2003. Threshold signatures, multisignatures and blind sig-
natures based on the gap-Diffie-Hellman-group signature scheme. In International
Workshop on Public Key Cryptography. Springer, 31-46.

Dan Boneh, Manu Drijvers, and Gregory Neven. 2018. Compact multi-signatures
for smaller blockchains. In International Conference on the Theory and Application
of Cryptology and Information Security. Springer, 435-464.

Dan Boneh and Matt Franklin. 2001. Identity-based encryption from the Weil
pairing. In Annual international cryptology conference. Springer, 213-229.

Dan Boneh, Sergey Gorbunov, Riad Wahby, Hoeteck Wee, and Zhenfei Zhang.
2020. BLS Signatures. Internet-Draft draft-irtf-cfrg-bls-signature-04. IETF
Secretariat. https://tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04 https:
//tools.ietf.org/html/draft-irtf-cfrg-bls-signature-04.

Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the
Weil Pairing. In Advances in Cryptology — ASIACRYPT 2001, Colin Boyd (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 514-532.

Vitalik Buterin. 2013. Ethereum: A Next-Generation Smart Contract and Decen-
tralized Application Platform. https://ethereum.org/en/whitepaper/

C. Cachin C. Stathakopoulou. 2017. Research Report: Threshold Signatures for
Blockchain Systems. Technical Report ZUR1704-014. IBM Research — Zurich.
https://dominoweb.draco.res.ibm.com/reports/rz3910.pdf

Yvo Desmedt. 1987. Society and group oriented cryptography: A new concept. In
Conference on the Theory and Application of Cryptographic Techniques. Springer,
120-127.

Whitfield Diffie and Martin Hellman. 1976. New directions in cryptography. IEEE
transactions on Information Theory 22, 6 (1976), 644-654.

Rosario Gennaro and Steven Goldfeder. 2018. Fast multiparty threshold ECDSA
with fast trustless setup. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 1179-1194.

Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. 2016. Threshold-
Optimal DSA/ECDSA Signatures and an Application to Bitcoin Wallet Security. In
Applied Cryptography and Network Security, Mark Manulis, Ahmad-Reza Sadeghi,
and Steve Schneider (Eds.). Springer International Publishing, Cham, 156-174.
Craig Gentry and Zulfikar Ramzan. 2006. Identity-based aggregate signatures. In
International workshop on public key cryptography. Springer, 257-273.

Steven Goldfeder, Rosario Gennaro, Harry Kalodner, Joseph Bonneau, Joshua
Kroll, Edward Felten, and Arvind Narayanan. 2015. Securing Bitcoin wallets via
anew DSA/ECDSA threshold signature scheme. http://stevengoldfeder.com/
papers/threshold_sigs.pdf

Lein Harn. 1994. Group-oriented (t, n) threshold digital signature scheme and
digital multisignature. IEE Proceedings-Computers and Digital Techniques 141, 5
(1994), 307-313.

Jay Tillay Johnson. 2021. Recommendations for Distributed Energy Resource Access
Control. Technical Report. Sandia National Lab.(SNL-NM), Albuquerque, NM
(United States).

Michat Krél, Karim Habak, David Oran, Dirk Kutscher, and Ioannis Psaras. 2018.
Rice: Remote method invocation in icn. In Proceedings of the 5th ACM Conference
on Information-Centric Networking. 1-11.

Gregory Maxwell, Yannick Seurin, and Pieter Wuille. 2019. Simple Schnorr multi-
signatures with applications to Bitcoin. , 2139-2164 pages. https://doi.org/10.
1007/510623-019-00608-x

Daniel Meirovitch and Lixia Zhang. 2021. NSC — Named Service Calls, or a Remote
Procedure Call for NDN. Technical Report NDN-0074, Revision 1. NDN.

Ilya Moiseenko. 2014. Fetching content in Named Data Networking with embedded
manifests. Technical Report NDN-0025, Revision 1. NDN.

Philipp Moll, Varun Patil, Nishant Sabharwal, and Lixia Zhang. 2021. A Brief
Introduction to State Vector Sync. NDN, Technical Report NDN-0073, Revision 2
(2021).

Philipp Moll, Wentao Shang, Yingdi Yu, Lijing Wang, Alexander Afanasyev, and
Lixia Zhang. 2021. A survey of distributed dataset synchronization in Named
Data Networking. NDN, Technical Report NDN-0053, Revision 2 (2021).

Satoshi Nakamoto. 2009. Bitcoin: A peer-to-peer electronic cash system. http:
//www.bitcoin.org/bitcoin.pdf

Kathleen Nichols. 2019. Lessons learned building a secure network measure-
ment framework using basic NDN. In Proceedings of the 6th ACM Conference on
Information-Centric Networking. 112-122.

The Ethereum Project. 2021. Ethereum 2.0 Specifications. https://github.com/
ethereum/eth2.0-specs.

Pairing-Friendly Curves. Internet-Draft draft-irtf-cfrg-pairing-friendly-curves-
09. IETF Secretariat. http://www.ietf.org/internet-drafts/draft-irtf-cfrg-
pairing-friendly-curves-09.txt http://www.ietf.org/internet-drafts/draft-irtf-
cfrg-pairing-friendly-curves-09.txt.

Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (Nov. 1979),
612-613. https://doi.org/10.1145/359168.359176

Mitsunari Shigeo. 2021. BLS threshold signature. https://github.com/herumi/bls.
Victor Shoup. 2000. Practical threshold signatures. In International Conference on
the Theory and Applications of Cryptographic Techniques. Springer, 207-220.
The NDN Project Team. 2021. ndn-cxx: NDN C++ library with eXperimental
eXtensions. https://github.com/named-data/ndn-cxx.

The NDN Project Team. 2021. NDN Packet Format Specification version 0.3:
Signature. https://named-data.net/doc/NDN-packet-spec/0.3/signature.html
Accessed: 2021-04-20.

The NDN Project Team. 2021. NDN Packet Format Specification version 0.3:
Signed Interest. https://named-data.net/doc/NDN-packet-spec/0.3/signed-
interest.html Accessed: 2021-04-20.

The NDN Project Team. 2021. Validator Configuration File Format.
https://named-data.net/doc/ndn-cxx/current/tutorials/security-validator-
config.html Accessed: 2021-04-20.

The Smart Grid Interoperability Panel — Smart Grid Cybersecurity Committee.
2014. NISTIR 7628 Rev. 1: Guidelines for Smart Grid Cybersecurity. Technical
Report. NIST.

Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas,
Guy Golan Gueta, and Srinivas Devadas. 2020. Towards Scalable Threshold
Cryptosystems. In 2020 IEEE Symposium on Security and Privacy (SP). 877-893.
https://doi.org/10.1109/SP40000.2020.00059

Yingdi Yu, Alexander Afanasyev, David Clark, ke claffy, Van Jacobson, and Lixia
Zhang. 2015. Schematizing Trust in Named Data Networking. In Proc. of ACM
ICN.

Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick Crowley,
Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al. 2014. Named data
networking. ACM SIGCOMM Comp. Comm. Review (2014).

Zhiyi Zhang, Alexander Afanasyev, and Lixia Zhang. 2017. NDNCERT: Universal
Usable Trust Management for NDN. In Proceedings of the 4th ACM Conference on
Information-Centric Networking (Berlin, Germany) (ICN ’17). ACM, New York,
NY, USA, 178-179. https://doi.org/10.1145/3125719.3132090

Zhiyi Zhang and Sigi Liu. 2021. NDN-MPS Source Code Repository on GitHub.
https://github.com/UCLA-IRL/ndn-multi-party-signature. Accessed: 2020-06-01.
Zhiyi Zhang, Vishrant Vasavada, Siva Kesava Reddy K., Eric Osterweil, and Lixia
Zhang. 2019. Expect More from the Networking: DDoS Mitigation by FITT
in Named Data Networking. CoRR abs/1902.09033 (2019). arXiv:1902.09033
http://arxiv.org/abs/1902.09033

Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mastorakis,
Yanbiao Li, Alexander Afanasyev, and Lixia Zhang. 2018. An Overview of Security
Support in Named Data Networking. IEEE Communications Magazine 56, 11
(November 2018), 62-68. https://doi.org/10.1109/MCOM.2018.1701147
Meiyuan Zhao, Sean W. Smith, and David M. Nicol. 2005. Aggregated Path
Authentication for Efficient BGP Security. In Proceedings of the 12th ACM
Conference on Computer and Communications Security (Alexandria, VA, USA)
(CCS °05). Association for Computing Machinery, New York, NY, USA, 128-138.
https://doi.org/10.1145/1102120.1102139

