
YaNFD: Yet another Named Data Networking Forwarding
Daemon

Eric Newberry
UCLA

Los Angeles, California, USA
enewberry@cs.ucla.edu

Xinyu Ma
UCLA

Los Angeles, California, USA
xinyu.ma@cs.ucla.edu

Lixia Zhang
UCLA

Los Angeles, California, USA
lixia@cs.ucla.edu

ABSTRACT
We have developed YaNFD as a new software packet forwarder for
NDN. YaNFD achieves compatibility with existing NDN applica-
tions and forwarders, as well as high throughput. YaNFD features
multi-threaded forwarding, a smaller and more streamlined code-
base compared to existing implementations, and can be managed
using existing NDN forwarder management utilities and protocols.
In this paper, we discuss our implementation, including how it
differs from previous forwarders based upon lessons learned dur-
ing their development and use over the span of multiple years.
Additionally, we present the lessons learned from our experience
developing a new forwarder for NDN from the ground up.

CCS CONCEPTS
• Networks → Routers; Network performance analysis.

KEYWORDS
Named data networking, Information-centric networking, Forwarder
design

ACM Reference Format:
Eric Newberry, Xinyu Ma, and Lixia Zhang. 2021. YaNFD: Yet another
Named Data Networking Forwarding Daemon. In 8th ACM Conference
on Information-Centric Networking (ICN ’21), September 22–24, 2021, Paris,
France. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3460417.
3482969

1 INTRODUCTION
The Named Data Networking [32] (NDN) network architecture was
developed in response to the gradual shift of Internet traffic away
from host-to-host communication (e.g., file transfers and email) to
content retrieval (e.g., streaming video). NDN replaces the state-
less, push-based model of IP with stateful, pull-based requests for
named, secured pieces of data. Because NDN pushes semantically-
meaningful application layer identifiers down into the network
layer, host identifiers are not used to request content, eliminating
their use in the core forwarding processes.

Since NDN’s stateful forwarding mechanisms requires a signifi-
cantly different data plane architecture than IP’s stateless forward-
ing, new packet forwarder implementations are required. As NDN

ICN ’21, September 22–24, 2021, Paris, France
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8460-5/21/09.
https://doi.org/10.1145/3460417.3482969

is still in development, these forwarders are not implemented in
hardware (on routers) or the kernel (on end hosts), as they are for
IP – instead, they operate as user-space software.

For many years, the primary forwarder used for both experimen-
tation and development in NDN has been the NDN Forwarding
Daemon (NFD) [24]. NFD was among the first forwarders designed
specifically for NDN and its development produced many innova-
tive solutions to address the problems introduced by NDN’s state-
ful forwarding plane. However, NFD is limited in some scenarios
by its complex single-threaded forwarding implementation and
heavyweight storage and compilation requirements. As such, new
forwarders have been developed for other scenarios with different
requirements, such as IoT or high-speed network cores. Despite
this, until recently, there have been no attempts to provide alter-
natives to NFD for the general-purpose computing edge, such as
personal computers and home routers. One exception is a recent
effort reported in [5], which extends NFD to provide multithread
support, and has demonstrated significant improvements over NFD.

Given the opportunity to create a more efficient NDN forwarder
for computing edges, we designed a new forwarder, known as
YaNFD, from the ground up 1. YaNFD inherits no code from NFD
and is written in Go, a modern high-level programming language.
Designing YaNFD from scratch gave us the opportunity to evalu-
ate which features from NFD were necessary for NDN forwarding
and which we could safely discard or replace. As such, we have
streamlined the NDN forwarding pipeline and have avoided many
of the pitfalls that come from adapting an existing codebase to a
specification [20] that is still under active development. Our evalua-
tions demonstrate that YaNFD is able to achieve better performance
than NFD, while having significantly smaller codebase and storage
footprints. Additionally, we have provided further proof that multi-
threaded forwarding for NDN is not only faster, but quite feasible
to design and straightforward to implement.

2 BACKGROUND
In this section, we provide an overview of the Named Data Net-
working (NDN) architecture (Section 2.1) and existing software
packet forwarders for NDN, including lessons learned from these
forwarders (Section 2.2).

2.1 Named Data Networking
Named Data Networking (NDN) is a network architecture that radi-
cally differs from the IP network architecture in use on the Internet
today [16, 32]. NDN is an information-centric networking (ICN)
architecture, meaning that it pushes the semantically-meaningful

1The source code for YaNFD can be found at https://github.com/named-data/YaNFD

30

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3460417.3482969
https://doi.org/10.1145/3460417.3482969
https://doi.org/10.1145/3460417.3482969
https://github.com/named-data/YaNFD
https://creativecommons.org/licenses/by/4.0/

ICN ’21, September 22–24, 2021, Paris, France Eric Newberry, Xinyu Ma, and Lixia Zhang

content identifiers used in the application layer down into the net-
work layer. This allows forwarding to be performed directly on
content “names”, instead of the likely unrelated host identifiers.

NDN’s design provides a number of benefits and optimizations [32]
that would require application-layerworkarounds or complex schemes
in architectures based on host identifiers (such as IP). These include
implicit multipath forwarding, implicit multicasting, implicit mul-
tihoming, loop detection, in-network caching, and semantically-
meaningful security policies that can secure data both in transit
and in storage using the same mechanisms [33].

Many of these features are enabled through NDN’s use of a state-
ful forwarding plane [31], in contrast to the stateless forwarding
plane used in IP. This stateful forwarding plane is composed of
several data structures with distinct purposes:

• The Pending Interest Table (PIT) tracks outstanding requests
for content (known as “Interests”), which are satisfied by
returning pieces of content (sent in “Data” packets). Data
packets can match Interests whose names are either exact
matches or prefixes of their names. Exact matching is the
default behavior [20], but prefix matching can be enabled for
specific Interests by adding a flag field. The PIT also serves
to aggregate requests for the same content name and allows
loops to be detected through the inclusion of a randomly-
generated “nonce” field in every Interest packet.

• The Forwarding Information Base (FIB) provides longest-
prefix matching over NDN’s hierarchical content names
during the forwarding process. Its matching behavior is com-
parable to the forwarding table in IP devices.

• The Routing Information Base (RIB) stores and aggregates
routes to content that have learned from a variety of sources,
including routing protocols, manually-set routes, and ap-
plication advertisements. Its contents are periodically “flat-
tened” into the FIB to allow for fast lookups during the for-
warding process, instead of needing to parse through the
larger and more complex RIB.

• The Content Store (CS) caches recently-forwarded Data pack-
ets so that they can be used to satisfy future Interests for the
same or similar content (using either exact or longest-prefix
matching, like in the PIT).

• TheDead Nonce List (DNL) provides long-term loop detection
for Interest packets. The names and nonces of PIT entries
that have “expired” are moved to the DNL to reduce the stor-
age overhead of the PIT. Similarly to the PIT, it compares
an Interest’s name and randomly-generated “nonce” field
against stored records, dropping them if there is a match.
However, in most NDN forwarders, this matching is per-
formed using probabilistic hashing to further reduce storage
and lookup overhead.

• The Strategy Table indicateswhich “forwarding strategy”will
make forwarding decisions for a given prefix (using longest-
prefix matching). Forwarding strategies make forwarding
decisions on a per-packet basis. They operate as modules
integrated into the forwarder to allow applications flexibility
in how their Interests will be forwarded. Strategies determine
which nexthop(s) Interests will be sent on, and can even
choose to drop an Interest and not forward it further. The

choice of strategy can be set for any arbitrary name prefix,
allowing the optimal forwarding strategy to be set for each
application (or portion of application) in the network, instead
of a one-size-fits-all approach, as is taken for packets in IP.
In current forwarders, the strategy setting must be changed
individually on every forwarder in the network.

Forwarded packets are sent from and received on “faces”, which
in NDN can be either a local connection to a producer or consumer
application on the same host, or a connection over a physical in-
terface or an overlay tunnel to a remote forwarder. This allows
all connections to be treated similarly by the forwarder, greatly
simplifying the forwarding logic.

2.2 Existing Forwarders
The NDN project has been under active development and use for
over a decade and, during this time, multiple software packet for-
warders have been developed to support both research and software
development. We evaluate each of these forwarders in turn, dis-
cussing their strengths and weaknesses, along with the lessons we
have gleaned from the development and use of each forwarder.

2.2.1 CCNx. In the first few years of the NDN project, the existing
CCNx forwarder [8] for ICN content was utilized for research and
development work. However, due to the changing requirements of
the NDN project and lessons learned as the architecture saw more
use, it was decided to implement a new forwarder, known as NFD
(as discussed later on). CCNx made several innovations that were
later incorporated into NFD, such as combining the PIT, FIB, and
CS into a single data structure, known as a “name tree”. However,
CCNx is now incompatible with the NDN specification due to the
divergence of the NDN protocol and forwarding specifications from
those used by CCNx.

2.2.2 NFD. The Named Data Networking Forwarding Daemon
(or NFD) [24], was designed as a general-purpose software packet
forwarder for NDN, with its implementation commencing in 2014.
NFD is the de facto “official” forwarder for the NDN project and
has been extensively maintained and refactored over the years
as the NDN architecture and specifications have changed. It is
worth noting that, although NFD is the reference implementation
of the NDN protocol, it is not the specification of the protocol,
which is a separate document [20]. Therefore, just because NFD
behaves in a certain way, this does not require that every other
forwarder behave in the same way to be compatible with the NDN
protocol. This difference can also be thought of as follows: the
protocol specification states “what” an NDN-compatible must and
may do, while the NFD implementation provides one way “how”
such behavior can be realized.

NFD was designed with flexibility in mind and is the current
forwarder of choice for general purpose edge environments (e.g.,
personal computers), and is used on the official public NDN project
testbed [21]. Additionally, NFD’s design has been documented ex-
tensively [3].

One of NFD’s most significant limitations is that it only uses a
single thread for its entire forwarding pipeline, including receiving
packets, processing them, and then sending them out again – this
can limit its forwarding throughput. Moreover, most management

31

YaNFD: Yet another Named Data Networking Forwarding Daemon ICN ’21, September 22–24, 2021, Paris, France

operations and performed in the main forwarding thread (with
the notable exception of RIB management). Additionally, NFD was
designed with modularity in mind and thus features many generic
interfaces that have rarely been expanded beyond one or two con-
crete implementations. For example, NFD’s face system is quite
elaborate, allowing in theory for both the link-layer services and un-
derlying transport mechanisms to be swapped in and out with ease.
However, as of this writing, only one concrete implementation of a
link service has been added to NFD (the NDNLPv2 link service [23]),
and, although its design has been improved over the years, other
components in the forwarder have been implemented to expect an
NDNLPv2-compatible link service, going against the ideal of true
modularity in the NFD face system. These design goals also make
the NFD codebase quite complex and daunting to new developers,
potentially dissuading them from improving NFD or utilizing it in
scenarios where implementation changes are necessary.

While issues like the ones mentioned above are pervasive in
the NFD codebase, many good lessons can be gleaned from NFD’s
innovations and development processes. The general structure of
the NFD codebase isolates unrelated component groups quite well,
such as splitting the forwarding layer from the face layer. Moreover,
there are instances where modularity is done right and is frequently
utilized to provide new features, such as the forwarding strategy
system – this extension point has seen much use of the years,
particularly in the research literature [1, 6, 17, 18]. Additionally,
NFD integrates multiple data structures [31] (namely, the FIB, PIT,
Strategy table, and Measurements table) into a single data structure,
like CCNx’s name tree, to reduce storage overhead [3].

2.2.3 ndn-lite. Despite NFD’s versatility, it can be quite “heavy-
weight” in terms of resource requirements and compilation over-
head. This is not ideal for mobile and constrained edge devices
where there are significant system limitations in terms of power
and memory. These limitations have led to the development of
the ndn-lite [19] forwarder. Given the constraints of mobile and
related devices, ndn-lite makes several design decisions aimed at
simplifying the forwarder design and codebase. The most notable
difference between ndn-lite and other forwarders is that ndn-lite
runs in the same thread as the local application utilizing it, in-
stead of as a separate process communicating with applications
over socket-based faces. While this means that a single forwarder
can only support a single application, it also allows the overhead
of maintaining and using a network connection to the forwarder
to/from said application to be eliminated.

Another simplification made by ndn-lite is the removal of nega-
tive acknowledgements (or “Nacks”) from the forwarding pipeline.
Nacks are sent when an upstream forwarder cannot forward an
Interest further for some reason, such as there being no matching
route, a link being too congested, or the Interest being a duplicate of
another recent Interest. Nacks increase the complexity of the NDN
forwarding pipeline by adding a third type of packet that must be
handled separately. In fact, it has been suggested that Nacks, being
a later addition to the NDN forwarding pipeline, impact forwarding
in unexpected ways due to packet ordering [15]. Moreover, there
are security issues associated with using network-layer Nacks [7].
Instead, timeouts can be used as an indication that an Interest needs
to be retransmitted from the consumer application.

From ndn-lite’s simplified design, we can learn that removing
excessive features and overly complex design aspects (such as false
modularity and excessive network-layer pipelines) can reduce the
size and complexity of the forwarder codebase, leading to a clearer
design and an increase ease of modification if future circumstances
necessitate such a change. Moreover, by reducing the scope of the
scenarios a forwarder is designed to run in, one can make better
assumptions that allow one to optimize forwarder performance and
reduce forwarding overhead.

2.2.4 NDN-DPDK. While NFD was designed with research and
development in mind, as discussed above, it can suffer from perfor-
mance issues at scale. Therefore, as NDNmoves toward deployment
at larger scales, it will be unable to keep up with the demands of
core networks. The NDN-DPDK [28] forwarder was designed for
high throughput networks and is capable of forwarding NDN traffic
at rates of up to 100 Gbps, all the while running on general-purpose,
albeit high-performance, computing hardware. NDN-DPDK is able
to significantly outperform other forwarders by using the Data
Plane Development Kit (DPDK) [10] system to process received
packets. Using DPDK allows the forwarder to bypass the operating
system’s networking stack and perform high-speed network packet
processing directly in user space.

To enable high performance forwarding, NDN-DPDK has made
a number of design improvements, including the use of multiple
forwarding threads, separate threads for input and output on each
physical interface, and more efficient lookup algorithms.

When using multiple threads, one of the most important con-
siderations is which forwarding thread each incoming packet will
be “dispatched” to. NDN-DPDK dispatches Interests based upon
the lower-order bits of the hash of the first 𝑘 components (by de-
fault 2) of their name – a scheme that appears to be quite similar
to [29]. Since the forwarding state of an Interest is stored only
in the thread that processes it, Data packets that satisfy Interests
must be dispatched to the same thread(s) that the Interest(s) they
satisfy were earlier dispatched to. Given that Interests can in many
cases be satisfied by Data packets with names “longer” (in terms of
number of components) than they are, NDN-DPDK cannot simply
perform a similar prefix-based dispatching for Data packets as it
does for Interest packets, while still meeting its performance goals.
Instead, it must rely upon “PIT tokens” – pieces of information
attached to outgoing Interests and returned with their respective
satisfying Data packets – to indicate which thread should process
a Data packet. If neighboring forwarders do not attach PIT tokens
to returning Data packets, NDN-DPDK will be unable to process
them and such Data packets will be dropped, requiring support for
this feature in adjacent forwarders.

However, while NDN-DPDK is able to forward packets at high
speed, its system requirements make it infeasible for use at the
network edge. Namely, NDN-DPDK cannot be run without DPDK
and, at this time, DPDK only supports a subset of NIC devices at full
forwarding speeds [11, 25] – these specific NICs may not be present
on edge systems. Moreover, to achieve high levels of performance,
NDN-DPDK runs the DPDK Poll-Mode Driver (PMD) in an infinite
loop with no sleeping, leading to around 100% CPU load on at least
one core all the time. This is not feasible in edge environments, for
obvious reasons of increased power consumption and noise, as well

32

ICN ’21, September 22–24, 2021, Paris, France Eric Newberry, Xinyu Ma, and Lixia Zhang

as reducing the performance of other apps and potentially harming
the user experience.

2.2.5 MW-NFD. Multi-Worker NFD (MW-NFD) [5] is an NDN
forwarder developed from a fork of the NFD codebase. MW-NFD has
modified NFD’s design to utilize multiple threads for forwarding, as
compared to NFD’s single-threaded forwarding architecture. MW-
NFD creates a set of “worker” threads to perform NDN’s stateful
packet forwarding, as well as an input thread for each face. However,
it gives responsibility for transmission on faces to worker threads,
instead of having a separate output thread for each face, as is done in
NDN-DPDK. MW-NFD uses a similar short name prefix dispatching
system to NDN-DPDK (based on the first 𝑘 name components, and
also using 𝑘 = 2 components by default) and uses PIT tokens to
dispatch returning Data packets. However, unlike NDN-DPDK, is
prefers, but not require, PIT tokens and will fall back to prefix
dispatching for Data packets if a received Data packet does not
have an attached PIT token [12].

After making their modifications to the NFD codebase, the au-
thors of MW-NFD were able to demonstrate forwarding speeds of
up to 13 times of those they were able to achieve with similar traffic
in NFD. At the same time, their forwarder maintains compatibility
with NFD and existing NDN applications that communicate with
NFD, allowing it to run in the same NDN network as NFD nodes and
provide the same communication interfaces for NDN applications
to use.

MW-NFD makes several design choices to allow multi-threaded
forwarding, including sharding data structures across threads –
namely, they shard the PIT, CS, FIB, and Measurements tables for
each worker thread. This necessitated that they develop mecha-
nisms to properly separate data into separate data structures across
threads, such as separating FIB entries by prefix. However, while
MW-NFD works around the major performance bottleneck of NFD,
namely the use of only a single thread for forwarding, it carries
over many of the other limitations of the NFD codebase, such as
false modularity and a complex codebase. Additionally, MW-NFD
uses near 100% CPU utilization polling in its input threads. This
can have a significant performance and power consumption impact
on edge devices, even during idle times.

3 DESIGN
The design of YaNFD is heavily inspired by the designs of multiple
previous NDN forwarders, as discussed in Section 2.2. Above, we
sought to extract “lessons learned” from our experiences imple-
menting and using NDN forwarders over the years. We use these,
as well as the improvements and optimizations to the NDN protocol
over the same time frame, to guide the design of our new NDN for-
warder. In this section, we discuss the forwarding piplines in use by
NDN, and then proceed to lay out the design of our new forwarder,
as well as the provide justifications for why made different design
decisions compared to existing NDN forwarders.

3.1 NDN Forwarding Pipelines
The forwarding pipelines of YaNFD approximately follow the de-
signs of NFD’s forwarding pipelines, as described in detail in NFD’s
“Developer’s Guide” [3]. However, we modified these pipelines to
accommodate the use of several thread-local, as opposed to global,

data structures. Additionally, we have modified the pipelines to
pass packets between the different components of the forwarding
pipeline using queues (utilizing Go’s “channels” feature), as opposed
to direct function calls. We also use channels to handle timeouts
and similar events, as opposed to callbacks in NFD.

NDN’s forwarding pipelines are unusual compared to other net-
working data paths, particularly those in IP, because they are state-
ful, with Data packets specifically “satisfying” specific Interests that
were earlier forwarded by the host. Additionally, NDN’s forward-
ing pipelines are different than these existing pipelines because
forwarding behavior differs in the network layer for different types
of packets (namely, the previously-mentioned Interests and Data
packets), as opposed to having a uniform forwarding pipeline for
all data plane packets. We now provide a high-level overview of
the NDN forwarding pipeline as implemented in YaNFD, derived
from [31] and [3].

3.1.1 Interest Pipeline. When an Interest is received our forwarder,
it first determines whether the Interest’s “hop limit” field (similar to
IP’s TTL field) has reached zero – if so, it will be dropped; otherwise,
the field will be decremented by one. Next, it checks whether the
Interest was received on a non-local face and, if so, whether is a local
management command – if such a “scope violation” is discovered,
the Interest will be dropped. After this, the Interest’s name and
nonce are first compared against the Dead Nonce List (DNL) –
the Interest will be dropped if a match is found in the DNL, as
this indicates that it is looping 2. Next, if a Forwarding Hint [4]
field is present in the Interest, our forwarder checks whether the
name contained in it matches the producer region configured in
the forwarder – if so, the Forwarding Hint field will be removed
from the Interest; otherwise, this field is left intact.

After performing these checks, our forwarder adds the Interest
to its Pending Interest Table (PIT). If an matching entry is found to
already exist in the PIT, the forwarder checks whether an incoming
face record for a different face already exists in the PIT entry with
the same nonce as the Interest; if so, the Interest will be dropped as
duplicate – drops do not occur if the same nonce is found for the
same incoming face, as this is treated as a retransmission instead
of a loop. Next, the “expiration timer” for the PIT entry will be
canceled, preventing the PIT entry from expiring.

If there was no existing incoming face record for the incoming
face in the PIT entry, the Interest’s name will be compared against
the entries in the forwarder’s Content Store (CS) to determine if
there is a cached Data packet that can be used to satisfy the Interest
without needing to forward it further. If so, this cached Data packet
will be returned on the face the Interest arrived on – the Interest
will be considered satisfied and the PIT entry’s expiration timer will
be restarted. Otherwise, an incoming face record for the incoming
face will be added to or updated in the PIT entry and the Interest
will continue in the pipeline.

Finally, the forwarder determines which face the Interest will
be sent out on. If the Interest contains a field that indicates which
face it should be sent out on (known as the “NextHopFaceId”), the
forwarder will use that face. Otherwise, the Interest name will be
compared against the Forwarding Information Base (FIB) to find the

2For performance, both NFD and YaNFD implement the DNL as a probabilistic data
structure that matches through hashing.

33

YaNFD: Yet another Named Data Networking Forwarding Daemon ICN ’21, September 22–24, 2021, Paris, France

appropriate nexthop(s), which are then passed to the forwarding
strategy layer, which forwards the Interest based upon its strategy-
specific policies 3. If no matching prefix can be found in the FIB,
the Interest will be dropped 4.

There are many opportunities to process Interests in parallel,
given that temporally local Interests for different names update
different entries in the PIT. Meanwhile, outside of the PIT, all data
structure interactions in the primary Interest forwarding pipeline
are read-only, providing excellent opportunities for parallelization,
such as via shared global data structures using readers-writers
locking [9].

3.1.2 Data Pipeline. Data packets follow the reverse forwarding
path(s) of the Interest(s) they satisfy. After performing similar
local/non-local scope checks as for Interests, Data packets are com-
pared to the PIT, finding all matching entries (if none are found, the
Data packet will be discarded, although a setting can allow such
“unsolicited” Data packets to be cached for future Interests). If more
than one matching PIT entry is found, the Data packet will be for-
warded to all downstream faces listed in each matching PIT entry. If
only a single matching PIT entry is found, the forwarding strategy
controlling the most specific namespace matching the Interest’s
name will be allowed to control the forwarding of the Data packet,
since there is no risk of a conflict between forwarding strategies.

Data packets are cached in the CS to allow them to satisfy future
Interests for the same or similar content. PIT entries matched by a
Data packet will be marked as satisfied, but will not be immediately
deleted – instead, they will be removed when its expiration timer
expires to allow Interest names and nonces to be migrated to the
DNL [3].

Unlike the Interest pipeline, the Data pipeline involves signifi-
cantly more write accesses to global Data structures, including both
the CS and PIT. Therefore, the problem of providing parallel Data
pipelines is more complex and must be handled via mechanisms
such as sharded data structures. We have addressed these barriers to
parallelization in the design of YaNFD, as discussed in the following
sections.

3.2 Design Overview
A high-level overview of YaNFD’s design is presented in Figure 1.
Our design features a user-configurable number of forwarding
threads (by default, eight), two threads for each face: one for receiv-
ing (input) and one for sending (output), and a separate manage-
ment thread. We inherited the link service/transport modular split
fromNFD (as shown in the figure), as this design allows each type of
transport (e.g., UDP, Unix stream, or Ethernet) to be treated identi-
cally by the forwarder. In this design, the link service provides com-
mon features as part of the link protocol – currently, we implement
NDNLPv2, which provides optional fragmentation/reassembly, hop-
by-hop reliability (not yet implemented at the time of writing), con-
gestion marking, and other features [23]. Meanwhile, the transport

3The Interest will be dropped before being sent to a non-local face if its hop limit was
decremented to zero to avoid sending packets that the next forwarder will simply drop.
4In some other NDN forwarders, the lack of a route will result in a negative acknowl-
edgement (Nack) being sent downstream. However, we made the decision to not
support Nacks in YaNFD, as we discuss later on.

is responsible for interface-specific operations, such as reading to
and writing from a socket or Ethernet packet capture handle.

The link service passes received packets on to the appropriate
forwarding thread by hashing complete names for Interests and
through PIT tokens for Data packets 5. PIT tokens generated by
YaNFD contain both the thread ID and the identifier of the par-
ticular PIT entry the Data packet satisfies. Packets are queued to
be processed in the order they are received by the appropriate
forwarding thread, which will then perform its forwarding compu-
tations, including passing Interests to the appropriate forwarding
strategy before pushing the packet on to the appropriate outgoing
face thread queue(s), which will then process and send the packets
using their link service and transport-specific mechanisms.

3.2.1 Interest Dispatching Logic. Notably, our design differs from
both NDN-DPDK and MW-NFD in that it uses the hash of the entire
Interest name to dispatch packets, instead of just the hash of a fixed-
length prefix. This is because we posit that only using the first 𝑘
name components may not effective at spreading work equally
among multiple forwarding threads when much of the traffic is for
the same prefix, particularly given how short the default value of 𝑘
is for both forwarders. While core routers, the target deployment
environment of NDN-DPDK, will likely forward a diverse set of
traffic at any given time, at the edge, it is quite likely that requests
for content under the same prefix will be sent out in a short period
of time (for example, requests under /net/named-data within the
Named Data Networking organization). Such behaviors will be
particularly notable when performing bulk data transfers where
one large object is split up into many segments, all of which would
likely be forwarded via the same forwarding thread when using
NDN-DPDK’s dispatching scheme.

Moreover, since one can predict which forwarding thread will
handle a given short prefix by knowing the hashing algorithm (or
reverse engineering it from PIT tokens sent upstream), it is easier
for attackers to selectively overload a given forwarding thread by
sending Interests under a given prefix. With full name hashing, one
would need to check that each generated Interest name hashes to the
given thread that one wishes to overload, since this will vary even
for very similarly named Interests. Meanwhile, with prefix-based
hashing, one could just send Interests under a given prefix as quickly
as possible, requiring less computing power than performing the
same attack on a full name hashing forwarder. Therefore, we take
a different approach in YaNFD and use the entire name for Interest
dispatching.

3.2.2 Global and Thread-specific Data Structures. Given that each
forwarding thread in YaNFD needs to be able to be operate without
blocking other forwarding threads asmuch as possible, we sought to
eliminate asmuchmutable shared state between forwarding threads
as possible. In this regard, while the FIB and Strategy tables change
relatively infrequently and are only used for read-only lookups by
the forwarding threads, the PIT, Content Store, and Dead Nonce List
are modified frequently. Meanwhile, the Measurements Table can

5For Data packets received from local producers, it is not feasible to expect a PIT token
to be attached to returning Data packets, since this is not part of the standard NDN
interface with applications. Therefore, in this case, we simply dispatch to multiple
forwarding threads based upon the hash of all prefixes of the Data name, dropping the
packet if there are no matching PIT entries.

34

ICN ’21, September 22–24, 2021, Paris, France Eric Newberry, Xinyu Ma, and Lixia Zhang

Figure 1: Design overview of YaNFD

be made lock-free by using atomic updates to the values contained
within. Therefore, we made the FIB and Strategy tables (combined
into a single tree-based data structure to reduce storage overhead),
as well as the Measurements table, global. Meanwhile, we gave
each forwarding thread a separate PIT, Content Store, and Dead
Nonce List (with the first two combined into a single tree-based
data structure to reduce storage overhead) 6.

When an update needs to be made to the global FIB-Strategy
Table, our separate management thread will lock it from being read
by forwarding threads using a readers-writers lock [9]. During
updates to FIB entries, routes obtained from various sources (e.g.,
statically-set by an administrator or originating from a routing pro-
tocol or application announcement) will be “flattened” and pushed
down from the RIB into the FIB.

Additionally, forwarding strategies need to be sharded among the
forwarding threads to avoid locking data structures in the strategy
layer. If forwarding strategies in different threads need to interact,
they can use the global Measurements Table, which allows lock-free
reads and writes.

Although the IP forwarding plane is significantly simpler than
the NDN forwarding plane, many of the issues we discuss above
with developing a multi-threaded forwarding plane for NDN can be
compared to past efforts to develop multi-threaded IP forwarders.
In particular, both forwarding planes involve shared data structures
that must be atomically updated, such as the Pending Interest Table,
FIB, Content Store, and Strategy table in NDN and the FIB in IP.
6The Dead Nonce List was not combined with the PIT-CS because it is a probabilistic,
hash-based data structure, as opposed to an exact/prefix-matching, tree-based data
structure

4 METHODOLOGY
We conducted evaluations to evaluate both the correctness and
performance of YaNFD. Our evaluations were conducted on an
Ubuntu 20.04 server. This server features an AMD EPYC 7702P
processor [2], with 64 physical cores (128 threads) running at 2.0
GHz, and 256 GB of RAM.We now discuss the applications we used,
along with the design of our experiments.

4.1 Applications
To put the forwarders we evaluated under realistic strain, our eval-
uations considered their performance when transferring large files.
As NDN uses pull-based communication, content is sent by a “pro-
ducer” application (in “Data” packets) in response to requests (in
“Interest” packets) made by a “consumer” application. Therefore,
our evaluations were conducted using the NDN file transfer applica-
tion pair, ndnputchunks (producer) and ndncatchunks (consumer),
which are part of the ndn-tools package [22]. Our evaluations used
version 0.7.1 of the ndn-tools package.

The ndnputchunks producer divides the file into multiple seg-
ments, creating Data packets named like /<prefix>/<version>
/<segment>, with “segment” identifying the order of the particu-
lar segment within the file being transferred. In our performance
evaluations, our “prefix” consisted of a single unique name compo-
nent for each file two bytes in length, and we specified a constant
four byte “version” for all of our evaluations to ensure consistent
hashing across trials. Each segment created by ndncatchunks (at
the time of writing) is 4400 bytes in length, except the last segment,
which contains any remaining data. Given that the Data packet

35

YaNFD: Yet another Named Data Networking Forwarding Daemon ICN ’21, September 22–24, 2021, Paris, France

header fields when using a short prefix like the one we are using for
our evaluations are only up to a few tens of bytes in length, we can
presume the size of the average Data packet in our evaluations to be
on the order of 4400 bytes. Meanwhile, Interest packets sent in our
evaluations will be significantly shorter, since they only contain
the requested name and a few other header fields on the order of
tens of bytes. Given that one Interest will retrieve one Data packet,
the theoretically perfect traffic mixture between Interest and Data
packets will be 1:1. However, given the likelihood of congestion
or other events that cause the loss of Interest or Data packets, this
ratio will rarely be exactly 1:1.

The ndncatchunks consumer retrieves a complete copy of the lat-
est version of file. If no specific version is specified to the consumer,
the latest version of the file will first be discovered using a “discov-
ery Interest” [22]. ndncatchunks supports a variety of congestion
control algorithms to adapt its receive window size at runtime. By
default, it uses CUBIC congestion control with support for explicit
congestion marking by intermediate nodes [27]. However, we found
the use of congestion control is result in significant and unexpected
variations in performance due to the unpredictability of loss and
congestion events. Therefore, we disabled congestion control and
instead used a fixed window size of 100 segments. This means that
that each consumer would only ever have up to 100 outstanding
Interests at a given time. Therefore, after filling up the window, an
Interest for a previously unrequested segment could only be sent
after a segment in the current window was received.

4.2 Experimental Design
We evaluated our forwarder for both correctness (i.e., meeting the
protocol specification and being able to interoperate with NFD) and
performance (i.e., how quickly it is able to forward traffic). For each
type of experiment, we used a different topology and application
setup, which we will now discuss in turn.

4.2.1 Correctness. Our correctness evaluations used two virtual-
ized hosts running Ubuntu 20.04 on VirtualBox 6.1.16. These hosts
were connected using a VirtualBox internal network. The producer
host ran a forwarder and the “ndnputchunks” producer applica-
tion from ndn-tools [22]. Meanwhile, the consumer host ran a
forwarder and the complementary “ndncatchunks” consumer ap-
plication. Using these applications, we transferred a 100 MB file
from the producer to the consumer. This simple topology is shown
in Figure 2a.

4.2.2 Performance. Our performance evaluations utilized three
producers and three consumers, each connected directly to the
forwarder over Unix stream socket faces. A diagram of our exper-
iment is shown in Figure 2b. Each producer application served a
large file under a different prefix, with each consumer requesting
a different file. We repeated our evaluations for different file sizes.
We conducted the same evaluation scenario for YaNFD, NFD, and
MW-NFD, repeating 100 trials for each forwarder and each file size,
repeating any trials where a transfer did not complete successfully
due to the use of a fixed window.

For the twomulti-threaded forwarders in our evaluations (YaNFD
and MW-NFD), we set the number of forwarding threads to eight,
since this is just over twice the number of flows, while still being a

Table 1: Values of Interest packet fields during correctness
transfers.

CanBePrefix Yes (first Interest), No (further Interests)
MustBeFresh Yes (first Interest), No (further Interests)

Nonce Random 4 byte value
InterestLifetime N/A (implicitly 4000 ms [20])

Table 2: Values of Data packet fields during correctness trans-
fers.

ContentType N/A (implicitly “BLOB” [20])
FreshnessPeriod 10 ms (first Data), 10000 ms (further)

FinalBlockId N/A (first Data), Final segment ID (further)
SignatureType DigestSha256 [20]
SignatureValue 32 byte SHA-256 hash of Content

power of two. We chose a power of two because network adminis-
trators would likely set the number of threads to a power of two,
given that the number of cores in modern CPUs tend to be a power
of two.

The length of the prefix of each Data packet was set to a single
component, bringing each Data packet’s full name length to three
components. As MW-NFD uses a prefix of each Interest’s name
for forwarding, we changed its default settings to have the prefix
be the maximum length of each Interest packet in our scenario –
otherwise, all Interests and Data for the same transferred file would
be processed by the same worker thread, which would unduly
impact performance by effectively eliminating any multi-threading
potential for a given flow.

The Content Stores were disabled for all trials, as we found an
issue where RTTs increased greatly with time for both NFD and
YaNFDwith them enabled. As in-network caching in NDN is simply
an optimization to avoid needing to forward an Interest all the way
to the producer if a content has recently been requested through a
point in the network closer to the consumer, disabling the use of
the CS does not impact forwarding correctness.

5 EVALUATION
We conducted multiple evaluations of YaNFD to determine the cor-
rectness of its implementation (i.e., whether it was able to forward
NDN traffic properly), whether it was able to interoperate with
existing NDN forwarders, and to determine how well it performed
compared to existing NDN forwarders for edge environments, both
in terms of forwarding rates and overhead.

5.1 Correctness and Interoperability
An important consideration when developing a network application
that intends to communicate with existing network applications
is protocol compatibility. While the NFD forwarder is not itself
the NDN protocol specification, it is the reference implementation
of the NDN protocol specification. Therefore, because of this, and
because NFD is used in most existing NDN networks, we evaluated
our forwarder’s correctness by evaluating its ability to interoperate
with (i.e., correctly exchange Interest and Data packets) with NFD.

36

ICN ’21, September 22–24, 2021, Paris, France Eric Newberry, Xinyu Ma, and Lixia Zhang

P R 1 R 2 C

(a) Correctness evaluation scenario. Red indicates pro-
ducer applications, blue indicates consumer applications,
and green indicates forwarder software.

P 1

R

P 2 P 3 C 1 C 2 C 3

(b) Performance evaluation scenario. Red indicates producer applications, blue
indicates consumer applications, and green indicates the forwarder software
that was changed between YaNFD, NFD, and MW-NFD.

Figure 2: Topologies used for our evaluations.

During the development of YaNFD, we evaluated it against the
NDN testbed [21] to ensure that it is both able to perform basic NDN
forwarding operations and correctly interoperate with existing
NDN forwarders – in particular, NFD, which is the only forwarder
currently running on the testbed backbone. We found that we
were able to successfully send NDN pings (from ndn-tools [22]) to
various nodes on the testbed, some operating over multiple hops
from where we connected to the testbed. As part of this, we pinged
multiple testbed nodes throughout the testbed (connecting through
a North American node), including testbed nodes in Asia, Europe,
and South America.

Although the above evaluation confirms that YaNFD is, at a high
level, compatible with existing NDN forwarders, it does not eval-
uate YaNFD’s correctness is regards to more detailed specifics of
the NDN protocol specification. These include the various optional
fields present in Interest packets, such as MustBeFresh and Can-
BePrefix, as well as longest-prefix matching for names. To evaluate
the correctness of our implementation with more complex aspects
of the NDN protocol spec, we utilized the ndnchunks consumer-
producer application pair from ndn-tools [22].

We conducted two experiments to transfer a 100 MB file between
two directly-connected nodes virtualized using Ubuntu 20.04 run-
ning on VirtualBox. In each experiment, one node ran NFD and the
other ran YaNFD, as discussed in Section 4.2.1. The producer and
consumer applications were swapped between the YaNFD and NFD
nodes in each experiment in order to provide coverage of both roles.
In both, experiments ndnchunks was able to successfully transfer
the file, which indicates that our forwarder is able to correctly in-
teroperate with existing NDN networks running NFD, allowing it
to be deployed in combination with NFD.

We have listed the fields present in the Interest and Data packets
during these transfers (excluding the “Name” and “Content” fields)
in Tables 1 and 2, respectively.

5.2 Performance and Overhead
5.2.1 Forwarding Performance. To evaluate the raw throughput
available through an NDN forwarder, one can have one or more
pairs of producers and consumers connected directly through a
single forwarder. This excludes external factors such as network
delay and the overhead of simulated or emulated topologies. We
conducted file transfer tests using ndnchunks [22] for three NDN
forwarders for edge environments: YaNFD, NFD [24], and MW-
NFD [12].

We evaluated using three consumers requesting a different con-
tent from one of three producers on the same host. Our evaluations
were conducted in terms of “goodput” (throughput from the per-
spective of the application layer) for three file sizes: 100 MB, 1 GB,
and 5 GB. We averaged these values across the three consumers
and then averaged this value over all trials for the same forwarder
and the same file size. The results of our evaluations are shown in
Figure 3.

We found that YaNFD was able to perform better than NFD for
the larger two of the three file sizes, while it was just slower than
NFD with the smallest of the three file sizes. Meanwhile, MW-NFD
significantly outperforms the other forwarders in all three scenarios.
We believe the combination of multi-threading and busy waiting
allows MW-NFD to achieve much greater forwarding rates than
NFD and YaNFD. Moreover, its lack of an output queue for faces
(and instead having the forwarding/worker thread directly send
on the socket) allows it to avoid the overhead of another queue, as
exists between the forwarding thread and the face output thread in
YaNFD.

Interestingly, YaNFD’s performance appears to only increase
with file size, almost doubling from 100 MB to 5 GB. This indicates
that YaNFD has not yet reached its full forwarding capacity in these
evaluations, unlike NFD and MW-NFD.

At the same time, we believe that YaNFD is unable to achieve
the same forwarding rates as MW-NFD due to a lack of busy wait-
ing (as discussed above) and the overhead of garbage collection
in the Go programming language. We profiled the performance
of YaNFD and found that it spent an average of 45% of its total
runtime (over our five profiled runs) running the garbage collection
mark worker [14] when transferring three 1 GB files. We believe
that the lack of a garbage collector in C++ provides a significant
performance advantage to MW-NFD and NFD, since they do not
have this overhead.

Additionally, we ran YaNFD again with only a single forwarding
thread and found that it performed significantly slower than YaNFD
with eight forwarding threads. This indicates that YaNFD’s multiple
forwarding threads greatly improve its performance.

5.2.2 Overhead. It is important to consider the overhead of run-
ning an NDN forwarder on edge systems, such as desktop and
notebook computers, since these systems run other applications. If
using an NDN forwarder significantly impacted the battery life or
responsiveness of a computer through excessive CPU and memory

37

YaNFD: Yet another Named Data Networking Forwarding Daemon ICN ’21, September 22–24, 2021, Paris, France

Figure 3: “Goodput” (application-layer throughput) of file transfers with ndnchunks when both the producer and consumer
were running on the same host. A fixed-sized congestion window (𝑊 = 100 packets) was utilized. Error bars indicate the
calculated 95% confidence interval using a normal distribution.)

usage, it could hamper the deployment of NDN in edge environ-
ments 7.

Therefore, we evaluated the runtime overhead of forwarding
during the above scenario. Our evaluations were conducted in
terms of both CPU utilization and memory utilization. We used
psrecord [26] to track these metrics and generate a plot for each
trial. The overheads of each forwarding during a trial of the scenario
above are presented in Figure 4.

As can be seen in the figures, the CPU andmemory utilizations of
YaNFD and MW-NFD are significantly greater than NFD during file
transfers. Notably, the CPU utilizations of YaNFD and MW-NFD are
over 100% due to the use of multi-threading. MW-NFD’s relatively
consistent high CPU utilization is explained by its use of 100% CPU
polling on the each on the 8 CPU cores it was assigned to. Mean-
while, YaNFD experiences significantly greater CPU utilization for
the duration of the transfer – this is most likely caused by Go’s
multi-threading system, which spreads a large number of “gorou-
tines” across a large number of worker threads. Since the machine
we conducted these evaluations on has 64 physical cores (with 128
threads), the numbers seen in the figure indicate a large number of
simultaneous workers on a large number of cores. We conducted an-
other evaluation of YaNFD’s overhead over a longer period of time
while transferring a single file, with our results shown in Figure 4d.
We found that YaNFD’s CPU utilization dropped to effectively zero
after the file had been successfully transferred, with brief, albeit
minor spikes on a regular basis thereafter. Moreover, memory uti-
lization decreased as it was eventually garbage collected. Therefore,
given this and the results of our profiling of YaNFD, we believe that
much of the overhead and performance reduction of YaNFD is from
Go’s garbage collection services. Meanwhile, this overhead is not
7It is worth noting that if the forwarder were instead run only on a local router instead
of on edge devices, the overhead factors may be different or less significant.

present in either NFD and MW-NFD, as they are both written in
C++, which does not have garbage collection.

One significant takeaway from these graphs is that YaNFD shows
very little idle CPU utilization. On edge systems that are shared
with other applications, or even on routers shared with IP traffic,
it is important to consider the interactions and impact on other
applications. Therefore, our results show that YaNFD does not
overutilize resources during idle times, potentially harming the
performance of other applications, while still having significant
room for improvement during forwarding.

At the same time, the storage footprint of YaNFD is significantly
lower compared to both NFD and MW-NFD, with YaNFD’s exe-
cutable being 6.7 MB at the time of writing and the sizes of NFD
and MW-NFD’s executables in their latest releases being 124 MB
and 144 MB, respectively, plus 144 MB for the ndn-cxx library upon
which they both depend.

6 DISCUSSION
Our evaluations have shown that multi-threaded forwarding can
significantly improve application-layer throughput in NDN net-
works at the edge. This has been shown by the perform of not
just YaNFD, but also MW-NFD. However, one notable advantage
that YaNFD has over MW-NFD is that it does not use busy wait-
ing, which significantly lowers CPU overhead during idle periods,
which are commonplace on edge devices.

Additionally, our experiences developing YaNFD have given us
important insights into the NDN forwarder development process.
As we took “lessons learned” from the development processes and
resulting software packages of previous NDN forwarders, we in turn
present the lessons we have learned from our experience developing
YaNFD. We believe these also provide interesting insights into
developing high-throughput services in other fields.

38

ICN ’21, September 22–24, 2021, Paris, France Eric Newberry, Xinyu Ma, and Lixia Zhang

(a) YaNFD (b) NFD

(c) MW-NFD (d) YaNFD long-term overhead

Figure 4: A sample of memory and CPU overhead of each forwarder when transferring a 1 GB file using ndnchunks using
a fixed window (𝑊 = 100 packets). Note that file transfers in a-c do not start until approximately 60 seconds in to allow the
producer to load the file into memory.

First, we have discovered that it is important to consider the im-
pact of a language’s garbage collection features when implementing
high speed forwarding (or processing) services that cannot easily
reuse packet (or other) data structures. During our evaluations,
we found that garbage collection-related operations took up much
of the runtime of YaNFD during simple file transfers. Meanwhile,
the forwarders we compared against were both written in C++, a
non-garbage collecting language, and did not have this overhead.

Additionally, we posit that one must consider the overhead of
continuous polling when developing forwarders for edge environ-
ments. In these scenarios, hosts will likely be performing a large
number of non-networking tasks that will be competing for the
same limited memory and computation resources. Our forwarder
is able to achieve better forwarding performance than the single-
threaded NFD forwarder, while using almost none of the CPU dur-
ing idle periods (as opposed to the multi-threaded MW-NFD, which

performs 100% CPU polling even during idle periods). This demon-
strates that edge environments do not require these overheads to
perform well during NDN traffic forwarding.

6.1 Future Work
In addition to resolving the performance and overhead issues cur-
rently present in YaNFD, we plan to add new features to improve
the codebase. We will now discuss a sampling of future work that
we believe to be important. First, we hope to make forwarding
strategies loadable at runtime, avoiding the need to recompile the
forwarder every time a forwarding strategy needs to be added or
modified. We have already made attempts to accomplish this in
YaNFD, including using WASM [30] and Go plugins [13]. However,
none of these approaches were suitable for YaNFD at this time:
WASM strategy interfaces and logic require a significant amount of
time to implement, taking away resources from implementing other,

39

YaNFD: Yet another Named Data Networking Forwarding Daemon ICN ’21, September 22–24, 2021, Paris, France

more critical aspects of the forwarder. Meanwhile, we encountered
cyclic dependency issues between the strategy Go plugins and for-
warder codebase, as strategies need to both be called from and make
calls into the various data structures in the forwarder.

Additionally, at the moment, YaNFD is incompatible with the
NLSR software router [17]. This is because YaNFD does not imple-
ment the face event management service due to time constraints
during implementation. While YaNFD is able to fully function with
manually-added routes, this is less than ideal in a real, dynamic
network and therefore adding NLSR compatibility is a high priority.

Moreover, when connected directly to a producer application
comes from prefix-based dispatching, YaNFD needs every Data
packet received from that application to be dispatched to every
thread that every single one of its name prefixes hashes to. This
can have a large performance impact. The most straightforward
solution to this issue would be to require support for PIT tokens in
NDN applications. This would be a simple change and would simply
require a bit more state be added to applications, while significantly
improving the performance of YaNFD.

7 CONCLUSION
We have developed YaNFD as a multi-threaded alternative to ex-
isting software packet forwarders for the NDN architecture. As
shown in our evaluations, YaNFD is able to achieve significantly
better performance than the single-threaded NFD forwarder, but
underperforms compared to other multi-threaded NDN forwarders
like MW-NFD. At the same time, our results provide further evi-
dence that multi-thread NDN forwarders for edge environments
can greatly increase the throughput of NDN forwarding in typi-
cal edge applications. Therefore, we see little reason to not deploy
multi-threaded NDN forwarders in devices capable of running more
than one thread at a time.

We believe that YaNFD’s current performance deficiencies com-
pared to other multi-threaded NDN edge forwarders are primarily
caused by the overhead of garbage collection in Go. Additionally,
we believe the use of Go contributes to YaNFD’s greater memory
and CPU utilization. However, we found that the idle CPU utiliza-
tion of YaNFD was significantly lower than existing multi-threaded
NDN forwarders, as we avoided 100% CPU polling.

Additionally, our experience has shown us that successful NDN
forwarders do not require a large development team or a complex
codebase – our forwarder was developed over a few months largely
by a single developer and features, at the time of writing, around
13 thousand lines of production code and compiles to an executable
less than 7 MB in size. At the same time, NFD, the primary NDN
forwarder in use for research and development at the time of this
writing, features (excluding tests) close to 82k lines of code in the
forwarder itself and 74k lines of code in the supporting library, with
a combined executable and shared library size of approximately 268
MB. We hope that our experience and codebase can encourage the
use of NDN in exciting new applications, which may not be able
to bundle any of the existing NDN forwarders into their packages
due to storage constraints.

ACKNOWLEDGMENTS
The authors would like to acknowledge the input of several long-
term collaborators during the design and development of YaNFD,
including, but not limited to: Alexander Afanasyev of Florida Inter-
national University, Beichuan Zhang of the University of Arizona,
Davide Pesavento and Junxiao Shi of the National Institute of Stan-
dards and Technology, Lan Wang of the University of Memphis,
and Philipp Moll of the University of California, Los Angeles. These
individuals were instrumental in helping us grasp the design de-
cisions behind the NFD forwarder, as well as providing insightful
feedback during the implementation and development of YaNFD.

Moreover, the authors would like to thank Sung Hyuk Byun
of the Electronics and Telecommunications Research Institute for
providing insight into the design of MW-NFD, as well as advice on
experimental design. Beyond this, we would also like to acknowl-
edge the insightful comments of the anonymous reviewers and our
shepherd, Craig Partridge of Colorado State University.

This work was partially supported by the National Science Foun-
dation under award CNS-1719403.

REFERENCES
[1] Ahmed Aboud, Haifa Touati, and Brahim Hnich. 2019. Efficient forwarding

strategy in a NDN-based internet of things. Cluster Computing 22 (September
2019), 805–818. https://doi.org/10.1007/s10586-018-2859-7

[2] Advanced Micro Devices. [n.d.]. 2nd Gen AMD EPYC(tm) 7702P. https://www.
amd.com/en/products/cpu/amd-epyc-7702p

[3] Alexander Afanasyev, Junxiao Shi, Beichuan Zhang, Lixia Zhang, Ilya Moi-
seenko, Yingdi Yu, Wentao Shang, Yanbiao Li, Spyridon Mastorakis, Yi Huang,
Jerald Paul Abraham, Eric Newberry, Teng Liang, Klaus Schneider, Steve
DiBenedetto, Chengyu Fan, Susmit Shannigrahi, Christos Papadopoulos, Da-
vide Pesavento, Giulio Grassi, Giovanni Pau, Hang Zhang, Tian Song, Haowei
Yuan, Hila Ben Abraham, Patrick Crowley, Syed Obaid Amin, Vince Lehman,
Muktadir Chowdhury, Ashlesh Gawande, Lan Wang, and Nicholas Gordon. 2018.
NFD Developer’s Guide. Technical Report NDN-0021. Named Data Network-
ing. https://named-data.net/wp-content/uploads/2018/07/ndn-0021-10-nfd-
developer-guide.pdf Revision 10.

[4] Afanasyev Afanasyev, Cheng Yi, Lan Wang, Beichuan Zhang, and Lixia Zhang.
2015. SNAMP: Secure namespace mapping to scale NDN forwarding. In 2015
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).
281–286. https://doi.org/10.1109/INFCOMW.2015.7179398

[5] Sung Hyuk Byun, Jongseok Lee, Dong Myung Sul, and Namseok Ko. 2020. Multi-
Worker NFD: An NFD-Compatible High-Speed NDN Forwarder. In Proceedings
of the 7th ACM Conference on Information-Centric Networking (Virtual Event,
Canada) (ICN ’20). Association for Computing Machinery, New York, NY, USA,
166–168. https://doi.org/10.1145/3405656.3420233

[6] Muktadir Chowdhury, Junaid Ahmed Khan, and LanWang. 2019. Smart Forward-
ing in NDN VANET. In Proceedings of the 6th ACM Conference on Information-
Centric Networking (Macao, China) (ICN ’19). Association for Computing Machin-
ery, New York, NY, USA, 153–154. https://doi.org/10.1145/3357150.3357408

[7] Alberto Compagno, Mauro Conti, Cesar Ghali, and Gene Tsudik. 2015. To NACK
or Not to NACK? Negative Acknowledgments in Information-Centric Network-
ing. In 2015 24th International Conference on Computer Communication and Net-
works (ICCCN). 1–10. https://doi.org/10.1109/ICCCN.2015.7288477

[8] Content-Centric Networking. [n.d.]. CCNx. https://github.com/ProjectCCNx/
ccnx

[9] P. J. Courtois, F. Heymans, and D. L. Parnas. 1971. Concurrent Control with
“Readers” and “Writers”. Commun. ACM 14, 10 (Oct. 1971), 667–668. https:
//doi.org/10.1145/362759.362813

[10] DPDK Project. [n.d.]. Data Plane Development Kit. https://www.dpdk.org/
[11] DPDK Project. [n.d.]. DPDK NICS. https://core.dpdk.org/supported/nics/
[12] Electronics and Telecommunications Research Institute. [n.d.]. MW-NFD(Multi-

Worker NFD): An NFD-compatible High-speed NDN Forwarder. https://github.
com/etri/mw-nfd

[13] Go. [n.d.]. plugin. https://golang.org/pkg/plugin/
[14] Go. [n.d.]. runtime. https://golang.org/pkg/runtime
[15] Van Jacobson. 2019. Watching NDN’s Waist: How Simplicity Creates Innovation

and Opportunity. https://www.youtube.com/watch?v=69p78tfm29o Conference
Presentation.

40

https://doi.org/10.1007/s10586-018-2859-7
https://www.amd.com/en/products/cpu/amd-epyc-7702p
https://www.amd.com/en/products/cpu/amd-epyc-7702p
https://named-data.net/wp-content/uploads/2018/07/ndn-0021-10-nfd-developer-guide.pdf
https://named-data.net/wp-content/uploads/2018/07/ndn-0021-10-nfd-developer-guide.pdf
https://doi.org/10.1109/INFCOMW.2015.7179398
https://doi.org/10.1145/3405656.3420233
https://doi.org/10.1145/3357150.3357408
https://doi.org/10.1109/ICCCN.2015.7288477
https://github.com/ProjectCCNx/ccnx
https://github.com/ProjectCCNx/ccnx
https://doi.org/10.1145/362759.362813
https://doi.org/10.1145/362759.362813
https://www.dpdk.org/
https://core.dpdk.org/supported/nics/
https://github.com/etri/mw-nfd
https://github.com/etri/mw-nfd
https://golang.org/pkg/plugin/
https://golang.org/pkg/runtime
https://www.youtube.com/watch?v=69p78tfm29o

ICN ’21, September 22–24, 2021, Paris, France Eric Newberry, Xinyu Ma, and Lixia Zhang

[16] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass, Nicholas H.
Briggs, and Rebecca L. Braynard. 2009. Networking Named Content. In Proceed-
ings of the 5th International Conference on Emerging Networking Experiments and
Technologies (Rome, Italy) (CoNEXT ’09). Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/1658939.1658941

[17] Vince Lehman, Ashlesh Gawande, Beichuan Zhang, Lixia Zhang, Rodrigo
Aldecoa, Dmitri Krioukov, and Lan Wang. 2016. An experimental investiga-
tion of hyperbolic routing with a smart forwarding plane in NDN. In 2016
IEEE/ACM 24th International Symposium on Quality of Service (IWQoS). 1–10.
https://doi.org/10.1109/IWQoS.2016.7590394

[18] Kai Lei, Jie Yuan, and JiaweiWang. 2015. MDPF: AnNDNProbabilistic Forwarding
Strategy Based on Maximizing Deviation Method. In 2015 IEEE Global Communi-
cations Conference (GLOBECOM). 1–7. https://doi.org/10.1109/GLOCOM.2015.
7417024

[19] Named Data Networking. [n.d.]. ndn-lite. https://ndn-lite.named-data.net/
[20] Named Data Networking. [n.d.]. NDN Packet Specification. https://named-

data.net/doc/NDN-packet-spec/current/
[21] Named Data Networking. [n.d.]. NDN Testbed. https://named-data.net/ndn-

testbed/
[22] Named Data Networking. [n.d.]. ndn-tools. https://github.com/named-data/ndn-

tools
[23] Named Data Networking. [n.d.]. NDNLPv2. https://redmine.named-data.net/

projects/nfd/wiki/NDNLPv2
[24] Named Data Networking. [n.d.]. NFD: Named Data Networking Forwarding

Daemon. https://named-data.net/doc/NFD/current
[25] National Institute of Standards and Technology. [n.d.]. Hardware Known to

Work with NDN-DPDK. https://github.com/usnistgov/ndn-dpdk/blob/main/
docs/hardware.md

[26] Thomas Robitaille. [n.d.]. psrecord. https://github.com/astrofrog/psrecord
[27] Klaus Schneider, Cheng Yi, Beichuan Zhang, and Lixia Zhang. 2016. A Practical

Congestion Control Scheme for Named Data Networking. In Proceedings of the
3rd ACM Conference on Information-Centric Networking (Kyoto, Japan) (ACM-
ICN ’16). Association for Computing Machinery, New York, NY, USA, 21–30.
https://doi.org/10.1145/2984356.2984369

[28] Junxiao Shi, Davide Pesavento, and Lotfi Benmohamed. 2020. NDN-DPDK:
NDN Forwarding at 100 Gbps on Commodity Hardware. In Proceedings of the
7th ACM Conference on Information-Centric Networking (Virtual Event, Canada)
(ICN ’20). Association for Computing Machinery, New York, NY, USA, 30–40.
https://doi.org/10.1145/3405656.3418715

[29] Won So, Ashok Narayanan, and David Oran. 2013. Named data networking on
a router: Fast and DoS-resistant forwarding with hash tables. In Architectures
for Networking and Communications Systems. 215–225. https://doi.org/10.1109/
ANCS.2013.6665203

[30] WebAssembly. [n.d.]. WebAssembly. https://webassembly.org/
[31] Cheng Yi, Alexander Afanasyev, Ilya Moiseenko, Lan Wang, Beichuan Zhang,

and Lixia Zhang. 2013. A case for stateful forwarding plane. Computer Commu-
nications 36, 7 (2013), 779–791. https://doi.org/10.1016/j.comcom.2013.01.005

[32] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patrick
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
Data Networking. SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 66–73.
https://doi.org/10.1145/2656877.2656887

[33] Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mastorakis,
Yanbiao Li, Alexander Afanasyev, and Lixia Zhang. 2018. An Overview of Security
Support in Named Data Networking. IEEE Communications Magazine 56, 11
(2018), 62–68. https://doi.org/10.1109/MCOM.2018.1701147

41

https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1109/IWQoS.2016.7590394
https://doi.org/10.1109/GLOCOM.2015.7417024
https://doi.org/10.1109/GLOCOM.2015.7417024
https://ndn-lite.named-data.net/
https://named-data.net/doc/NDN-packet-spec/current/
https://named-data.net/doc/NDN-packet-spec/current/
https://named-data.net/ndn-testbed/
https://named-data.net/ndn-testbed/
https://github.com/named-data/ndn-tools
https://github.com/named-data/ndn-tools
https://redmine.named-data.net/projects/nfd/wiki/NDNLPv2
https://redmine.named-data.net/projects/nfd/wiki/NDNLPv2
https://named-data.net/doc/NFD/current
https://github.com/usnistgov/ndn-dpdk/blob/main/docs/hardware.md
https://github.com/usnistgov/ndn-dpdk/blob/main/docs/hardware.md
https://github.com/astrofrog/psrecord
https://doi.org/10.1145/2984356.2984369
https://doi.org/10.1145/3405656.3418715
https://doi.org/10.1109/ANCS.2013.6665203
https://doi.org/10.1109/ANCS.2013.6665203
https://webassembly.org/
https://doi.org/10.1016/j.comcom.2013.01.005
https://doi.org/10.1145/2656877.2656887
https://doi.org/10.1109/MCOM.2018.1701147

	Abstract
	1 Introduction
	2 Background
	2.1 Named Data Networking
	2.2 Existing Forwarders

	3 Design
	3.1 NDN Forwarding Pipelines
	3.2 Design Overview

	4 Methodology
	4.1 Applications
	4.2 Experimental Design

	5 Evaluation
	5.1 Correctness and Interoperability
	5.2 Performance and Overhead

	6 Discussion
	6.1 Future Work

	7 Conclusion
	Acknowledgments
	References

