
NDN, Technical Report NDN-0021. https://named-data.net/publications/techreports/

NFD Developer’s Guide

Alexander Afanasyev1, Junxiao Shi2, Beichuan Zhang2, Lixia Zhang1, Ilya Moiseenko1, Yingdi Yu1,
Wentao Shang1, Yanbiao Li1, Spyridon Mastorakis1, Eric Newberry1,2, Yi Huang2,

Jerald Paul Abraham2, Teng Liang2, Klaus Schneider2, Steve DiBenedetto3, Chengyu Fan3,
Susmit Shannigrahi3, Christos Papadopoulos3, Davide Pesavento4, Giulio Grassi4, Giovanni Pau4,

Hang Zhang5, Tian Song5, Haowei Yuan6, Hila Ben Abraham6, Patrick Crowley6, Syed Obaid Amin7,
Vince Lehman7, Muktadir Chowdhury7, Ashlesh Gawande7, Lan Wang7, and Nicholas Gordon7

1University of California, Los Angeles
2The University of Arizona
3Colorado State University

4University Pierre & Marie Curie, Sorbonne University
5Beijing Institute of Technology

6Washington University in St. Louis
7The University of Memphis

NFD Team

Abstract

NDN Forwarding Daemon (NFD) is a network forwarder that implements the Named Data Networking (NDN) protocol.
NFD is designed with modularity and extensibility in mind to enable easy experiments with new protocol features, algo-
rithms, and applications for NDN. To help developers extend and improve NFD, this document explains NFD’s internals
including the overall design, major modules, their implementations, and their interactions.

Revision history

• Revision 11 (August 2021):

– Updates regarding the CongestionMark field
– Add HopLimit to incoming and outgoing Interest processing pipelines
– Add clarifications, expand GenericLinkService feature table
– IPv6 in whitelist/blacklist is supported now
– Update strategy section
– Misc updates to match to the latest NFD release (incomplete yet)
– Add new next hop pipeline
– Remove NCC strategy description (legacy strategy was removed from NFD)
– Update and migrate ASF documentation from TR appendix to dev guide

• Revision 10 (July 4, 2018):

– Added description of UnicastEthernetTransport
– Updates regarding Transport MTU handling

• Revision 9 (May 4, 2018):

– Updated description of congestion control
– Miscellaneous updates in forwarding pipelines and strategy description

• Revision 8 (February 19, 2018):

– Updated description of face system

1

https://named-data.net/publications/techreports/

– Interface whitelist and blacklist for multicast faces
– TCP permanent face
– IPv6 support in MulticastUdpTransport
– New ad hoc link type
– New Content Store policy configuration and policy API
– Added unsolicited data policy
– Forwarding pipeline updates, including semantics of removing Link from Interest when it reaches producer region
– Description of new semantics of NextHopFaceId
– Scope control in strategies
– Strategy parameters
– Updated description of multicast strategy
– Added description of Command Authenticator
– Updated face management to match current NFD implementation
– Added RIB-to-NLSR readvertise
– New section on congestion control

• Revision 7 (October 4, 2016):

– Added brief description and reference to the new Adaptive SRTT-based (ASF) forwarding strategy
– Update description of Strategy API to reflect latest changes
– Miscellaneous updates

• Revision 6 (March 25, 2016):

– Added description of refactored Face system (Face, LinkService, Transport)
– Added description of WebSocket transport
– Updated description of RIB management
– Added description of Nack processing
– Added introductory description of NDNLP
– Added description of best-route retransmission suppression
– Other updates to synchronize description with current NFD implementation

• Revision 5 (Oct 27, 2015):

– Added description of the Content Store CachePolicy API, including information about a new LRU policy
– BroadcastStrategy renamed to MulticastStrategy
– Added overview of how forwarder processes Link objects
– Added overview of the new face system (incomplete)
– Added description of the new automatic prefix propagation feature
– Added description of the refactored management
– Added description of NetworkRegionTable configuration
– Added description about client.conf and NFD

• Revision 4 (May 12, 2015): New section about testing and updates for NFD version 0.3.2:

– Added description of the new Content Store implementation, including the new async lookup model
– Added description of the remote prefix registration
– Updated “Common Services” section

• Revision 3 (February 3, 2015): Updates for NFD version 0.3.0:

– In Strategy interface, beforeSatisfyPendingInterest was renamed to beforeSatisfyInterest

– Added description of dead nonce list and related changes to forwarding pipelines
– Added description of a new strategy_choice config file subsection
– Amended unix config text to reflect the removal of the listen option
– Added discussion about encapsulation of NDN packets inside WebSocket messages
– Revised FaceManager description, requiring canonical FaceUri in create operations
– Added description of the new access router strategy

• Revision 2 (August 25, 2014): Updated steps in forwarding pipelines, nfd::BestRouteStrategy is replaced with
nfd::BestRouteStrategy2 that allows client-based recovery from Interest losses

• Revision 1 (July 1, 2014): Initial release

2

CONTENTS CONTENTS

Contents

1 Introduction 6
1.1 NFD Modules . 6
1.2 How Packets are Processed in NFD . 7
1.3 How Management Interests are Processed in NFD . 8

2 Face System 9
2.1 Face . 9
2.2 Transport . 10

2.2.1 Internal Transport . 11
2.2.2 Unix Stream Transport . 11
2.2.3 Ethernet Unicast Transport . 11
2.2.4 Ethernet Multicast Transport . 12
2.2.5 UDP Unicast Transport . 13
2.2.6 UDP Multicast Transport . 13
2.2.7 TCP Transport . 13
2.2.8 WebSocket Transport . 14
2.2.9 Developing a New Transport . 14

2.3 Link Service . 14
2.3.1 Generic Link Service . 15
2.3.2 Vehicular Link Service . 16
2.3.3 Developing a New Link Service . 16

2.4 FaceSystem, ProtocolFactory, and Channel Classes . 16
2.4.1 Initialization . 16
2.4.2 Inside a ProtocolFactory . 18
2.4.3 Outgoing Unicast Face Creation . 18
2.4.4 Multicast Face Creation . 18

2.5 NIC-associated Permanent Faces . 18
2.6 NDNLPv2 . 19

3 Tables 21
3.1 Forwarding Information Base (FIB) . 21

3.1.1 Structure and Semantics . 21
3.1.2 Usage . 22

3.2 Network Region Table . 22
3.3 Content Store (CS) . 22

3.3.1 Semantics and Usage . 22
3.3.2 Lookup Table . 23
3.3.3 Cache Replacement Policy . 23

3.4 Interest Table (PIT) . 24
3.4.1 PIT Entry . 24
3.4.2 PIT . 26

3.5 Dead Nonce List . 26
3.5.1 Structure, Semantics, and Usage . 26
3.5.2 Capacity Maintenance . 26

3.6 Strategy Choice Table . 27
3.6.1 Structure and Semantics . 27
3.6.2 Usage . 28

3.7 Measurements Table . 28
3.7.1 Structure . 28
3.7.2 Usage . 28

3.8 NameTree . 29
3.8.1 Structure . 29
3.8.2 Operations and Algorithms . 30
3.8.3 Shortcuts . 30

3

CONTENTS CONTENTS

4 Forwarding 32
4.1 Forwarding Pipelines . 32
4.2 Interest Processing Path . 32

4.2.1 Incoming Interest Pipeline . 33
4.2.2 Interest Loop Pipeline . 34
4.2.3 Content Store Hit Pipeline . 34
4.2.4 Content Store Miss Pipeline . 34
4.2.5 Outgoing Interest Pipeline . 35
4.2.6 Interest Finalize Pipeline . 36

4.3 Data Processing Path . 36
4.3.1 Incoming Data Pipeline . 36
4.3.2 Data Unsolicited Pipeline . 37
4.3.3 Outgoing Data Pipeline . 37

4.4 Nack Processing Path . 37
4.4.1 Incoming Nack Pipeline . 38
4.4.2 Outgoing Nack Pipeline . 38

4.5 Helper Algorithms . 38
4.5.1 FIB lookup . 38

5 Forwarding Strategy 40
5.1 Strategy API . 40

5.1.1 Triggers . 40
5.1.2 Actions . 41
5.1.3 Storage . 42

5.2 List of Strategies . 42
5.2.1 Best Route Strategy . 43
5.2.2 Multicast Strategy . 44
5.2.3 Access Router Strategy . 44
5.2.4 ASF Strategy . 46

5.3 How to Develop a New Strategy . 48
5.3.1 Should I Develop a New Strategy? . 48
5.3.2 Develop a New Strategy . 49

6 Management 50
6.1 Protocol Overview . 50
6.2 Dispatcher and Authenticator . 50

6.2.1 Manager Base . 51
6.2.2 Command Authenticator . 51

6.3 Forwarder Status . 52
6.4 Face Management . 52

6.4.1 Command Processing . 52
6.4.2 Datasets and Event Notification . 53

6.5 FIB Management . 53
6.6 Strategy Choice Management . 54
6.7 Configuration Handlers . 54

6.7.1 General Configuration File Section Parser . 54
6.7.2 Tables Configuration File Section Parser . 54

6.8 How to Extend NFD Management . 54

7 RIB Management 55
7.1 Initializing the RIB Manager . 57
7.2 Command Processing . 57
7.3 FIB Updater . 58

7.3.1 Route Inheritance Flags . 59
7.3.2 Cost Inheritance . 59

7.4 RIB Status Dataset . 59
7.5 Readvertise . 59

4

CONTENTS CONTENTS

7.5.1 ReadvertisePolicy . 60
7.5.2 ReadvertiseDestination . 60

7.6 Auto Prefix Propagator . 60
7.6.1 What Prefix to Propagate . 61
7.6.2 When to Propagate . 61
7.6.3 Secure Propagations . 61
7.6.4 Propagated-entry State Machine . 61
7.6.5 Configure Auto Prefix Propagator . 63

7.7 Extending RIB Manager . 63

8 Congestion Control 65
8.1 Congestion Detection . 65
8.2 Congestion Signaling . 65
8.3 Consumer Adaptation . 65

9 Security 66
9.1 Interface Control . 66
9.2 Trust Model . 66

9.2.1 Command Interest . 66
9.2.2 NFD Trust Model . 67
9.2.3 NFD RIB manager Trust Model . 67

9.3 Local Key Management . 67

10 Common Services 68
10.1 Configuration File . 68

10.1.1 User Info . 68
10.1.2 Developer Info . 70
10.1.3 Configuration Reload . 71

10.2 Logging . 71
10.2.1 User Info . 71
10.2.2 Developer Info . 71

10.3 Global Scheduler . 72
10.4 Global I/O Service . 72
10.5 Hash Computation Routines . 72
10.6 Privilege Helper . 72

11 Testing 73
11.1 Unit Tests . 73

11.1.1 Test Structure . 73
11.1.2 Running Tests . 73
11.1.3 Test Helpers . 73
11.1.4 Test Code Guidelines and Naming Conventions . 74

11.2 Integration Tests . 74

References 75

5

1 INTRODUCTION

1 Introduction

NDN Forwarding Daemon (NFD) is a network forwarder that implements and evolves together with the Named Data
Networking (NDN) protocol [1]. This document explains the internals of NFD and is intended for developers who are
interested in extending and improving NFD. Other information about NFD, including instructions of how to compile and
run NFD, are available on NFD’s home page [2].

The main design goal of NFD is to support diverse experimentation with NDN architecture. The design emphasizes
modularity and extensibility to allow easy experiments with new protocol features, algorithms, and applications. We have
not fully optimized the code for performance. The intention is that performance optimizations are one type of experiments
that developers can conduct by trying out different data structures and different algorithms; over time, better implementations
may emerge within the same design framework.

NFD will keep evolving in three aspects: improvement of the modularity framework, keeping up with the NDN protocol
spec, and addition of new features. We hope to keep the modular framework stable and lean, allowing researchers to
implement and experiment with various features, some of which may eventually work into the protocol specification.

1.1 NFD Modules

The main functionality of NFD is to forward Interest and Data packets. To do this, it abstracts lower-level network transport
mechanisms into NDN Faces, maintains basic data structures like CS, PIT, and FIB, and implements the packet processing
logic. In addition to basic packet forwarding, it also supports multiple forwarding strategies, and a management interface to
configure, control, and monitor NFD. As illustrated in Figure 1, NFD contains the following inter-dependent modules:

• ndn-cxx Library, Core, and Tools (Section 10)

Provides various common services shared between different NFD modules. These include hash computation routines,
DNS resolver, config file, Face monitoring, and several other modules.

• Faces (Section 2)

Forwarding

Management

Faces

Tables

Core

Strategies

ndn-cxx library

NFD Tools NDN Essential Tools

ndnpeek, ndnpoke; ndncatchunks, ndnputchunks; ndnping,

Figure 1: Overview of NFD modules

6

1.2 How Packets are Processed in NFD 1 INTRODUCTION

Implements the NDN Face abstraction on top of various lower level transport mechanisms.

• Tables (Section 3)

Implements the Content Store (CS), the Interest table (PIT), the Forwarding Information Base (FIB), Strategy Choice,
Measurements, and other data structures to support forwarding of NDN Data and Interest packets.

• Forwarding (Section 4)

Implements basic packet processing pathways, which interact with Faces, Tables, and Strategies (Section 5).

Strategies are a major part of the forwarding module. The forwarding module implements a framework to support
different forwarding strategies in the form of forwarding pipelines, described in detail in Section 4.

• Management (Section 6)

Implements the NFD Management Protocol [3], which allows applications to configure NFD and set/query NFD’s
internal states. Protocol interaction is done via NDN’s Interest/Data exchange between applications and NFD.

• RIB Management (Section 7)

Manages the routing information base (RIB). The RIB may be updated by different parties in different ways, including
various routing protocols, application prefix registrations, and command-line manipulation by sysadmins. The RIB
management module processes all these requests to generate a consistent forwarding table, and syncs it up with NFD’s
FIB, which contains only the minimal information needed for forwarding decisions.

The rest of this document will explain all these modules in more detail.

1.2 How Packets are Processed in NFD

To give readers a better idea on how NFD works, this section explains how a packet is processed in NFD.
Packets arrive at NFD via Faces. “Face” is a generalization of “interface”. It can be either a physical interface (where NDN

operates directly over Ethernet), or an overlay tunnel (where NDN operates as an overlay above TCP, UDP, or WebSocket).
In addition, communication between NFD and a local application can be done via a Unix-domain socket, which is also a
Face. A Face is composed of a LinkService and a Transport. The LinkService provides high-level services for the Face, like
fragmentation and reassembly, network-layer counters, and failure detection, while the Transport acts as an wrapper over
an underlying network transmission protocol (TCP, UDP, Ethernet, etc.) and provides services like link-layer counters. The
Face reads incoming stream or datagrams via the operating system API, extracts network-layer packets from link protocol
packets, and delivers these network-layer packets (NDN packet format Interests, Datas, or Nacks) to the forwarding.

A network-layer packet (Interest, Data, or Nack) is processed by forwarding pipelines, which define series of steps that
operate on the packet. NFD’s data plane is stateful, and what NFD does to a packet depends on not only the packet itself
but also the forwarding state, which is stored in tables.

When the forwarder receives an Interest packet, the incoming Interest is first inserted into the Interest table (PIT), where
each entry represents a pending Interest or a recently satisfied Interest. A lookup for a matching Data is performed on the
Content Store (CS), which is an in-network cache of Data packets. If there is a matching Data packet in CS, that Data
packet is returned to the requester; otherwise, the Interest needs to be forwarded.

A forwarding strategy decides how to forward an Interest. NFD allows per-namespace strategy choice; to decide which
strategy is responsible for forwarding an Interest, a longest prefix match lookup is performed on the Strategy Choice table,
which contains strategy configuration. The strategy responsible for an Interest (or, more precisely, the PIT entry) makes
a decision whether, when, and where to forward the Interest. While making this decision, the strategy can take input
from the Forwarding Information Base (FIB), which contains routing information that comes from local application’s prefix
registrations and routing protocols, use strategy-specific information stored in the PIT entry, and record and use data plane
performance measurements in Measurements entry.

After the strategy decides to forward an Interest to a specified Face, the Interest goes through a few more steps in
forwarding pipelines, and then it is passed to the Face. The Face, depending on the underlying protocol, fragments the
Interest if necessary, encapsulates the network-layer packet(s) in one or more link-layer packets, and sends the link-layer
packets as an outgoing stream or datagrams via the operating system APIs.

An incoming Data is processed differently. Its first step is checking the Interest table to see if there are PIT entries that
can be satisfied by this Data packet. All matched entries are then selected for further processing. If this Data can satisfy
none of the PIT entries, it is unsolicited and it is dropped. Otherwise, the Data is added to the Content Store. Forwarding
strategy that is responsible for each of the matched PIT entries is notified. Through this notification, and another “no Data
comes back” timeout, the strategy is able to observe the reachability and performance of paths; the strategy can remember

7

1.3 How Management Interests are Processed in NFD 1 INTRODUCTION

its observations in the Measurements table, in order to improve its future decisions. Finally, the Data is sent to all requesters,
recorded in downstream records (in-records) of the PIT entries; the process of sending a Data via a Face is similar to sending
an Interest.

When the forwarder receives a Nack, the processing varies depending upon the forwarding strategy in use.

1.3 How Management Interests are Processed in NFD

NFD Management protocol [3] defines three inter-process management mechanisms that are based on Interest-Data exchanges:
control commands, status datasets, and notification streams. This section gives a brief overview how these mechanisms work
and what are their requirements.

A control command is a signed (authenticated) Interest to perform a state change within NFD. Since the objective of
each control command Interest is to reach the destination management module and not be satisfied from CS, each control
command Interest is made unique through the use of timestamp and nonce components. For more detail refer to control
command specification [4].

When NFD receives a control command request, it directs that request to a special Face, called the Internal Face.1 When
a request is forwarded to this Face, it is dispatched internally to a designated manager (e.g., Interests under /localhost/

nfd/faces are dispatched to the Face manager, see Section 6). The manager then looks at the request name to decide
which action is requested. If the name refers to a valid control command, the dispatcher validates the command (checks the
signature and validates whether the requester is authorized to send this command), and the manager performs the requested
action if validation succeeds. The response is sent back to the requester as a Data packet, which is processed by forwarding
and Face in the same way as a regular Data.

The exception from the above procedure is RIB Management (Section 7), which is performed in a separate thread. All
RIB Management control commands, instead of Internal Face, are forwarded toward the RIB thread using the same methods
as forwarding to any local application (the RIB thread “registers” itself with NFD for the RIB management prefix when it
starts).

A status dataset is a dataset containing an internal NFD status that is generated either periodically or on-demand (e.g.,
NFD general status or NFD Face status). These datasets can be requested by anybody using a simple unsigned Interest
directed towards the specific management module, as defined in the specification [3]. An Interest requesting a new version
of a status dataset is forwarded to the internal Face and then the designated manager the same way as control commands.
The manager, however, will not validate this Interest, but instead generate all segments of the requested dataset and put
them into the forwarding pipeline. This way, the first segment of the dataset will directly satisfy the initial Interest, while
others will satisfy the subsequent Interests through CS. In the unlikely event when subsequent segments are evicted from the
CS before being fetched, the requester is responsible for restarting the fetch process from the beginning.

Notification streams are similar to status datasets in that they can be accessed by anybody using unsigned Interests, but
operate differently. Subscribers that want to receive notification streams still send Interests directed towards the designated
manager. However, these Interests are dropped by the dispatcher and are not forwarded to the manager. Instead, whenever
a notification is generated, the manager puts a Data packet into the forwarding, satisfying all outstanding notification
stream Interests, and the notification is delivered to all subscribers. It is expected that these Interests will not be satisfied
immediately, and the subscribers are expected to re-express the notification stream Interests when they expire.

1There is always a FIB entry for the management protocol prefix that points to the Internal Face.

8

2 FACE SYSTEM

2 Face System

Face is the generalization of network interface. Similar to a physical network interface, packets can be sent and received on
a face. A face is more general than a network interface. It could be:

• a physical network interface to communicate on a physical link
• an overlay communication channel between NFD and a remote node
• an inter-process communication channel between NFD and a local application
The face abstraction provides a best-effort delivery service for NDN network layer packets. Forwarding can send and

receive Interests, Data, and Nacks through faces. The face then handles the underlying communication mechanisms (e.g.
sockets), and hides the differences of underlying protocols from forwarding.

Section 2.1 introduces the semantics of face, how it’s used by forwarding, and its internal structure consisting of transport
(Section 2.2) and link service (Section 2.3). Section 2.4 describes how faces are created and organized. Section 2.6 introduces
the NDN Link Protocol (NDNLPv2), a link adaptation protocol implemented in the face system.

2.1 Face

NFD, as a network forwarder, moves packets between network interfaces. NFD can communicate on not only physical network
interfaces, but also on a variety of other communication channels, such as overlay tunnels over TCP and UDP. Therefore, we
generalize “network interface” as “face”, which abstracts a communication channel that NFD can use for packet forwarding.
The face abstraction (nfd::Face class) provides a best-effort delivery service for NDN network layer packets. Forwarding can
send and receive Interests, Data, and Nacks through faces. The face then handles the underlying communication mechanisms
(e.g. sockets), and hides the differences of underlying protocols from forwarding.

In NFD, the inter-process communication channel between NFD and a local application is also treated as a face. This
differs from traditional TCP/IP network stack, where local applications use syscalls to interact with the network stack, while
network packets exist on the wire only. NFD is able to communicate with a local application via a face, because the network
layer packet format is same as the packets on the wire. Having an unified face abstraction for both local application and
remote hosts simplifies NFD architecture.

How forwarding uses faces? The FaceTable class, which is part of forwarding, keeps track of all active faces. A newly
created face is passed to FaceTable::add, which assigns the face a numeric FaceId for identification purpose. After a face is
closed, it’s removed from the FaceTable. Forwarding receives packets from a face by connecting to afterReceiveInterest

afterReceiveData afterReceiveNack signals, which is done in FaceTable. Forwarding can send network layer packets via
the face by calling sendInterest sendData sendNack methods.

Face attributes A face exposes some attributes to display its status and control its behavior.

• FaceId is a numeric ID to identify the face. It’s assigned a non-zero value by FaceTable, and cleared when a face is
removed from the FaceTable.

• LocalUri is a FaceUri (Section 2.2) that represents the local endpoint. This attribute is read-only.

• RemoteUri is a FaceUri (Section 2.2) that represents the remote endpoint. This attribute is read-only.

• Scope indicates whether the face is local for scope control purposes. It can be either non-local or local. This attribute
is read-only.

• Persistency controls the behavior when an error occurs in the underlying communication channel, or when the face
has been idle for some time.

– A on-demand face closes if it remains idle for some time, or when an error occurs in the underlying communication
channel.

– A persistent face remains open until it is explicitly destroyed, or when an error occurs in the underlying commu-
nication channel.

– A permanent face remains open until it is explicit destroyed; errors in the underlying communication channel are
recovered internally.

• LinkType indicates the type of communication link. It can be point-to-point, multi-access, or ad hoc. This attribute
is read-only.

• State indicates the current availability of the face.

9

2.2 Transport 2 FACE SYSTEM

– UP : the face is working properly
– DOWN : the face is down temporarily, and is being recovered; sending packets is possible but delivery is unlikely

to succeed
– CLOSING : the face is being closed normally
– FAILED : the face is being closed due to a failure
– CLOSED : the face has been closed

• Counters provide statistics about the count and size of Interests, Data, Nacks, and lower layer packets sent and
received on the face.

Face

Forwarding

Socket

generic link
service

vehicular link
service

UNIX
transport

Ethernet
transport

UDP
transport

TCP
transport

network layer packet: Interest, Data, Nack

TLV Block

UNIX/TCP stream, Ethernet frame, UDP packet

Figure 2: Face = LinkService + Transport

Internal structure Internally, a face is composed of a link service and a transport (Figure 2). The transport (Sec-
tion 2.2) is the lower part of a face, which wraps the underlying communication mechanism (such as sockets or libpcap
handles), and exposes a best-effort TLV packet delivery service. The link service (Section 2.3) is the upper part of a face,
which translates between network layer packets and lower layer packets, and provides additional services such as fragmenta-
tion, link failure detection, retransmission. The link service contains a fragmenter and a reassembler to allow it to perform
fragmentation and reassembly.

The face is implemented as nfd::face::Face class. The Face class is designed to be non-inheritable (except for unit
testing), and the link service and transport passed to its constructor fully defines its behavior. Within the constructor, both
the link service and the transport are given a pointer to each other and to the face, so that they may call into each other
with lowest runtime overhead.

Received and sent packets pass through both the transport and the link service before they are passed to forwarding
or are sent on the link, respectively. When packets are received by the transport, they are passed to the link service by
calling the LinkService::receivePacket function. When a packet is sent through the face, it is first passed to the link
service through a function specific to the packet type (Face::sendInterest, Face::sendData, or Face::sendNack). Once
the packet has been processed, it is passed (or, if it has been fragmented, its fragments are passed) to the transport by
calling the Transport::send function. Within the link service and transport, remote endpoints are identified using a remote
endpoint id (Transport::EndpointId), which is a 64-bit unsigned integer that contains a protocol-specific unique identifier
for each remote host.

2.2 Transport

A transport (nfd::face::Transport base class) provides best-effort packet delivery service to the link service of the face.
The link service may invoke Transport::send to send a packet. When a packet arrives, LinkService::receivePacket will
be invoked. Each packet must be a complete TLV block; the transport makes no assumption on the TLV-TYPE of this
block. In addition, each received packet is accompanied with an EndpointId which indicates the sender of this packet, which
is useful for fragment reassembly, failure detection, and other purposes on a multi access link.

10

2.2 Transport 2 FACE SYSTEM

Transport attributes The transport provides LocalUri, RemoteUri, Scope, Persistency, LinkType, State attributes. The
transport also maintains lower-layer packet counters and byte counters on incoming and outgoing directions. These attributes
and counters are accessible through the face.

If a transport’s persistency is set to permanent, the transport is responsible for taking necessary actions to recover
from underlying failures. For example: a UDP transport should ignore socket errors; a TCP transport should attempt to
re-establish TCP connection if the previous connection is closed. The progress of such recovery is reflected in the State
attribute.

In addition, the transport provides the following attributes for use by link service:

• Mtu indicates the maximum packet size that can be sent or received through this transport. Currently, this attribute
can only be set during creation of the face and read-only afterwards. The transport may change the value of this
attribute at any time, the link service realization should be prepared for such changes.

FaceUri FaceUri is a URI that represents the endpoint or communication channel used by a transport. It starts with
a scheme that indicates the underlying protocol (e.g. udp4), followed by a scheme-specific representation of the underlying
address. It’s used in LocalUri and RemoteUri attributes.

The rest of this section describes each individual transport for different underlying communication mechanism, including
their FaceUri format, implementation details, and feature limitations.

2.2.1 Internal Transport

Internal transport (nfd::face::InternalForwarderTransport) is a transport that pairs with an internal client-side trans-
port (nfd::face::InternalClientTransport). Packets transmitted on the internal forwarder-side transport is received on
the paired client-side transport, and vice versa. This is mainly used to communicate with NFD management; this is also
used to implement TopologyTester (Section 11.1.3) for unit testing.

2.2.2 Unix Stream Transport

Unix stream transport (nfd::face::UnixStreamTransport) is a transport that communicates on stream-oriented Unix
domain sockets.

NFD listens for incoming connections via UnixStreamChannel at a named socket whose path is specified by face system.unix.path

configuration option. A UnixStreamTransport is created for each incoming connection. NFD does not support making out-
going Unix stream connections.

The static attributes of a Unix stream transport are:
• LocalUri unix://path where path is the socket path; e.g., unix:///var/run/nfd.sock
• RemoteUri fd://file-descriptor where file-descriptor is the file descriptor of the accepted socket within NFD

process; e.g., fd://30
• Scope local
• Persistency on-demand; other persistency settings are disallowed
• LinkType point-to-point
• Mtu unlimited (for all relevant face commands, NFD returns the actual MTU)
UnixStreamTransport is derived from StreamTransport, a transport which is used for all stream-based transports,

including Unix stream and TCP. Most of the functionality of UnixStreamTransport is handled by StreamTransport.
All received data is stored in a temporary buffer before being parsed. After every successful receive operation, the

transport processes all valid packets in the buffer. Then, the transport copies any remaining octets to the beginning of the
buffer and waits for more octets, appending the new octets after the existing ones. When a UnixStreamTransport receives
a packet that exceeds the maximum packet size or is not valid, it enters a failed state and closes.

2.2.3 Ethernet Unicast Transport

Ethernet unicast transport (nfd::face::UnicastEthernetTransport) is a transport that communicates directly between
two endpoints over Ethernet.

NFD listens for incoming Ethernet frames via EthernetChannel on each Ethernet-compatible network interface (i.e., the
loopback interface, PPP links, GRE tunnels, IPIP tunnels, etc. are excluded). A UnicastEthernetTransport is created for
each new remote endpoint: either explicitly using face/create command from the management interface or implicitly when
receiving a packet from a new remote endpoint.

The static attributes of an Ethernet unicast transport are:
• LocalUri dev://ifname where ifname is the network interface name; e.g., dev://eth0

11

2.2 Transport 2 FACE SYSTEM

• RemoteUri ether://[ethernet-addr] where ethernet-addr is the MAC address of the remote endpoint; e.g.,
ether://[01:00:5e:00:17:aa]

• Scope non-local
• Persistency on-demand for transports created from incoming connections, persistent or permanent for transports

created for outgoing connections (can be changed using face/update management command)
• LinkType point-to-point
• Mtu MTU of the network interface (currently, can only be set during face creation)
UnicastEthernetTransport uses a libpcap handle to transmit and receive on an Ethernet link. The handle is initialized

by activating onto an interface. Then, the link-layer header format is set to EN10MB and libpcap is set to only capture
incoming packets. After the handle is initialized, the transport sets a packet filter to only capture packets with the NDN
type (0x8624) that are from the remote endpoint address and destined for the local interface address.

The libpcap handle is integrated with Boost.Asio through the async read some function by calling the pcap read functions
in the read handler. If an oversized or invalid packet is received, it is dropped. Outgoing packets that are too small will be
padded with zeros to meet the minimum Ethernet frame size.

The Ethernet unicast transport relies on NDNLPv2 fragmentation and reassembly to fragment packets to fit the MTU
of the link (if needed) and reassemble any received fragmented packets, respectively.

Ethernet unicast transports with an on-demand persistency will be closed automatically if a non-zero idle timeout is set.

2.2.4 Ethernet Multicast Transport

Multicast Ethernet transport (nfd::face::MulticastEthernetTransport) is a transport that communicates via multicast
directly on Ethernet.

NFD automatically creates multicast Ethernet transports on multicast-capable network interfaces during initialization.
In face system.ether config section, a whitelist+blacklist can be specified to create multicast Ethernet transports on a

subset of available network interfaces. The whitelist and the blacklist can each contain, in no particular order:
• network interface names, e.g., ifname eth0

• Ethernet MAC addresses, e.g., ether 85:3b:4d:d3:5f:c2

• IPv4 subnets, e.g., subnet 192.168.2.0/24

• IPv6 subnets, e.g., subnet 2001:db8::/32

• a single asterisk (*), that matches all network interfaces on the system
Interface names can also be expressed as Unix shell-style wildcard patterns, also known as glob patterns. An example of
such a wildcard pattern would be: ifname enp?42*. Note that these patterns are different from regular expressions. All
interfaces are whitelisted by default.

Setting face system.ether.mcast to “no” disables Ethernet multicast transports altogether.
The multicast group is specified on face system.ether.mcast group option in NFD configuration file. All NDN hosts

on the same Ethernet segment must be configured with the same multicast group in order to communicate with each other;
therefore, it’s recommended to keep the default multicast group setting.

Ethernet multicast transport also supports ad hoc networks. This can be configured via the face system.ether.mcast ad hoc

option in NFD configuration file. Setting this option to “yes” changes the link type of the transport to ad hoc, which allows
Interest and Data to be forwarded to the incoming face. By default, the option is set to “no”, meaning that created transports
will have a multi-access link type.

The static attributes of an Ethernet multicast transport are:
• LocalUri dev://ifname where ifname is network interface name; e.g., dev://eth0
• RemoteUri ether://[ethernet-addr] where ethernet-addr is the multicast group; e.g., ether://[01:00:5e:00:17:aa]
• Scope non-local
• Persistency permanent; other persistency settings are forbidden
• LinkType multi-access or ad hoc
• Mtu MTU of the network interface (for all relevant face commands, NFD returns the actual MTU)
MulticastEthernetTransport uses a libpcap handle to transmit and receive on an Ethernet link. The handle is initialized

by activating onto an interface. Then, the link-layer header format is set to EN10MB and libpcap is set to only capture
incoming packets. After the handle is initialized, the transport sets a packet filter to only capture packets with the NDN
type (0x8624) that are sent to the multicast address. The use of promiscuous mode is avoided by directly adding the address
to the link-layer multicast filters using SIOCADDMULTI or, if available, the PACKET ADD MEMBERSHIP socket option.
If both these methods fail, the transport falls back to promiscuous mode.

The libpcap handle is integrated with Boost.Asio through the async read some function by calling the pcap read functions
in the read handler. If an oversized or invalid packet is received, it is dropped.

12

2.2 Transport 2 FACE SYSTEM

2.2.5 UDP Unicast Transport

UDP unicast transport (nfd::face::UnicastUdpTransport) is a transport that communicates on UDP tunnels over IPv4
or IPv6.

NFD listens for incoming datagrams via UdpChannel at a port number specified by the face system.udp.port configura-
tion option. A UnicastUdpTransport is created for each new remote endpoint. NFD can also create outgoing UDP unicast
transports.

The static attributes of a UDP unicast transport are:
• LocalUri and RemoteUri

– IPv4 udp4://ip :port ; e.g., udp4://192.0.2.1:6363
– IPv6 udp6://ip :port where ip is in lower case and enclosed by square brackets; e.g., udp6://[2001:db8::1]:6363

• Scope non-local
• Persistency on-demand for transport created from accepted socket, persistent or permanent for transport created for

outgoing connection (can be changed using face/update management command)
• LinkType point-to-point
• Mtu maximum IP length minus IP and UDP header (for all relevant face commands, NFD returns the actual MTU)
UnicastUdpTransport is derived from DatagramTransport.
The UDP unicast transport relies on IP fragmentation instead of fitting packets to the MTU of the underlying link. This

allows packets to traverse links with lower MTUs, as intermediate routers are able to fragment the packet as needed. IP
fragmentation is enabled by preventing the Don’t Fragment (DF) flag from being set on outgoing packets. On Linux, this is
done by disabling PMTU discovery.

When the transport receives a packet that is too large or is incomplete, the packet is dropped.
UDP unicast transports will fail on an ICMP error, unless they have a permanent persistency. However, when choosing

permanent persistency, note that there are no UP/DOWN transitions, requiring the use of a strategy that tries multiple
faces. UDP unicast transports with an on-demand persistency will be closed automatically if a non-zero idle timeout is set.

2.2.6 UDP Multicast Transport

UDP multicast transport (nfd::face::MulticastUdpTransport) is a transport that communicates on a UDP multicast
group.

NFD automatically creates UDP multicast transports on multicast-capable network interfaces during initialization. In
face system.udp config section, a whitelist+blacklist can be specified to create UDP multicast transports on a subset of
available network interfaces. Setting face system.udp.mcast to “no” disables UDP multicast transports altogether.

The multicast group and port number can be specified in NFD’s configuration file: the face system.udp.mcast group and
face system.udp.mcast port options are for IPv4, while face system.udp.mcast group v6 and face system.udp.mcast port v6

are for IPv6. All NDN hosts on the same IP subnet must be configured with the same multicast group and port number in
order to communicate with each other; therefore, it is recommended to keep the default settings.

UDP multicast transport also supports ad hoc networks. This can be configured via the face system.udp.mcast ad hoc

option in NFD configuration file. Setting this option to “yes” changes the link type of the transport to ad hoc, which allows
Interest and Data to be forwarded to the incoming face. By default, the option is set to “no”, meaning that created transports
will have a multi-access link type.

The static attributes of a UDP multicast transport are:
• LocalUri and RemoteUri

– IPv4 udp4://ip :port ; e.g., udp4://224.0.23.170:56363
– IPv6 udp6://ip :port where ip is in lower case and enclosed by square brackets; e.g., udp6://[ff02::114%eth0]:56363

• Scope non-local
• Persistency permanent
• LinkType multi-access or ad hoc
• Mtu maximum IP length minus IP and UDP header (for all relevant face commands, NFD returns the actual MTU)
MulticastUdpTransport is derived from DatagramTransport. The transport uses two separate sockets, one for sending

and one for receiving. These functions are split between the sockets to prevent sent packets from being looped back to the
sending socket.

2.2.7 TCP Transport

TCP transport (nfd::face::TcpTransport) is a transport that communicates on TCP tunnels over IPv4 or IPv6.
NFD listens for incoming connections via TcpChannel at a port number specified by face system.tcp.port configuration

option. A TcpTransport is created for each incoming connection. NFD can also make outgoing TCP connections.

13

2.3 Link Service 2 FACE SYSTEM

The static attributes of a TCP transport are:
• LocalUri and RemoteUri

– IPv4 tcp4://ip :port ; e.g., tcp4://192.0.2.1:6363
– IPv6 tcp6://ip :port where ip is in lower case and enclosed by square brackets; e.g., tcp6://[2001:db8::1]:6363

• Scope local if remote endpoint has loopback IP, non-local otherwise
• Persistency on-demand for transport created from accepted socket, persistent or permanent for transport created for

outgoing connection (can be changed using face/update management command)
• LinkType point-to-point
• Mtu unlimited (for all relevant face commands, NFD returns the actual MTU)
Like UnixStreamTransport, TcpTransport is derived from StreamTransport, and thus its other specifics can be found

in the UnixStreamTransport section (section 2.2.2).

2.2.8 WebSocket Transport

WebSocket implements a message-based protocol on top of TCP for reliability. WebSocket is the protocol used by many
web applications to maintain a long connection to remote hosts. It is used by NDN.JS client library to establish connections
between browsers and NDN forwarders.

NFD listens for incoming WebSocket connections via WebSocketChannel at a port number specified by face system.websocket.port

configuration option. The channel listens over unencrypted HTTP and at the root path (i.e. ws://<ip>:<port>/); you
may deploy a frontend proxy to enable TLS encryption or change the listener path (wss://<ip>:<port>/<path>). A
WebSocketTransport is created for each incoming connection. NFD does not support outgoing WebSocket connections.

The static attributes of a WebSocket transport are:
• LocalUri ws://ip :port ; e.g., ws://192.0.2.1:9696, ws://[2001:db8::1]:6363
• RemoteUri wsclient://ip :port ; e.g., ws://192.0.2.2:54420, ws://[2001:db8::2]:54420
• Scope local if remote endpoint has loopback IP, non-local otherwise
• Persistency on-demand
• LinkType point-to-point
• Mtu unlimited (for all relevant face commands, NFD returns the actual MTU)

WebSocket encapsulation of NDN packets WebSocketTransport expects exactly one NDN packet or LpPacket in
each WebSocket frame. Frames containing incomplete or multiple packets will be dropped and the event will be logged by
NFD. Client applications (and libraries) should not send such packets to NFD. For example, a JavaScript client inside a web
browser should always feed complete NDN packets into the WebSocket.send() interface.

WebSocketTransport is implemented using the WebSocket++ library.
The relationship between WebSocketTransport and WebSocketChannel is tighter than most Transport–Channel relation-

ships. This is because messages are delivered through the channel.

2.2.9 Developing a New Transport

A new transport type can be created by first creating a new transport class that either specializes one of the transport template
classes (StreamTransport and DatagramTransport) or inherits from the Transport base class. If the new transport type is
inheriting directly from the Transport base class, then you will need to implement some pure virtual functions, including
doClose and doSend. In addition, you will need to set the static properties (LocalUri, RemoteUri, Scope, Persistency,
LinkType, and Mtu) in the constructor. When necessary, you can set the State of the transport and the ExpirationTime.

When specializing a transport class template, some of the aforementioned tasks may be handled by the generic implemen-
tation in the template definition. Depending on the template, all you may need to implement is the constructor, in addition
to any needed helper functions. However, note that you will still need to set the static properties of the transport in the
constructor.

If you want the new transport to support persistency changes, you will need to override the canChangePersistencyToImpl
and afterChangePersistency virtual member functions.

2.3 Link Service

A link service (nfd::face::LinkService base class) works on top of a transport and provides a best-effort network layer
packet delivery service. A link service must translate between network layer packets (Interests, Data, and Nacks) and link
layer packets (TLV blocks). In addition, additional link services may be provided, to bridge the gap between the desire
of forwarding and the capabilities of the underlying transport. For example, if the underlying transport has a Maximum
Transmission Unit (MTU) limit, fragmentation and reassembly will be needed in order to send and receive network layer

14

2.3 Link Service 2 FACE SYSTEM

packets larger than MTU; if the underlying transport has a high loss rate, per-link retransmission may be enabled to reduce
loss and improve performance.

2.3.1 Generic Link Service

Generic link service (nfd::face::GenericLinkService) is the default service in NFD. Its link-layer packet format is
NDNLPv2 [5].

As of NFD 0.7.1, the following features are implemented:

1. encoding and decoding of Interest, Data, and Nack

Interests, Data, and Nack are encapsulated in LpPackets (the Generic Link Service only supports one network layer
packet or fragment per LpPacket). LpPackets contain header fields and a fragment. This allows hop-by-hop information
to be separated from ICN information.

2. fragmentation and reassembly (indexed fragmentation)

Interests and Data can be fragmented and reassembled hop-by-hop to allow for the traversal of links with different
MTUs.

3. consumer controlled forwarding (NextHopFaceId field)

The NextHopFaceId field enables the consumer to specify the face that an Interest should be sent out of on a connected
forwarder.

4. local cache policy (CachePolicy field)

The CachePolicy field enables a producer to specify the policy under which a Data should be cached (or not cached,
depending upon the policy).

5. incoming face indication (IncomingFaceId field)

The IncomingFaceId field can be attached to an LpPacket to inform local applications about the face on which the
packet was received.

6. congestion signaling (CongestionMark field)

The CongestionMark field can be used to signal consumers and downstream routers of current congestion levels (see
Section 8 for details).

Other planned features include:

1. failure detection (similar to BFD [6])

2. link reliability improvement (repeat request, similar to ARQ [7])

What services are enabled depends upon the type of transport:

Fragmentation Local fields2 Congestion signaling Reliability

Internal No Yes No No
UnixStream No Optional on local-scope faces Optional No
UnicastEthernet Yes No No Optional
MulticastEthernet Yes No No No
UnicastUdp Yes No Optional Optional
MulticastUdp No No Optional No
Tcp No Optional on local-scope faces Optional Optional
WebSocket No No No No

If fragmentation is enabled, the link service submits the network layer packet encapsulated in a link layer packet to the
fragmenter. The specific implementation of the fragmenter is discussed in a separate section below. The link service hands
each fragment off to the transport for transmission. If fragmentation is not enabled, a sequence is assigned to the packet and
it is passed to the transport for transmission.

When a link layer packet is received on the other end, it is passed from the transport to the link service. If fragmentation
is not enabled on the receiving link service, the received packet is checked for FragIndex and FragCount fields and dropped
if it contains them. The packet is then given to the reassembler, which returns a reassembled packet, but only if the received
fragment completed it. The reassembled packet is then decoded and passed up to the forwarding. Otherwise, the received
fragment is not processed further.

2“Local fields” refers to NextHopFaceId, CachePolicy, and IncomingFaceId.

15

2.4 FaceSystem, ProtocolFactory, and Channel Classes 2 FACE SYSTEM

Packet Fragmentation and Reassembly in the Generic Link Service The Generic Link Service uses indexed frag-
mentation (described in further detail in Section 2.6). The sending link service has a fragmenter. The fragmenter returns a
vector of fragments encapsulted in link layer packets. If the size of the packet is less than the MTU, the fragmenter returns
a vector containing only one packet. The link service assigns each fragment a consecutive Sequence number and, if there is
more than one fragment, inserts a FragIndex and FragCount field into each. The FragIndex is the 0-based index of the
fragment in relation to the network layer packet and the FragCount is the total number of fragments produced from the
packet.

The receiving link service has a reassembler. The reassembler keeps track of received fragments in a map with a key based
on the remote endpoint (see Section 2.1) and the Sequence of the first fragment in the packet. It returns the reassembled
packet if it is complete. The reassembler also manages timeouts of incomplete packets, setting the drop timer when the first
fragment is received. Upon receiving a new fragment for a packet, the drop timer for that packet is reset.

Encode network packet
into link layer packet

Fragment packet
(if allowed)

Assign sequence number

Send Path

Receive Path

Store and then reassemble
packet (if allowed/needed)

Decode complete link layer
packet into network packet

Transport

Link layer packets
from Transport

Forwarding

Interests, Data,
and Nacks from
forwarding

Figure 3: GenericLinkService Internal Structure

2.3.2 Vehicular Link Service

Vehicular link service is a planned feature to implement a link service suitable for vehicular networks.

2.3.3 Developing a New Link Service

The link service can provide many services to the face, so a new link service needs to handle a number of tasks. At the
minimum, a link service must encode outgoing and decode incoming Interests, Data, and Nacks. Depending on the intended
use of the new link service, it may also be necessary to implement services like fragmentation and reassembly, local fields,
and sequence number assignment, in addition to any other needed services.

2.4 FaceSystem, ProtocolFactory, and Channel Classes

The face system is organized as a FaceSystem—ProtocolFactory—Channel—Face hierarchy. The FaceSystem class is
the entry point of the face system, which owns ProtocolFactory instances. Each ProtocolFactory subclass owns unicast
Channels and multicast faces of a particular underlying protocol. The Channel represents a local endpoint of a particular
underlying protocol, and owns unicast faces bound to this local endpoint.

2.4.1 Initialization

The face system has a two-step initialization process. First, all available ProtocolFactory types make themselves known to
the FaceSystem class using NFD REGISTER PROTOCOL FACTORY macro, so that they are instantiated by FaceSystem construc-
tor. Second, FaceSystem receives the face system config section from the configuration parser (Section 10.1), and passes
the necessary parameters to the available protocol factories, which in turn can initialize channels and faces.

16

2.4 FaceSystem, ProtocolFactory, and Channel Classes 2 FACE SYSTEM

F
a

ce
M

a
n

a
g

e
r

A
g

g
re

g
a

te
 p

ro
to

co
l

fa
cto

rie
s

P
ro

ce
ss F

a
ce

M
a

n
a

g
e

m
e

n
t

co
m

m
a

n
d

s

W
e

b
S

o
cke

tF
a

cto
ry

U
n

ixS
tre

a
m

F
a

cto
ry

U
d

p
F

a
cto

ry

T
cp

F
a

cto
ry

E
th

e
rn

e
tF

a
cto

ry

A
g

g
re

g
a

te
 ch

a
n

n
e

ls o
f

th
e

 sa
m

e
 typ

e

C
re

a
te

 C
h

a
n

n
e

l

C
re

a
te

 M
u

ltica
stF

a
ce

P
ro

to
co

lF
a

cto
ry

U
n

ixS
tre

a
m

C
h

a
n

n
e

l

W
e

b
S

o
cke

tC
h

a
n

n
e

l

U
d

p
C

h
a

n
n

e
l

T
cp

C
h

a
n

n
e

l
C

h
a

n
n

e
l

A
cce

p
t co

n
n

e
ctio

n
s o

n
 lo

ca
l

e
n

d
p

o
in

t (tcp
, u

n
ix, w

s)

C
o

n
n

e
ct to

 re
m

o
te

 e
n

d
p

o
in

t

A
cce

p
t p

a
cke

ts o
n

 lo
ca

l
e

n
d

p
o

in
t (u

d
p

)

C
re

a
te

 u
n

ica
st

F
ace

L
o

o
ku

p
 e

xistin
g

F
a

ce
 u

sin
g

 re
m

o
te

e
n

d
p

o
in

t

F
ace

P
ro

ce
ss re

ce
ive

d
 p

a
cke

ts

S
e

n
d

 a
n

d
 re

ce
ive

 lin
k

la
ye

r p
a

cke
ts

D
isp

a
tch

 cre
a

te
F

a
ce

 re
q

u
e

sts to
co

rre
ct C

h
a

n
n

e
l b

a
se

d
 o

n
 su

p
p

lie
d

F
aceU

ri

P
rocess N

F
D

co
n

fig
u

ra
tio

n
 file

L
in

kS
e

rvice

T
ra

n
s

p
o

rt

F
ra

g
m

e
n

t p
a

cke
ts

b
e

fo
re

 se
n

d
in

g

C
re

a
te

 in
sta

n
ce

 o
f L

in
kS

e
rvice

a
n

d
 T

ra
n

sp
o

rt, cre
a

te
 F

a
ce

in
sta

n
ce

 w
ith

 cre
a

te
d

 L
in

kS
e

rvice
a

n
d

 T
ra

n
sp

o
rt

C
o

n
n

e
ct L

in
kS

e
rvice

 a
n

d
T

ra
n

sp
o

rt

P
ro

vid
e

 u
p

p
e

r in
te

rfa
ce

to
 fo

rw
a

rd
in

g

O
w

n
s liste

n
in

g
so

cke
t

O
w

n
s co

n
n

e
cte

d
 so

cke
t

Figure 4: FaceManager, Channel, ProtocolFactory, and Face interactions

17

2.5 NIC-associated Permanent Faces 2 FACE SYSTEM

Each ProtocolFactory subclass has a “factory id”, and must override the processConfig method which will receive
face system.factory-id config section. FaceSystem::processConfig loops through all ProtocolFactory instances, and
invokes processConfig with the relevant subsection.

Each ProtocolFactory subclass can define its own config options under face system.factory-id section. Depending on
the capability of the protocol factory and the characteristics of the underlying protocol, this may include enable flags, port
numbers, timeout values, and so on. Additionally, a ProtocolFactory subclass can define the behavior when its config
section is omitted; typically, the corresponding protocol would be disabled in this situation.

ProtocolFactory::processConfig is not only used during the first initialization, but also invoked during a configuration
reload (Section 10.1.3). In order to give the protocol factory an opportunity to de-initialize itself, ProtocolFactory::processConfig
is invoked even if face system.factory-id config section is omitted. However, in current implementation, not all protocol
factories fully support configuration reloads: they might keep the initial configuration, or become only partially disabled, in
case the config section is omitted.

2.4.2 Inside a ProtocolFactory

A protocol factory manages the channels (unicast) and multicast faces of a particular protocol type. Subclasses of Pro-
tocolFactory need to implement the createFace and getChannels virtual functions. Optionally, the createChannel,
createMulticastFace, and getMulticastFaces functions can be implemented, in addition to any protocol-specific func-
tions.

A channel listens for and handles incoming unicast connections and starts outgoing unicast connections for a specific local
endpoint. Faces are created upon the success of either of these actions. Channels are created by protocol factories when
the createChannel function is called. Upon creation of a new face, either incoming or outgoing, the FaceCreatedCallback

specified to the listen function is called. If creation of the face failed, then the FaceCreationFailedCallback (also specified
to listen) is called. Ownership of the listening socket (or in the case of WebSocket, the WebSocket server handle) lies with
the individual channel. Sockets connected to remote endpoints are owned by the transport associated with the relevant face,
except in the case of WebSocket, where all faces use the same server handle. Note that there are no Ethernet channels, as
Ethernet links in NFD are multicast only.

2.4.3 Outgoing Unicast Face Creation

Most outgoing faces are created by the FaceManager (Section 6.4) in response to a faces/create command. The parameters
to that command includes the remote FaceUri (Section 2.2).

When a ProtocolFactory instance is initialized, its ProtocolFactory::processConfig method should declare which
FaceUri schemes, if any, can be used for outgoing face creation on this ProtocolFactory instance, by populating the
ProtocolFactory::providedSchemes container. When the FaceManager receives a faces/create command, the scheme
portion of the remote FaceUri is used to find an appropriate ProtocolFactory instance. ProtocolFactory::createFace is
then invoked on the instance.

Each ProtocolFactory subclass can define its own requirements on what FaceUris are acceptable. Typically, the FaceUri
is required to be in canonical form. This eliminates the need to perform DNS resolution inside the NFD process, so as to
reduce overhead.

Most ProtocolFactory subclasses organize unicast faces into Channels. When there are multiple channels in a protocol
factory, it is the factory that decides which channel is to be used to create a new face. Typically, a channel with a compatible
underlying protocol and endpoint is chosen.

2.4.4 Multicast Face Creation

EthernetFactory and UdpFactory can create multicast faces. In face system.ether and face system.udp config sections,
there are options to enable or disable multicast faces, and a whitelist+blacklist to choose which network interfaces should
have multicast faces.

When one of these config section is processed in EthernetFactory::processConfig and UdpFactory::processConfig,
multicast-related config options are stored in the factory instance. Multicast faces are then created or destroyed based on
configuration and the current list of available network interfaces, as provided by the ndn::NetworkMonitor class. Whenever
a network interface is added, removed, or otherwise changed, a signal from NetworkMonitor triggers EthernetFactory and
UdpFactory to reevaluate the stored configuration, and create or destroy multicast faces as necessary.

2.5 NIC-associated Permanent Faces

This is an upcoming feature.

18

2.6 NDNLPv2 2 FACE SYSTEM

NIC-associated permanent faces are permanent faces automatically created on, and bound to, an OS-level network interface
(physical or virtual).

The NicFaces class coordinates all NIC-associated permanent faces. It is configured by face system.nicfaces config
section, which contains zero or more “rules”; each rule contains a whitelist+blacklist to select network interfaces, and a
remote FaceUri to which an outgoing unicast face should be created from each matching network interface.

A ProtocolFactory subclass can declare itself as supporting NIC-associated permanent face by adding scheme+dev into
ProtocolFactory::providedSchemes container during initialization, and overriding ProtocolFactory::doCreateNicFace.

2.6 NDNLPv2

The NDN Link Protocol version 2 (NDNLPv2) provides a link protocol between the forwarding and the underlying network
transmission protocols and systems (like TCP, UDP, Unix sockets, and Ethernet). It allows for a uniform interface to the
forwarding link services and provides a bridge between these services and the underlying network layers. Through this
method, the specific features and mechanisms of these underlying layers can be overlooked by the upper layers. In addition,
the link protocol provides services common to every type of link, the specific implementation of which may vary from link
type to link type. The link service also specifies a common TLV link-layer packet format. The services currently provided
by NDNLPv2 include fragmentation and reassembly, Negative Acknowledgement (Nack), consumer-controlled forwarding,
cache policy control, and providing information about the incoming face of a packet to applications. Features planned for
the future include link failure detection (BFD) and ARQ. These features can be individually enabled and disabled.

In NFD, the link protocol is implemented in the LinkService and its subclasses. A description of each NDNLPv2 feature
follows.

Fragmentation and reassembly

Fragmentation and reassembly is done hop-by-hop using indexed fragmentation. Packets are fragmented and are assigned
a FragIndex field, which indiciates their zero-based index in the fragmented packet, and a FragCount field, which is the
total number of fragments of the packet. All link-layer headers associated with the network-layer packet are only attached
to the first fragment. Other, unrelated link-layer headers may be attached to any fragment by ”piggybacking” onto it. The
recipient uses the FragIndex and FragCount fields from each fragment to reassemble the complete packet.

Negative Acknowledgement (Nack)

Negative Acknowledgements are messages sent downstream to indicate that a forwarder was unable to satisfy a particular
Interest. The relevant Interest is included with the Nack in the Fragment field. The Nack itself is indicated with the Nack
header field in the packet.

The Nack can optionally include a NackReason field (under the Nack field) to indicate why the forwarder was unable to
satisfy the Interest. These reasons include congestion on the link, a duplicate Nonce being detected, and no route matching
the Interest.

Consumer-controlled forwarding

Consumer-controlled forwarding allows an application to specify which face an outgoing Interest should be sent on. It is
indicated with the NextHopFaceId header, which includes the ID of the face on the local forwarder that the Interest should
be sent out of.

Cache policy control

Through cache policy control, a producer can indicate how its Data should be cached (or not cached). This is done using the
CachePolicy header, which contains the CachePolicyType field. The non-negative integer contained in this inner field is
the indication of which cache policy this application wishes downstream forwarders to follow.

Incoming face indication

A forwarder can inform an application of the face on which a particular packet was received by attaching the IncomingFaceId
header to it. This field contains the face ID of the face on the forwarder that the packet was received on.

19

2.6 NDNLPv2 2 FACE SYSTEM

Congestion signaling

A host can signal the current congestion state to other hosts using the CongestionMark field. A value of 0 indicates no
congestion; a value greater than 0 indicates some level of congestion. The exact meaning of the bits in this field is left up to
the congestion control strategy in use.

20

3 TABLES

3 Tables

The tables module provides main data structures for NFD.
The Forwarding Information Base (FIB) (Section 3.1) is used to forward Interest packets toward potential source(s) of

matching Data. It’s almost identical to an IP FIB except it allows for a list of outgoing faces rather than a single one.
The Network Region Table (Section 3.2) contains a list of producer region names for mobility support.
The Content Store (CS) (Section 3.3) is a cache of Data packets. Arriving Data packets are placed in this cache as long

as possible, in order to satisfy future Interests that request the same Data.
The Interest Table (PIT) (Section 3.4) keeps track of Interests forwarded upstream toward content source(s), so that Data

can be sent downstream to its requester(s). It also contains recently satisfied Interests for loop detection and measurements
purposes.

The Dead Nonce List (Section 3.5 supplements the Interest Table for loop detection.
The Strategy Choice Table (Section 3.6) contains the forwarding strategy (Section 5) chosen for each namespace.
The Measurements Table (Section 3.7) is used by forwarding strategies to store measurements information regarding a

name prefix.
FIB, PIT, Strategy Choice Table, and Measurements Table have much commonality in their index structure. To improve

performance and reduce memory usage, a common index, the Name Tree (Section 3.8), is designed to be shared among these
four tables.

3.1 Forwarding Information Base (FIB)

The Forwarding Information Base (FIB) is used to forward Interest packets toward potential source(s) of matching Data [8].
For each Interest that needs to be forwarded, a longest prefix match lookup is performed on the FIB, and the list of outgoing
faces stored on the found FIB entry is an important reference for forwarding.

The structure, semantics, and algorithms of FIB is outlined in Section 3.1.1. How FIB is used by rest of NFD is described
in Section 3.1.2. The implementation of FIB algorithms is discussed in Section 3.8.

3.1.1 Structure and Semantics

Figure 5 shows logical content and relationships between the FIB, FIB entries, and NextHop records.

FIB

Entry

Name prefixPK

NextHop

FacePK

cost

Figure 5: FIB and related entities

FIB entry and NextHop record
A FIB entry (nfd::fib::Entry) contains a name prefix and a non-empty collection of NextHop records. A FIB entry

of a certain prefix means that given an Interest under this prefix, a potential source(s) of matching Data can be reached via
the faces given by the NextHop record(s) in this FIB entry.

Each NextHop record (nfd::fib::NextHop) contains an outgoing face toward a potential content source and its routing
cost. A FIB entry can contain at most one NextHop record toward the same outgoing face. Within a FIB entry, NextHop
records are ordered by ascending cost. The routing cost is relative between NextHop records; the absolute value is insignificant.

Unlike the RIB (Section 7.3.1), there is no inheritance between FIB entries. The NextHop records within a FIB entry are
the only “effective” nexthops for this FIB entry.

FIB
The FIB (nfd::Fib) is a collection of FIB entries, indexed by name prefix. The usual insertion, deletion, exact match

operations are supported. FIB entries can be iterated over in a forward iterator, in unspecified order.

21

3.2 Network Region Table 3 TABLES

Longest Prefix Match algorithm (Fib::findLongestPrefixMatch) finds a FIB entry that should be used to guide the
forwarding of an Interest. It takes a name as input parameter; this name should be the name of an Interest. The return
value is a FIB entry such that its name prefix is (1) a prefix of the parameter, and (2) the longest among those satisfying
condition (1). An “empty” entry is returned if no FIB entries satisfy condition (1).

3.1.2 Usage

The FIB is updated only through using FIB management protocol, which on NFD sides is operated by the FIB manager
(Section 6.5). Typically, FIB manager takes commands from RIB Management (Section 7), which in turn receives static
routes configured manually or registered by applications, and dynamic routes from routing protocols. Since most FIB entries
ultimately come from dynamic routes, the FIB is expected to contain a small number of entries, if the network has a small
number of advertised prefixes.

The FIB is expected to be relatively stable. FIB updates are triggered by RIB updates, which in turn is caused by
manual configuration, application startup or shutdown, and routing updates. These events are infrequent in a stable network.
However, each RIB update can cause lots of FIB updates, because changes in one RIB entry may affect its descendants due
to inheritance.

The longest prefix match algorithm is used by forwarding in incoming Interest pipeline (Section 4.2.1). It is called at
most once per incoming Interest.

The cleanupOnFaceRemoval function (declared in daemon/table/cleanup.hpp) is a joint FIB-PIT cleanup function upon
face removal. This function is invoked when a face is destroyed. It visits all FIB and PIT entries, and deletes FIB nexthop
records, PIT in-records, and PIT out-records pointing to the removed face. A FIB entry losing its last nexthop record is also
deleted. Conversely, a PIT entry losing all its in-records and out-records is kept in the table3. Cleanup for FIB and PIT
is performed in the same function because both tables are stored on the NameTree (Section 3.8), so that this function can
cleanup both tables in one pass of NameTree enumeration.

3.2 Network Region Table

The Network Region Table (nfd::NetworkRegionTable) is used for mobility support (Section 4.2.4). It contains an unordered
set of producer region names, taken from NFD configuration file (Section 6.7.2). If any delegation name in the forwarding
hint of an Interest is a prefix of any region name in this table, it means the Interest has reached the producer region, and
should be forwarded according to its Name rather than delegation name.

3.3 Content Store (CS)

The Content Store (CS) is a cache of Data packets. Forwarding pipelines (Section 4) places arriving Data packets in the CS,
so that future Interests requesting the same Data can be satisfied without forwarding further.

The CS offers procedures to insert a Data packet, find cached Data that matches an Interest, and enumeration of cached
Data. Section 3.3.1 describes the semantics of those procedures and their usage.

The CS is implemented in (nfd::cs::Cs) class. The implementation consists of two parts: a lookup table, and a cache
replacement policy. The lookup table (Section 3.3.2) is a name-based index of CS entries, in which cached Data packets are
stored. The cache replacement policy (Section 3.3.3) is responsible for keeping the CS under capacity limits. It separately
maintains a cleanup index in order to determine which entry to evict when the CS is full. NFD offers multiple cache
replacement policies including a priority FIFO policy and a LRU policy, which can be selected in NFD configuration file.

3.3.1 Semantics and Usage

Insertion Data packets are inserted to the CS (Cs::insert) either in the incoming Data pipeline (Section 4.3.1) or in the
Data unsolicited pipeline (Section 4.3.2), after forwarding ensures eligibility of the Data packet to be processed at all (e.g.,
that the Data packet does not violate the name-based scope control [9]).

Before storing the Data packet, the admission policy is evaluated. Local applications can give hints to the admission
policy via NDNLPv2 [5] CachePolicy field attached to the Data packet. These hints are considered advisory.

After passing the admission policy, the Data packet is stored, along with the time point at which it would become stale
and can no longer satisfy an Interest with MustBeFresh Selector.

The CS is configured with a capacity limit, which is checked at this point. If the insertion of this new Data packet causes
the CS to exceed the capacity limit, the cache replacement policy evicts excessive entries to bring the CS under capacity
limit.

3This is pending discussion per https://redmine.named-data.net/issues/3685.

22

https://redmine.named-data.net/issues/3685

3.3 Content Store (CS) 3 TABLES

Lookup The CS offers an asynchronous lookup API (Cs::find). incoming Interest pipeline (Section 4.2.1) invokes this
API with an incoming Interest. The search algorithm gives the Data packet that best matches the Interest to the Content
Store hit pipeline (Section 4.2.3), or informs the Content Store miss pipeline (Section 4.2.4) if there is no match.

Enumeration and Entry Abstraction The Content Store can be enumerated via forward iterators. This feature is not
directly used in NFD, but it could be useful in simulation environments.

In order to keep a stable enumeration interface, but still allow the CS implementation to be replaced, the iterator is
dereferenced to nfd::cs::Entry type, which is an abstraction of a CS entry. The public API of this type allows the caller
to get the Data packet, whether it’s unsolicited, and the time point at which it would become stale. A Content Store
implementation may define its own concrete type, and convert to the abstraction type during enumeration.

3.3.2 Lookup Table

The Table is an ordered container that stores concrete entries (nfd::cs::EntryImpl, subclass of the entry abstraction type).
This container is sorted by Data Name with implicit digest.4

Lookups are performed entirely using the Table. The lookup procedure (Cs::find*) is optimized to minimize the number
of entries visited in the expected case. In the worst case, a lookup would visit all entries that has Interest Name as a prefix.

Although the lookup API is asynchronous, the current implementation does lookups synchronously.
The Table uses std::set as the underlying container because its good performance in benchmarks. A previous CS

implementation used a skip list, but its performance was worse than std::set, probably due to algorithm complexity and
code quality.

3.3.3 Cache Replacement Policy

The cache replacement policy keeps the CS under its capacity limit. The main capacity limit is measured in terms of number
of cached Data packets. This metric is chosen over Data packet size because the memory overhead of table index can be
significant for small packets so that a packet size metric would be inaccurate. This capacity limit can be configured in NFD
configuration file tables.cs_max_packets key, or via Cs::setLimit API in a simulation environment. Runtime changes of
the capacity limit are allowed.

NFD offers multiple policy implementations as subclasses of nfd::cs::Policy. The effective policy can be configured in
NFD configuration file tables.cs_policy key, or via Cs::setPolicy API in a simulation environment. This configuration
can only be applied during initialization; runtime changes are disallowed.

Policy class API nfd::cs::Policy is the base class for all cache replacement policy implementations.
The capacity limit is stored on the Policy class, and can be changed via Policy::setLimit public method. A pure

virtual method evictEntries must be provided by a policy implementation to handle the lowering of the capacity limit by
evicting enough entries to bring the CS back under the new capacity limit. In addition to the main capacity limit (referred
to as the “hard limit”), a policy may offer additional capacity limits (such as a separate limit for certificates, or a packet size
based limit).

In order for a policy to maintain the capacity limit, it needs to know what Data packets have been added to the cache
and their access patterns. Therefore, the policy class exposes four public methods to receive those information:

• Policy::afterInsert is invoked after a new entry is inserted;
• Policy::afterRefresh is invoked after an existing entry is refreshed by same Data;
• Policy::beforeErase is invoked before an entry is erased via management command (currently unused);
• Policy::beforeUse is invoked when an entry is found by a lookup and before it’s used in forwarding.

These public methods call into corresponding pure virtual methods: doAfterInsert, doAfterRefresh, doBeforeErase,
doBeforeUse. These pure virtual methods, as well as evictEntries, should be overridden in subclasses.

Based on information received via the above APIs, a policy maintains an internal cleanup index, which is used to determine
which Data packet should be evicted when the CS exceeds the capacity limit. The structure of this internal cleanup index is
defined in each policy implementation. It should reference CS entries (stored in the Table) via iterators (nfd::cs::iterator).
When a policy decides to evict an entry, it should emit beforeEvict signal to inform the CS to erase the entry from the
Table, and then delete the corresponding item in the policy’s internal cleanup index. Note that beforeErase will not be
invoked for entries evicted via beforeEvict signal.

The recommended procedures for each function are:

4Implicit digest computation is CPU-intensive. The Table has an optimization that avoids implicit digest computation in most cases while still
guarantee correct sorting order.

23

3.4 Interest Table (PIT) 3 TABLES

• In doAfterInsert, the policy decides whether to accept the new entry. If it is accepted, the iterator of the new entry
should be inserted into the internal cleanup index; otherwise, cs::Policy::evictEntries will be called to inform CS
to do cleanup. Then, the policy should check whether CS size exceeds the capacity limit, and evict an entry (probably
by calling evictEntries function) if so.

• In doAfterRefresh, the policy may update its cleanup index to note that the same Data has arrived again.
• In doBeforeErase, the policy should delete the corresponding item in its cleanup index.
• In doBeforeUse, the policy may update its cleanup index to note that the indicated entry is accessed to satisfy an

incoming Interest.
• In evictEntries, the policy should evict enough entries so that the CS does not exceed capacity limit.

Priority FIFO cache policy Priority-FIFO evicts upon every insertion, because its performance is more predictable; the
alternative, periodic cleanup of a batch of entries, can cause jitter in packet forwarding.

Priority-FIFO uses three queues to keep track of Data packets in CS:
• unsolicited queue contains entries with unsolicited Data;
• stale queue contains entries with stale Data;
• FIFO queue contains entries with fresh Data.

At any time, an entry belongs to exactly one queue, and can appear only once in that queue. Priority-FIFO keeps track of
which queue each entry belongs to.

These fields, along with the Table iterator stored in the queue, establish a bidirectional relation between the Table and
the queues. Mutation operations must maintain this relation:

• When an entry is inserted, the Entry is emplaced in the Table, and
• When an entry is evicted, its Table iterator erased from the head of its queue, and the entry is erased from the Table.
• When a fresh entry becomes stale (which is controlled by a timer), its Table iterator is moved from the FIFO queue to

the stale queue, and the queue indicator and iterator on the entry are updated.
• When an unsolicited/stale entry is updated with a solicited Data, its Table iterator is moved from the unsolicited/stale

queue to the FIFO queue, and the queue indicator and iterator on the entry are updated
A queue, despite the name, is not a real first-in-first-out queue, because an entry can move between queues (see mutation
operations above). When an entry is moved, its Table iterator is detached from the old queue, and appended to the new
queue. std::list is used as the underlying container; std::queue and std::deque are unsuitable because they can’t
efficiently detach a node.

LRU cache policy LRU cache policy implements the Least Recently Used cache replacement algorithm, which discards the
least recently used items first. LRU evicts upon every insertion, because its performance is more predictable; the alternative,
periodic cleanup of a batch of entries, can cause jitter in packet forwarding.

LRU uses one queue to keep track of data usage in CS. The Table iterator is stored in the queue. At any time, when an
entry is used or refreshed, its Table iterator is relocated to the tail of the queue. Also, when an entry is newly inserted, its
Table iterator is pushed at the tail of the queue. When an entry needs to be evicted, its Table iterator is erased from the
head of its queue, and the entry is erased from the Table.

The queue uses boost::multi index container [10] as the underlying container due to its good performance in bench-
marks. boost::multi index container::sequenced index is used for inserting, updating usage and refreshing and boost::

multi index container::ordered unique index is used for erasing by Table::iterator.

3.4 Interest Table (PIT)

The Interest Table (PIT) keeps track of Interests forwarded upstream toward content source(s), so that Data can be sent
downstream to its requester(s) [8]. It also contains recently satisfied Interests for loop detection and measurements purposes.
This data structure is called “pending Interest table” in NDN literatures; however, NFD’s PIT contains both pending Interests
and recently satisfied Interests, so “Interest table” is a more accurate term, but the abbreviation “PIT” is kept.

PIT is a collection of PIT entries, used only by forwarding (Section 4). The structure and semantics of PIT entry, and how
it’s used by forwarding are described in Section 3.4.1. The structure and algorithms of PIT, and how it’s used by forwarding
are described in Section 3.4.2. The implementation of PIT algorithms is discussed in Section 3.8.

3.4.1 PIT Entry

Figure 6 shows the PIT, PIT entries, in-records, out-records, and their relations.

24

3.4 Interest Table (PIT) 3 TABLES

PIT

PIT entry

InterestPK

Nonce list

in-record

facePK

lastNonce

lastRenewed

out-record

facePK

lastNonce

lastRenewed

Interest

Figure 6: PIT and related entities

PIT entry
A PIT entry (nfd::pit::Entry) represents either a pending Interest or a recently satisfied Interest. Two Interest packets

are similar if they have same Name and same Selectors [1]. Multiple similar Interests share the same PIT entry.
Each PIT entry is identified by an Interest. All fields in this Interest, except Name and Selectors, are insignificant.
Each PIT entry contains a collection of in-records, a collection of out-records, and a timer, described below. In addition,

forwarding strategy is allowed to store arbitrary information on PIT entry, in-records, and out-records (Section 5.1.3).

In record
An in-record (nfd::pit::InRecord) represents a downstream face for the Interest. A downstream face is a requester

for the content: Interest comes from downstream, and Data goes to downstream.
The in-record stores:

• a reference to the face

• the Nonce in the last Interest packet from this face

• the timestamp on which the last Interest packet from this face arrives

• the last Interest packet

An in-record is inserted or updated by incoming Interest pipeline (Section 4.2.1). All in-records are deleted by incoming
Data pipeline (Section 4.3.1) when a pending Interest is satisfied.

An in-record expires when InterestLifetime has elapsed after the last Interest packet arrives. A PIT entry expires
when all in-records expire. A PIT entry is said to be pending if it contains at least one unexpired in-record.

Out record
An out-record (nfd::pit::OutRecord) represents an upstream face for the Interest. An upstream face is a potential

content source: Interest is forwarded to upstream, and Data comes from upstream.
The out-record stores:

• a reference to the face

• the Nonce in the last Interest packet to this face

• the timestamp on which the last Interest packet to this face is sent

• Nacked field: indicates the last outgoing Interest has been Nacked; this field also records the Nack reason

An out-record is inserted or updated by outgoing Interest pipeline (Section 4.2.5). An out-record is deleted by incoming
Data pipeline (Section 4.3.1) when a pending Interest is satisfied by a Data from that face.

An out-record expires when InterestLifetime has elapsed after the last Interest packet is sent.

25

3.5 Dead Nonce List 3 TABLES

Timer
Each PIT entry has one timer, the expiry timer. This timer is used by the forwarding pipelines (Section 4) and it fires

when the PIT entry expires (Section 4.2.1).

3.4.2 PIT

The PIT (nfd::Pit) is a table containing PIT entries, indexed by <Name,Selectors>tuple. The usual insert and delete
operations are supported. Pit::insert method first looks for a PIT entry for similar Interest, and inserts one only if it does
not already exist; there is no separate method for exact match, because forwarding does not need to determine the existence
of a PIT entry without inserting it. The PIT is not iterable, because this is not needed by forwarding.

Data Match algorithm (Pit::findAllDataMatches) finds all Interests that a Data packet can satisfy. It takes a Data
packet as input parameter. The return value is a collection of PIT entries that can be satisfied by this Data packet. This
algorithm does not delete any PIT entry.

cleanupOnFaceRemoval function is a joint FIB-PIT cleanup function upon face removal. See Section 3.1.1 for more
information.

3.5 Dead Nonce List

The Dead Nonce List is a data structure that supplements the PIT for loop detection purposes.
In August 2014, we found a persistent loop problem when InterestLifetime is short (Bug 1953). Loop detection

previously used only the Nonces stored in PIT entries. If an Interest is not satisfied within InterestLifetime, the PIT entry
is deleted. When the network contains a cycle whose delay is longer than InterestLifetime, a looping Interest around this
cycle cannot be detected because the PIT entry is gone before the Interest loops back.

A naive solution to this persistent loop problem is to keep the PIT entry for a longer duration. However, the memory
consumption of doing so would be too high, because a PIT entry contains many other things than the Nonce. Therefore, the
Dead Nonce List is introduced to store Nonces “dead” from the PIT.

The Dead Nonce List is a global container in NFD. Each entry in this container stores a tuple of Name and Nonce. The
existence of an entry can be queried efficiently. Entries are kept for a duration after which the Interest is unlikely to loop
back.

The structure and semantics of the Dead Nonce List, and how it’s used by forwarding are described in Section 3.5.1.
Section 3.5.2 discusses how the capacity of Dead Nonce List is maintained.

3.5.1 Structure, Semantics, and Usage

A tuple of Name and Nonce is added to Dead Nonce List (DeadNonceList::add) in incoming Data pipeline (Section 4.3.1)
and Interest finalize pipeline (Section 4.2.6) before out-records are deleted.

The Dead Nonce List is queried (DeadNonceList::has) in incoming Interest pipeline (Section 4.2.1). If an entry with
same Name and Nonce exists, the incoming Interest is a looping Interest.

The Dead Nonce List is a probabilistic data structure: each entry is stored as a 64-bit hash of the Name and Nonce. This
greatly reduces the memory consumption of the data structure. At the same time, there’s a non-zero probability of hash
collisions, which inevitably cause false positives: non-looping Interests are mistaken as looping Interests. Those false positives
are recoverable: the consumer can retransmit the Interest with a fresh Nonce, which most likely would yield a different hash
that doesn’t collide with an existing one. We believe the gain from memory savings outweighs the harm of false positives.

3.5.2 Capacity Maintenance

Entries are kept in the Dead Nonce List for a configurable lifetime. The lifetime of an entry is a trade-off between the
effectiveness of loop detection, the memory consumption of the container, and the probability of false positives. A longer
lifetime improves the effectiveness of loop detection, because a looping Interest can be detected only if it loops back before
the entry is removed, therefore the longer lifetime allows detecting looping Interests in network cycles with a longer delay.
On the other hand, a longer entry lifetime causes more entries to be stored, and therefore increases the memory consumption
of the container; keeping more entries also means a higher probability of hash collisions and thus false positives. The default
entry lifetime is set to 6 seconds.

A naive approach to entry lifetime enforcement is to keep a timestamp in each entry. This approach consumes too much
memory. Given that the Dead Nonce List is a probabilistic data structure, entry lifetime doesn’t need to be precise. Thus, we
index the container as a first-in-first-out queue, and we approximate the entry lifetime to the configured lifetime by adjusting
the capacity of the container.

26

3.6 Strategy Choice Table 3 TABLES

It’s infeasible to statically configure the capacity of the container, because the frequency of adding entries is correlated
to Interest arrival rate, which cannot be accurately estimated by an operator. Therefore, we use the following algorithm to
dynamically adjust the capacity for expected entry lifetime L:

• At interval M , we add a special entry called mark to the container. The mark doesn’t have a distinct type: it’s an entry
with a specific value, with the assumption that the hash function is non-invertible so that the probability of colliding
with a hash value computed from Name and Nonce is low.

• At interval M , we count the number of marks in the container, and remember the count. The order between adding a
mark and counting marks doesn’t matter, but it shall be consistent.

• At interval A, we look at recent counts. When the capacity of the container is optimal, there should be L/M marks in
the container at all times. If all recent counts are above L/M , the capacity is decreased. If all recent counts are below
L/M , the capacity is increased.

In addition, there is a hard upper and lower bound for the capacity, to avoid memory overflow and to ensure correct
operations. When the capacity is adjusted down, to bound algorithm execution time, excess entries are not evicted all at
once, but are evicted in batches during future insertion operations.

3.6 Strategy Choice Table

The Strategy Choice Table contains the forwarding strategy (Section 5) chosen for each namespace. This table is a new
addition to the NDN architecture. Theoretically, forwarding strategy is a program that is supposed to be stored in FIB
entries [8]. In practice, we find that it is more convenient to save the forwarding strategy in a separate table, instead of
storing it with FIB entry, for the following reasons:

• FIB entries come from RIB entries, which are managed by the NFD-RIB service (Section 7). Storing the strategy in
FIB entries would require the RIB service to create/update/remove strategies when it manipulates the FIB. Therefore,
this would increase the complexity of the RIB service.

• FIB entry is automatically deleted when the last NextHop record is removed, including when the last upstream face
fails. However, we don’t want to lose the configured strategy.

• The granularity of strategy configuration is different from the granularity of RIB entry or FIB entry. Having both in
the same table makes inheritance handling more complex.

The structure, semantics, and algorithms of Strategy Choice Table is outlined in Section 3.6.1. How Strategy Choice Table
is used by rest of NFD is described in Section 3.6.2. The implementation of Strategy Choice Table algorithms is discussed in
Section 3.8.

3.6.1 Structure and Semantics

Strategy Choice entry
A Strategy Choice entry (nfd::strategy choice::Entry) contains a name prefix and a forwarding strategy chosen for

that namespace. A nfd::fw::Strategy subclass instance is created at runtime, and stored inside each Strategy Choice entry.

Strategy Choice Table
The Strategy Choice Table (nfd::StrategyChoice) is a collection of Strategy Choice entries. There can be only one

strategy set per namespace, but sub-namespaces can have their own choices for the strategy.
In order to guarantee that every namespace has a strategy, NFD always insert the root entry for / namespace to the

Strategy Choice Table during initialization. The strategy chosen for this entry, called the default strategy, is defined by the
hard-coded getDefaultStrategyName free function in daemon/fw/forwarder.cpp. The default strategy can be replaced,
but the root entry in Strategy Choice Table can never be deleted.

The insertion operation (StrategyChoice::insert) inserts a Strategy Choice entry, or updates the chosen strategy on
an existing entry. This operation accepts a name prefix on which the strategy choice is applied, and a strategy instance
name. The strategy instance name starts with a name prefix that indicates the strategy “program”, such as /localhost/

nfd/strategy/best-route; then, it may contain an optional version number to choose a specific version of the strategy
program, and additional name components as “parameters” which are passed to the strategy constructor. The strategy
instance name is used to locate a strategy type in the strategy registry (within nfd::fw::Strategy class); if a strategy type
is found, it is instantiated and stored into the Strategy Choice entry.

27

3.7 Measurements Table 3 TABLES

The deletion operation (StrategyChoice::erase) deletes a Strategy Choice entry. The namespace covered by the deletes
would inherit the strategy defined on the parent namespace. It is disallowed to delete the root entry.

The usual exact match operation is supported. Strategy Choice entries can be iterated over in a forward iterator, in
unspecified order.

Find Effective Strategy algorithm (StrategyChoice::findEffectiveStrategy) finds a strategy that should be used
to forward an Interest. The effective strategy for the namespace can be defined as follows:

• If the namespace is explicitly associated with the strategy, then this is the effective strategy.
• Otherwise, the first parent namespace for which strategy was explicitly set defines the effective strategy.
The find effective strategy algorithm takes a Name, a PIT entry, or a measurements entry as input parameter. The return

value of the algorithm is a forwarding strategy that is found by longest prefix match using the supplied name. This return
value is always a valid entry, because every namespace must have a strategy.

3.6.2 Usage

The Strategy Choice Table is updated only through management protocol. Strategy Choice manager (Section 6.6) is directly
responsible for updating the Strategy Choice Table.

The Strategy Choice is expected to be stable, as strategies are expected to be manually chosen by the local NFD operator
(either user for personal computers or system administrators for the network routers).

The effective strategy search algorithm is used by forwarding in the Content Store miss pipeline (Section 4.2.4), the
incoming Data pipeline (Section 4.3.1), and the incoming Nack pipeline (Section 4.4.1). It is called at most twice per
incoming packet.

3.7 Measurements Table

The Measurements Table is used by forwarding strategies to store measurements information regarding a name prefix.
Strategy can store arbitrary information in PIT and in Measurements (Section 5.1.3). The Measurements Table is indexed
by namespace, so it’s suitable to store information that is associated with a namespace, but not specific to an Interest.

The structure and algorithms of Measurements Table is outlined in Section 3.7.1. How Measurements Table is used by
rest of NFD is described in Section 3.7.2. The implementation of Measurements Table algorithms is discussed in Section 3.8.

3.7.1 Structure

Measurements entry
A Measurements entry (nfd::measurements::Entry) contains a Name, and APIs for strategy to store and retrieve

arbitrary information (nfd::StrategyInfoHost, Section 5.1.3). It’s possible to add some standard metrics that can be
shared among strategies, such as round trip time, delay, jitter, etc. However, we feel that every strategy has its unique needs,
and adding those standard metrics would become unnecessary overhead if the effective strategy is not making use of them.
Therefore, currently the Measurements entry does not contain standard metrics.

Measurements Table
The Measurements Table (nfd::Measurements) is a collection of Measurements entries.
Measurements::get method finds or inserts a Measurements entry. The parameter is a Name, a FIB entry, or a PIT

entry. Because of how Measurements table is implemented, it’s more efficient to pass in a FIB entry or a PIT entry, than to
use a Name. Measurements::getParent method finds or inserts a Measurements entry of the parent namespace.

Unlike other tables, there is no delete operation. Instead, each entry has limited lifetime, and is automatically deleted
when its lifetime is over. Strategy must call Measurements::extendLifetime to request extending the lifetime of an entry.

Exact match and longest prefix match lookups are supported for retrieving existing entries.

3.7.2 Usage

Measurements Table is solely used by forwarding strategy. How many entries are in the Measurements Table and how often
they are accessed are determined by forwarding strategies. A well-written forwarding strategy stores no more than O(log(N))
entries, and performs no more than O(N) lookups, where N is the number of incoming packets plus the number of outgoing
packets.

28

3.8 NameTree 3 TABLES

Measurements Accessor
Recall that NFD has per-namespace strategy choice (Section 3.6), each forwarding strategy is allowed to access the

portion of Measurements Table that are under the namespaces managed by that strategy. This restriction is enforced by a
Measurements Accessor.

A Measurements Accessor (nfd::MeasurementsAccessor) is a proxy for a strategy to access the Measurements Table. Its
APIs are similar to the Measurements Table. Before returning any Measurements entry, the accessor looks up the Strategy
Choice Table (Section 3.6) to confirm whether the requesting strategy owns the Measurements entry. If an access violation
is detected, null is returned instead of the entry.

3.8 NameTree

The NameTree is a common index structure for FIB (Section 3.1), PIT (Section 3.4, Strategy Choice table (Section 3.6,
and Measurements table (Section 3.7). It is feasible to use a common index, because there are much commonality in the
index of these four tables: FIB, Strategy Choice, and Measurements are all indexed by Name, while PIT is indexed by Name
and Selectors [1]. It is beneficial to use a common index, because lookups on these four tables are often related (eg. FIB
longest prefix match is invoked in incoming Interest pipeline (Section 4.2.1) after inserting a PIT entry), and using a common
index can reduce the number of index lookups during packet processing; the amount of memory used by the index(es) is also
reduced.

NameTree data structure is introduced in Section 3.8.1. NameTree operations and algorithms are described in Sec-
tion 3.8.2. Section 3.8.3 describes how NameTree can help reducing number of index lookups by adding shortcuts between
tables.

3.8.1 Structure

The NameTree is a collection of NameTree entries, indexed by Name and organized in a tree structure. FIB, PIT, Strategy
Choice, and Measurements entries are attached onto NameTree entry.

NameTree entry
A NameTree entry (nfd::name tree::Entry) contains:
• the name prefix
• a pointer to the parent entry
• pointers to child entries
• zero or one FIB entry
• zero or more PIT entries
• zero or one Strategy Choice entry
• zero or one Measurements entry
NameTree entries form a tree structure via parent and children pointers. The tree structure follows name hierarchy: the

name prefix of a parent entry is the name prefix of its child minus the last component.
The FIB, Strategy Choice, and Measurements entries attached to a NameTree entry have the same name as the NameTree

entry. In most cases, PIT entries attached to a NameTree entry can have the same name as the NameTree entry and differ
only in Selectors; as a special case, a PIT entry whose Interest name ends with an implicit digest component is attached
to the NameTree entry that corresponds to the Interest name minus the implicit digest component, so that the all match
algorithm (Section 3.8.2) with an incoming Data name (without computing its implicit digest) can find this PIT entry.

NameTree hash table
NameTree entries are organized into a hash table, in addition to the tree structure, to enable faster name-based lookups.

Specifically, the hash table allows us to locate a deep entry without going from the root of the tree. We decide to implement
the hash table from scratch (nfd::name tree::Hashtable), rather than using an existing library, so that we can have better
control for performance tuning.

The hash table contains a number of buckets. To insert an entry, we use CityHash [11] to compute the hash value
of its name prefix; this hash function is chosen due to its fast speed. Specifically, hash value is computed over the TLV
representation of the name components, but does not cover outer NAME-TYPE TLV-LENGTH fields; this allows us to compute
hash values of all prefixes of a name together when needed. The entry is then mapped into a bucket chosen by the hash
value. In case multiple names are mapped to the same bucket, we resolve hash collision by chaining the entries in a doubly
linked list.

The hash table is resized automatically as the number of stored NameTree entries changes. Resize operations are controlled
by parameters in nfd::name tree::HashtableOptions. The parameter setting is a trade-off between wasted memory of

29

3.8 NameTree 3 TABLES

empty buckets and time overhead of chaining. When the load factor (number of entries divided by number of buckets) goes
above the expand threshold or below the shrink threshold, a resize operation is triggerred, in which every NameTree entry is
moved to the appropriate bucket in the new hash table.

We introduce a nfd::name tree::Node to store fields used in hash table implementation, including:
• the hash value, so that resize operation does not need to re-compute it
• pointer to previous node in doubly linked list of the bucket
• pointer to next node in doubly linked list of the bucket
• the NameTree entry (Node owns Entry; Entry has a pointer back to the Node)

3.8.2 Operations and Algorithms

Insertion and Deletion operations
The lookup/insertion operation (NameTree::lookup) finds or inserts an entry for a given Name. To maintain the tree

structure, ancestor entries are inserted if necessary. This operation is called when a FIB/PIT/Strategy Choice/Measurements
entry is being inserted.

The conditional deletion operation (NameTree::eraseEntryIfEmpty) deletes an entry if no FIB/PIT/Strategy Choice/
Measurements entry is stored on it, and it has no children; ancestors of the deleted entry are also deleted if they meet the
same requirements. This operation is called when a FIB/PIT/Strategy Choice/Measurements entry is being deleted.

Matching algorithms
The exact match algorithm (NameTree::findExactMatch) finds the entry with a specified Name, or returns null if such

entry does not exist.
The longest prefix match algoritm (NameTree::findLongestPrefixMatch) finds the entry of longest prefix match

of a specified Name, filtered by an optional EntrySelector. An EntrySelector is a predicate that decides whether an entry
can be accepted (returned). This algorithm is implemented as: start from looking up the full Name in the hash table; if
no NameTree entry exists or it’s rejected by the predicate, remove the last Name component and lookup again, until an
acceptable NameTree entry is found. This algorithm is called by FIB longest prefix match algorithm (Section 3.1.1), with
a predicate that accepts a NameTree entry only if it contains a FIB entry. This algorithm is called by Strategy Choice find
effective strategy algorithm (Section 3.6.1), with a predicate that accepts a NameTree entry only if it contains a Strategy
Choice entry.

The all match algorithm (NameTree::findAllMatches) enumerates all entries that are prefixes of a given Name, filtered
by an optional EntrySelector. This algorithm is implemented as: perform a longest prefix match first; remove the last Name
component, until reaching the root entry. This algorithm is called by PIT data match algorithm (Section 3.4.2).

Enumeration algorithms
The full enumeration algorithm (NameTree::fullEnumerate) enumerates all entries, filtered by an optional EntrySe-

lector. This algorithm is used by FIB enumeration and Strategy Choice enumeration.
The partial enumeration algorithm (NameTree::partialEnumerate) enumerates all entries under a specified Name

prefix, filtered by an optional EntrySubTreeSelector. An EntrySelector is a double-predicate that decides whether an entry can
be accepted, and whether its children shall be visited. This algorithm is used during runtime strategy change (Section 5.1.3)
to clear StrategyInfo items under a namespace changing ownership.

3.8.3 Shortcuts

One benefit of the NameTree is that it can reduce the number of index lookups during packet forwarding. To achieve this
goal, one method is to let forwarding pipelines perform a NameTree lookup explicitly, and use fields of the NameTree entry.
However, this is not ideal because NameTree is introduced to improve the performance of four tables, and it should not
change the procedure of forwarding pipelines.

To reduce the number of index lookups, but still hide NameTree away from forwarding pipelines, we add shortcuts
between tables. Each FIB/PIT/Strategy Choice/Measurements entry contains a pointer to the corresponding NameTree
entry; the NameTree entry contains pointers to FIB/PIT/Strategy Choice/Measurements entries and the parent NameTree
entry. Therefore, for example, given a PIT entry, one can retrieve the corresponding NameTree entry in constant time by
following the pointer5, and then retrieve or attach a Measurements entry via the NameTree entry, or find longest prefix match
FIB entry by following pointers to parents.

NameTree entry is still exposed to forwarding if we take this approach. To also hide NameTree entry away, we introduce
new overloads to table algorithms that take a relevant table entry in place of a Name. These overloads include:

5This applies only if the PIT entry’s Interest Name does not end with an implicit digest; otherwise, a regular lookup would be performed.

30

3.8 NameTree 3 TABLES

• Fib::findLongestPrefixMatch can accept PIT entry or Measurements entry in place of a Name
• StrategyChoice::findEffectiveStrategy can accept PIT entry or Measurements entry in place of a Name
• Measurements::get can accept FIB entry or PIT entry in place of a Name
An overload that takes a table entry is generally more efficient than the overload taking a Name. Forwarding can take

advantage of reduced index lookups by using those overloads, but does not need to deal with NameTree entry directly.
To support these overloads, NameTree provides NameTree::getEntry function template, which returns the NameTree

entry linked from a FIB/PIT/Strategy Choice/Measurements entry. NameTree::getEntry allows one table to retrieve the
corresponding NameTree from an entry of another table, without knowning the internal structure of that entry. It also
permits a table to depart from NameTree in the future without breaking other code: suppose someday Measurements is no
longer based on NameTree, NameTree::getEntry could perform a lookup using Interest Name in the Measurements entry;
Fib::findLongestPrefixMatch can still accept Measurements entries, although it’s not more efficient than using a Name.

31

4 FORWARDING

4 Forwarding

NFD has a smart forwarding plane, which consists of forwarding pipelines (Section 4) and forwarding strategies
(Section 5). A forwarding pipeline (or pipeline) consists of a series of processing steps on a packet. In addition, a pipeline is
entered when an event is triggered and a condition is matched, such as on receiving an Interest, when detecting the received
Interest was looped, when an Interest is ready to be forwarded out of a face, etc. A forwarding strategy (or strategy) makes
desicions on packet forwarding, including whether, when, and where to forward a packet. NFD can have multiple strategies
serving different namespaces, and pipelines will give packets to strategies accordingly.

Figure 7 shows the overall workflow of forwarding pipelines and strategy, where blue boxes represent pipelines and white
boxes represent decision points of the strategy.

incoming	
Interest	

incoming	
Data	

outgoing	
Interest	

outgoing	
Data	

Strategy:	a3er	
receive	Interest	

Interest	loop	

Data	
unsolicited	

Strategy:	before	
sa:sfy	Interest	

expiry	
:mer	

Interest	
finalize	

ContentStore	
miss	

ContentStore	
hit	

incoming	
Nack	

Strategy:	a3er	
receive	Nack	

outgoing	
Nack	

Strategy:		
a3er	Cs	Hit		

Strategy:	a3er	
receive	Data	

Strategy:	update	PIT	
entry	expiry	:mer	

Figure 7: Pipelines and strategy: overall workflow

4.1 Forwarding Pipelines

The pipelines operate on network layer packets (Interest, Data, or Nack) and each packet is passed from one pipeline to
another (in some cases through strategy decision points) until all processing is finished. Processing within pipelines uses CS,
PIT, Dead Nonce list, FIB, network region table, and Strategy Choice table, however for the last three pipelines have only
read-only access, as those tables are managed by the corresponding managers and are not directly affected by data plane
traffic.

FaceTable keeps track all active faces in NFD. It is the entry point from which an incoming network layer packet is given
to the forwarding pipelines for processing. Pipelines are also allowed to send packets through faces.

The processing of Interest, Data, and Nack packets in NDN is quite different. We separate forwarding pipelines into
Interest processing path, Data processing path, and Nack processing path, described in the following sections.

4.2 Interest Processing Path

NFD separates Interest processing into the following pipelines:

• Incoming Interest: processing of incoming Interests

• Interest loop: processing of incoming looped Interests

• Content Store hit: processing of incoming Interests that can be satisfied by cached Data

• Content Store miss: processing of incoming Interests that cannot be satisfied by cached Data

• Outgoing Interest: preparation and sending out of Interests

32

4.2 Interest Processing Path 4 FORWARDING

• Interest finalize: deleting PIT entries

4.2.1 Incoming Interest Pipeline

The incoming Interest pipeline is implemented in Forwarder::onIncomingInterest method and is entered from Forwarder::

startProcessInterest method, which is triggered by Face::afterReceiveInterest signal. The input parameters to the
incoming interest pipeline include the newly received Interest packet and reference to the Face on which this Interest packet
was received.

This pipeline includes the following steps, summarized in Figure 8:

Figure 8: Incoming Interest pipeline

1. First, it is determined whether the Interest has exceeded its stored HopLimit [1], which is similar to the time to live
(TTL) field in IP packets. This is accomplished by checking if the HopLimit on the incoming Interest is zero. If so, the
Interest is dropped. Otherwise, the HopLimit is decremented and the Interest continues on in the pipeline.

2. Next, the forwarding logic checks for /localhost scope [9] violations. In particular, an Interest from a non-local face
is not allowed to have a name that starts with /localhost prefix, as it is reserved for localhost communication. If a
violation is detected, the Interest is immediately dropped and no further processing is performed. This check guards
against malicious senders; a compliant forwarder will never send a /localhost Interest to a non-local face. Note that
/localhop scope is not checked here, because its scope rules do not restrict incoming Interests.

3. The Name and Nonce of the incoming Interest are checked against the Dead Nonce List (Section 3.5). If a match is
found, the incoming Interest is suspected of a loop, and is given to the Interest loop pipeline for further processing
(Section 4.2.2). If a match is not found, processing continues onto the next step. Note that, unlike a duplicate Nonce
detected with PIT entry (described below), a duplicate detected by the Dead Nonce List does not cause the creation of
a PIT entry, because creating an in-record for this incoming Interest would cause matching Data, if any, to be returned
to the downstream, which is incorrect; on the other hand, creating a PIT entry without an in-record is not helpful for
future duplicate Nonce detection.

4. If the Interest carries a forwarding hint, the procedure determines whether the Interest has reached the producer region,
by checking if any delegation name in the forwarding hint object is a prefix of any region name from the network region
table (Section 3.2). If so, the forwarding hint is stripped away, as it has completed its mission of bringing the Interest
into the producer region, and are no longer necessary.

5. The next step is looking up existing or creating a new PIT entry, using name and selectors specified in the Interest
packet. As of this moment, the PIT entry becomes a processing subject of the incoming Interest and following pipelines.
Note that NFD creates the PIT entry before performing Content Store lookup. The main reason for this decision is to

33

4.2 Interest Processing Path 4 FORWARDING

reduce the lookup overhead, on the assumption that the Content Store is likely to be significantly larger than the PIT,
because in some cases described below the CS lookup can be skipped.

6. Before the incoming Interest is processed any further, its Nonce is checked against the Nonces among PIT in-records.
If a match is found in an in-record of a different face, the incoming Interest is considered a duplicate due to either loop
or multi-path arrival, and is given to Interest loop pipeline for further processing (Section 4.2.2). Otherwise, processing
continues. Note that if the Nonce duplicates a Nonce previously received on the face, the Interest is considered a legit
retransmission because there is no risk of persistent loop in this case.

7. Next, the expiry timer on the PIT entry is cancelled, because a new valid Interest has arrived, so the lifetime of the
PIT entry needs to be extended. The timer may be reset later on in the Interest processing path, for example if a
matching Data is found in Content Store.

8. The pipeline then tests whether the Interest is pending, i.e., if the PIT entry already has another in-record from the
same or another incoming Face. Recall that NFD’s PIT entry can represent not only a pending Interest but also a
recently satisfied Interest (Section 3.4.1). This test is equivalent to “having a PIT entry” in CCN Node Model [8],
whose PIT contains only pending Interests.

9. If the Interest is not pending, the Interest is matched against the Content Store (Cs::find, Section 3.3.1). Otherwise,
CS lookup is unnecessary because a pending Interest implies that a previous CS returns no match. Depending on
whether there’s a match in CS, Interest processing continues either in Content Store miss pipeline (Section 4.2.4) or in
Content Store hit pipeline (Section 4.2.3).

4.2.2 Interest Loop Pipeline

This pipeline is implemented in Forwarder::onInterestLoop method and is entered from incoming Interest pipeline (Sec-
tion 4.2.1) when an Interest loop is detected. The input parameters to this pipeline include an Interest packet, and its
incoming Face.

This pipeline sends a Nack with reason code Duplicate to the Interest incoming face, if it’s a point-to-point face. Since
the semantics of Nack is undefined on a multi-access link, if the incoming face is multi-access, the looping Interest is simply
dropped.

4.2.3 Content Store Hit Pipeline

This pipeline is implemented in Forwarder::onContentStoreHit method and is entered in the incoming Interest pipeline
(Section 4.2.1), after performing a Content Store lookup (Section 3.3.1) and finding a match. The input parameters to this
pipeline include an Interest packet, its incoming Face, the PIT entry, and the matched Data packet.

As illustrated in Figure 9, this pipeline first sets the expiry timer to now on the Interest, then invokes after Content Store
hit trigger of the chosen strategy.

set	PIT	expiry	
-mer	to	now	

-mer	event	

Interest	
finalize	

Strategy:	a:er	CS	hit	

Figure 9: Content Store Hit pipeline

4.2.4 Content Store Miss Pipeline

This pipeline is implemented in Forwarder::onContentStoreMiss method and is entered in the incoming Interest pipeline
(Section 4.2.1), after performing a Content Store lookup (Section 3.3.1) and finding no match. The input parameters to this
pipeline include an Interest packet, its incoming Face, and the PIT entry.

As illustrated in Figure 10, this pipeline takes the following steps:

1. An in-record for the Interest and its incoming face is inserted into the PIT entry. In case an in-record for the same
incoming face already exists (i.e., the Interest is being retransmitted by the same downstream), it’s simply refreshed

34

4.2 Interest Processing Path 4 FORWARDING

insert	InRecord	

set	PIT	expiry	
2mer	to	the	2me	
that	the	last	PIT	
in-record	expires	

Strategy:	a;er	
receive	Interest	

has	
NextHopFaceId?	

outgoing	
Interest	

chosen	
NextHop	face	

exists?	
(drop)	

N	

Y	

Y	N	

Figure 10: Content Store Miss pipeline

with the newly observed Interest Nonce and expiration time. The expiration time of this in-record is controlled by the
InterestLifetime field in the Interest packet; if InterestLifetime is omitted, the default 4 seconds is used.

2. The expiry timer on the PIT entry is set to the time that the last PIT in-record expires. When the expiry timer expires,
the Interest Finalize pipeline (Section 4.2.6) is executed.

3. If the Interest carries a NextHopFaceId field in its NDNLPv2 header, the pipeline honors this field. The chosen next
hop face is looked up in the FaceTable. If a face is found, the outgoing Interest pipeline (Section 4.2.5) is executed; if
the face does not exist, the Interest is dropped.

4. Without a NextHopFaceId field, a forwarding strategy is responsible for making forwarding decision on the Interest.
Therefore, the pipeline invokes Find Effective Strategy algorithm (Section 3.6.1) to determine which strategy to use,
and invokes the after receive Interest trigger of the chosen strategy with the Interest packet, its incoming face, and the
PIT entry (Section 5.1.1).

Note that forwarding defers to the strategy the decision on whether, when, and where to forward an Interest. Most
strategies forward a new Interest immediately to one or more upstreams found through a FIB lookup. For a retransmitted
Interest, most strategies will suppress it if the previous forwarding happened recently (see Section 5.1.1 for more details),
and forward it otherwise.

4.2.5 Outgoing Interest Pipeline

The outgoing Interest pipeline is implemented in Forwarder::onOutgoingInterest method and is entered from Strategy::

sendInterest method which handles send Interest action for strategy (Section 5.1.2). The input parameters to this pipeline
include a PIT entry, an outgoing Face, and the Interest packet. Note that the Interest packet is not a parameter when
entering the pipeline. The pipeline steps either use the PIT entry directly to perform checks, or obtain a reference to an
Interest stored inside the PIT entry.

This pipeline includes the following steps, summarized in Figure 11:

Figure 11: Outgoing Interest pipeline

1. First, it is determined whether the Interest has exceeded its HopLimit [1]. If an interest has a HopLimit of zero and
the scope of the outgoing Face is non-local, it will be dropped. Otherwise, it will continue in the pipeline.

2. Next, an out-record is inserted into the PIT entry for the specified outgoing Face. If an out-record already exists
for this same Face, it will be updated. Regardless of whether the record was inserted or updated, the PIT out-record
remembers the Nonce of the last outgoing Interest packet (useful for matching incoming Nacks), as well as an expiration
timestamp (the current time plus InterestLifetime).

35

4.3 Data Processing Path 4 FORWARDING

3. Finally, the Interest is sent to the outgoing Face.

4.2.6 Interest Finalize Pipeline

This pipeline is implemented in Forwarder::onInterestFinalize method and is entered from the expiry timer.
The pipeline first determines whether any Nonces recorded in the PIT entry need to be inserted into the Dead Nonce List

(Section 3.5). The Dead Nonce List is a global data structure designed to detect looping Interests, and we want to insert as
few Nonces as possible to keep its size down. Only outgoing Nonces (in out-records) need to be inserted, because an incoming
Nonce that has never been sent out cannot loop back.

We can take further chances on the Content Store: if the PIT entry is satisfied, and the Content Store can satisfy a
looping Interest (thus stop the loop) during Dead Nonce List entry lifetime if Data packet isn’t evicted, Nonces in this PIT
entry don’t need to be inserted. The Content Store is believed to be able to satisfy a looping Interest, if the Interest does
not have MustBeFresh, or the cached Data’s FreshnessPeriod is no less than the Dead Nonce List entry lifetime.

If it is determined that one or more Nonces should be inserted into the Dead Nonce List, tuples of Name and Nonce are
added to the Dead Nonce List (Section 3.5.1).

Finally, the PIT entry is removed from the PIT.

4.3 Data Processing Path

Data processing in NFD is split into these pipelines:

• Incoming Data: processing of incoming Data packets

• Data unsolicited: processing of incoming unsolicited Data packets

• Outgoing Data: preparation and sending out of Data packets

4.3.1 Incoming Data Pipeline

The incoming Data pipeline is implemented in Forwarder::onIncomingData method and is entered from Forwarder::

startProcessData method, which is triggered by Face::afterReceiveData signal. The input parameters to this pipeline
include a Data packet and its incoming Face.

As illustrated in Figure 12, this pipeline includes the following steps:

Receive	Data	

(drop)	 Violates	
localhost?	

Y	

PIT	
match?	

N	

N	Data	
unsolicited	

Y	

CS	insert	

Only	one	PIT	
matched?	

mark	PIT	saBsfied	

Dead	Nonce	List	
insert	if	needed	

set	PIT	expiry	Bmer	
to	now		

Strategy:	aJer	
receive	Data	

Y	

foreach	
PIT	entry	

N	

set	PIT	expiry	Bmer	
to	now		

Strategy:	before	
saBsfy	Interest	

mark	PIT	saBsfied	

Dead	Nonce	List	
insert	if	needed	

Clear	PIT	in	and	out	
records	

Remember	pending	
downstreams	

outgoing	
Data	

Clear	PIT	out	
records	

Figure 12: Incoming Data pipeline

36

4.4 Nack Processing Path 4 FORWARDING

1. The first step is to check if the Data violates /localhost scope [9]. If the Data comes from a non-local Face but its
name starts with /localhost prefix, the scope is violated and the Data is dropped.

This check guards against malicious senders; a compliant forwarder will never send a /localhost Data to a non-local
Face. Note that /localhop scope is not checked here, because its scope rules do not restrict incoming Data.

2. Then, the pipeline checks if the Data matches PIT entries, by using Data Match algorithm (Section 3.4.2). If no
matching PIT entry is found, the Data is given to Data unsolicited pipeline (Section 4.3.2); if matching PIT entries are
found, the Data is inserted into the Content Store. Note that even if the pipeline inserts the Data to the Content Store,
whether the Data is stored and how long it stays in the Content Store is determined by the Content Store admission
and replacement policy.6

3. Next, the pipeline checks if only one matching PIT entry is found or more than one matching PIT entry is found. This
check decides if forwarding strategy is capable of manipulating Data forwarding. Normally, only one matching PIT
entry would be found. More than one matching PIT entry means more than one forwarding strategy is possible to
manipulate Data forwarding, which is forbidden to avoid potential conflicts among strategies.

4. If only one matching PIT entry is found, meaning that only one forwarding strategy is controlling Data forwarding,
the pipeline will set the PIT expiry timer to now, invoke after receive Data trigger of the strategy, mark PIT satisfied,
insert dead nonce list if needed, and clear PIT entry’s out records.

5. If more than one matching PIT entry is found, for each matching PIT entry, the pipeline will remember its pending
downstreams, set the PIT expiry timer to now, invoke before satisfy Interest trigger of the strategy, mark PIT satisfied,
insert dead nonce list if needed, and clear PIT entry’s in and out records. Finally, the pipeline will forward the Data to
each pending downstream, except that if the pending downstream Face is the same as the incoming Face of the Data,
and the Face is not ad-hoc.

4.3.2 Data Unsolicited Pipeline

This pipeline is implemented in Forwarder::onDataUnsolicited method and is entered from the incoming Data pipeline
(Section 4.3.1) when a Data packet is found to be unsolicited. The input parameters to this pipeline include a Data packet,
and its incoming Face.

The current unsolicited Data policy is consulted to decide whether to drop the Data, or add it to the Content Store. By
default, NFD forwarding is configured with a “drop-all” policy which drops all unsolicited Data, as they pose a security risk
to the forwarder.

There can be cases where unsolicited Data packets need to be accepted. The policy can be changed in NFD configuration
file at tables.cs unsolicited policy key.

4.3.3 Outgoing Data Pipeline

This pipeline is implemented in Forwarder::onOutgoingData method and pipeline is entered from incoming Interest pipeline
(Section 4.2.1) when a matching Data is found in Content Store and from incoming Data pipeline (Section 4.3.1) when the
incoming Data matches more than one PIT entry. The input parameters to this pipeline include a Data packet, and the
outgoing Face.

This pipeline contains the following steps:

1. The Data is first checked for /localhost scope [9]: Data packets with a /localhost prefix cannot be sent to a non-local
face.7 /localhop scope is not checked here, because its scope rules do not restrict outgoing Data.

2. The next step is reseved for the traffic manager actions, such as to perform traffic shaping, etc. The current version
does not include any traffic management, but it is planned to be implemented in a future release.

3. Finally, the Data packet is sent via the outgoing Face.

4.4 Nack Processing Path

Nack processing in NFD is split into these pipelines:

• Incoming Nack: processing of incoming Nacks

• Outgoing Nack: preparation and sending out of Nacks
6The current implementation has a fixed “admit all” admission policy, and LRU as replacement policy, see Section 3.3.
7This check is only useful in a specific scenario (see NFD Bug 1644).

37

4.5 Helper Algorithms 4 FORWARDING

4.4.1 Incoming Nack Pipeline

The incoming Nack pipeline is implemented in Forwarder::onIncomingNack method and is entered from Forwarder::

startProcessNack method, which is triggered by Face::afterReceiveNack signal. The input parameters to this pipeline
include a Nack packet and its incoming Face.

First, if the incoming face is not a point-to-point face, the Nack is dropped without further processing, because the
semantics of Nack is only defined on a point-to-point link.

The Interest carried in the Nack and its incoming face is used to locate a PIT out-record for the same face where the
Interest has been forwarded to, and the last outgoing Nonce was same as the Nonce carried in the Nack. If such an out-record
is found, it’s marked Nacked with the Nack reason. Otherwise, the Nack is dropped because it’s no longer relevant.

The effective strategy responsible for the PIT entry is determined using Find Effective Strategy algorithm (Section 3.6.1).
The selected strategy is then triggered for the after receive Nack procedure with the Nack packet, its incoming Face, and the
PIT entry (Section 5.1.1).

4.4.2 Outgoing Nack Pipeline

The outgoing Nack pipeline is implemented in Forwarder::onOutgoingNack method and is entered from Strategy::

sendNack method which handles send Nack action for strategy (Section 5.1.2). The input parameters to this pipeline
include a PIT entry, an outgoing Face, and the Nack header.

First, the PIT entry is queried for an in-record of the specified outgoing face (downstream). This in-record is necessary
because protocol requires the last Interest received from the downstream, including its Nonce, to be carried in the Nack
packet. If no in-record is found, abort this procedure, because the Nack cannot be sent without this Interest.

Second, if the downstream is not a point-to-point face, abort this procedure, because the semantics of Nack is only defined
on a point-to-point link.

After both checks are passing, a Nack packet is constructed with the provided Nack header and the Interest from the
in-record, and sent through the face. The in-record is erased as it has been “satisfied” by the Nack, and no further Nack or
Data should be sent to the same downstream unless there’s a retransmission.

4.5 Helper Algorithms

Several algorithms used in forwarding pipelines and multiple strategies are implemented as helper functions. As we identify
more reusable algorithms, they will be implemented as helper functions as well, rather than repeating the code in several
places.

nfd::fw::wouldViolateScope determines whether forwarding an Interest out of a face would violate namespace-based
scope control.

nfd::fw::findDuplicateNonce searches a PIT entry to see if there’s a duplicate Nonce in any in-record or out-record.
nfd::fw::hasPendingOutRecords determines whether a PIT entry has an out-record that is still pending, i.e. neither

Data nor Nack has come back.

4.5.1 FIB lookup

Strategy::lookupFib implements a FIB lookup procedure with consideration of forwarding hint. The procedure is:

1. If the Interest does not carry a forwarding hint and hence does not require mobility processing, FIB is looked up using
Interest Name (Section 3.1.1, Longest Prefix Match algorithm). FIB guarantees that Longest Prefix Match returns a
valid FIB entry; however, a FIB entry may contain empty set of NextHop records, which could effectively result (but,
strictly speaking, is not required to happen) in the strategy rejecting the Interest.

2. If the Interest carries a forwarding hint8, it is processed for mobility support.

3. The procedure looks up the FIB using each delegation name contained in the forwarding hint, and returns the first
matched FIB entry that has at least one nexthop. It does not distinguish whether the Interest is in consumer region or
default-free zone.

4. In case none of the delegation names match a FIB entry with at least one nexthop, an empty FIB entry is returned.

8Presence of a forwarding hint at this point indicates the Interest has not reached the producer region, because the forwarding hint should have
been stripped in incoming Interest pipeline when entering the producer region.

38

4.5 Helper Algorithms 4 FORWARDING

A limitation of current implementation is that, when an Interest reaches the first default-free router, which delegation to
use is solely determined by this FIB lookup procedure according to the routing cost in the FIB. Ideally, this choice should
be made by the strategy which can take current performance of different upstreams into consideration. We are exploring a
better design in this aspect.

39

5 FORWARDING STRATEGY

5 Forwarding Strategy

In NFD forwarding, forwarding strategies provide the intelligence to make decision on whether, when, and where to forwarding
Interests. Forwarding strategies, together with forwarding pipelines (Section 4), make up the packet processing logic in NFD.
The forwarding strategy is triggered from the forwarding pipelines when a decision about Interest forwarding needs to be
made. In addition, the strategy can receive notifications on the outcome of its forwarding decisions, e.g., when a forwarded
Interest is satisfied, timed out, or brings back a Nack.

Our experience with NDN applications has shown that different applications need different forwarding behaviors. For
example, a file retrieval application wants to retrieve contents from a content source with highest bandwidth, an audio chat
application wants the lowest delay, and a dataset synchronization library (such as ChronoSync) wants to multicast Interests
to all available faces in order to reach its peers. The need for different forwarding behaviors motivates us to have multiple
forwarding strategies in NFD.

Despite having multiple strategies in NFD, the forwarding decision of an individual Interest must be made by a single
strategy. NFD implements per-namespace strategy choice. An operator may configure a specific strategy for a name prefix,
and Interests under this name prefix will be handled by this strategy. This configuration is recorded in the Strategy Choice
table (Section 3.6), and is consulted by the forwarding pipelines.

Currently, the choice of forwarding strategy is a local configuration. The same Interest may be handled by completely
different strategies on different nodes. Alternatives to this approach are being discussed as of Jan 2016. One notable idea is
routing annotations where the routing announcement carries an indication about the preferred strategy.

5.1 Strategy API

Conceptually, a strategy is a program written for an abstract machine, the strategy API. The “language” of this abstract
machine contains standard arithmetic and logical operations, as well as interactions with the rest of NFD. The state of this
abstract machine is stored in NFD tables.

Each NFD strategy is implemented as a subclass of nfd::fw::Strategy class, which provides the API for the interaction
between the implemented strategy and the rest of NFD. This API is the only way a strategy can access NFD components,
therefore available functionality in the strategy API determines what NFD strategies can or cannot do.

A strategy is invoked through one of the triggers (Section 5.1.1). The forwarding decision is made with actions (Sec-
tion 5.1.2). Strategies are also allowed to store information on certain table entries (Section 5.1.3).

5.1.1 Triggers

Triggers are entrypoints to the strategy program. A trigger is declared as a virtual method of nfd::fw::Strategy class,
and is expected to be overridden by a subclass.

After Receive Interest Trigger
This trigger is declared as Strategy::afterReceiveInterest method. This method is pure virtual, and therefore must

be overridden by a subclass.
When an Interest is received, passes necessary checks, and needs to be forwarded, Incoming Interest pipeline (Section 4.2.1)

invokes this trigger with the Interest packet, its incoming face, and the PIT entry. At that time, the following conditions
hold for the Interest:

• The Interest has not exceeded its HopLimit.
• The Interest does not violate /localhost scope.
• The Interest is not looped.
• The Interest cannot be satisfied by the Content Store.
• The Interest is under a namespace managed by this strategy.
After being triggered, the strategy should decide whether and where to forward this Interest. Most strategies need a

FIB entry to make this decision, which can be obtained by calling Strategy::lookupFib accessor function. If the strategy
decides to forward this Interest, it should invoke send Interest action at least once; it can do so either immediately or some
time in the future using a timer.9 If the strategy concludes that this Interest cannot be forwarded, it should invoke the
Strategy::setExpiryTimer action and set the timer to expire immediately, so that the PIT entry can eventually be deleted.

9Warning: although a strategy is allowed to invoke send Interest action via a timer, this forwarding may never happen in special cases. For
example, if while such a timer is pending an NFD operator updates the strategy on Interest’s namespace, the timer event will be cancelled and
new strategy may not decide to forward the Interest until after all out-records in the PIT entry expire.

40

5.1 Strategy API 5 FORWARDING STRATEGY

After Content Store Hit Trigger
This trigger is declared as Strategy::afterContentStoreHit method. The base class provides a default implementation

that sends the matching Data to the downstream.

After Receive Data Trigger
This trigger is declared as Strategy::afterReceiveData method. This trigger is invoked when an incoming Data satisfies

exactly one PIT entry, and gives the strategy full control over Data forwarding. When this trigger is invoked, the Data has
been verified to satisfy the PIT entry, and the PIT entry expiry timer is set to fire immediately. The base class implementation
invokes the Strategy::beforeSatisfyInterest trigger and then returns the Data to all downstream faces.

Inside this trigger:
• A strategy should return Data to downstream nodes via the methods Strategy::sendData or Strategy::sendDataToAll.
• A strategy can modify the Data as long as it still satisfies the PIT entry, such as adding or removing congestion marks.
• A strategy can delay Data forwarding by prolonging the PIT entry lifetime via Strategy::setExpiryTimer, and

forward Data before the PIT entry is erased.
• A strategy can collect measurements about the upstream.
• A strategy can collect responses from additional upstream nodes by prolonging the PIT entry lifetime every time a

Data is received. Note that only one Data should be returned to each downstream node.

Before Satisfy Interest Trigger
This trigger is declared as Strategy::beforeSatisfyInterest method. The base class provides a default implementation

that does nothing; a subclass can override this method if the strategy needs to be invoked for this trigger, e.g., to record data
plane measurement results for the pending Interest.

When a PIT entry is satisfied, before Data is sent to downstreams (if any), Incoming Data pipeline (Section 4.3.1) invokes
this trigger with the PIT entry, the Data packet, and its incoming face. The PIT entry may represent either a pending
Interest or a recently satisfied Interest.

After Receive Nack Trigger
This trigger is declared as Strategy::afterReceiveNack method. The base class provides a default implementation

that does nothing, which means all incoming Nacks will be dropped, and will not be passed to downstreams. A subclass can
override this method if the strategy needs to be invoked for this trigger.

When an Interest is received, and passes necessary checks, Incoming Nack pipeline (Section 4.4.1) invokes this trigger
with the Nack packet, its incoming face, and the PIT entry. At that time, the following conditions hold:

• The Nack is received in response an forwarded Interest.
• The Nack has been confirmed to be a response to the last Interest forwarded to that upstream, i.e. the PIT out-record

exists and has a matching Nonce.
• The PIT entry is under a namespace managed by this strategy10.
• The NackHeader has been recorded in the Nacked field of the PIT out-record.

After being triggered, the strategy could typically do one of the following:
• Retry the Interest by forwarding it to the same or different upstream(s), by invoking send Interest action. Most

strategies need a FIB entry to find out potential upstreams, which can be obtained by calling Strategy::lookupFib

accessor function.
• Give up and return the Nack to downstream(s), by invoking send Nack action.
• Do nothing for this Nack. If some but not all upstreams have Nacked, the strategy may want to wait for Data or Nack

from more upstreams. In this case, it’s unnecessary for the strategy to record the Nack in its own StrategyInfo, because
the Nack header is available on the PIT out-record in Nacked field.

5.1.2 Actions

Actions are forwarding decisions made by the strategy. An action is implemented as a non-virtual protected method of
nfd::fw::Strategy class.

Send Interest Action
This action enters the Outgoing Interest pipeline (Section 4.2.5). It is implemented as Strategy::sendInterest method.

Parameters include: the affected PIT entry, the desired egress face and destination endpoint, and the Interest packet which
must match the PIT entry.

10This does not necessarily imply that the Interest was forwarded by this strategy. In case the effective strategy is changed after an Interest is
forwarded and then a Nack comes back, the new effective strategy will be triggered.

41

5.2 List of Strategies 5 FORWARDING STRATEGY

The strategy is responsible for checking that forwarding of the Interest does not violate namespace-based scope control [9].
Typically, the strategy should invoke this action with one of the incoming Interest packets found in the PIT in-records,
although the strategy may make a copy of an Interest and modify its guider fields, as long as the Interest still matches the
PIT entry.

Send Data Action
This action deletes the PIT entry’s in-record and enters the outgoing Data pipeline (Section 4.3.3). It is implemented as

Strategy::sendData method. Parameters include: the affected PIT entry, a Data packet, and a downstream face-endpoint
pair which will be used as egress for the packet.

In many cases the strategy may want to send Data to every downstream. The Strategy::sendDataToAll method is a
helper for this purpose, which accepts a PIT entry, a Data packet, and the ingress FaceEndpoint containing the face where the
packet came from and the endpoint of the sender. Note that sendDataToAll will send the Data to each pending downstream,
unless the pending downstream face is the same as the incoming face of the Data and the face is not ad hoc.

Send Nack Action
This action enters the outgoing Nack pipeline (Section 4.4.2). It is implemented as Strategy::sendNack method. Param-

eters include: the affected PIT entry, a downstream face-endpoint pair, and a Nack header. An in-record for the downstream
face should exist in the PIT entry, and a Nack packet will be constructed by taking the last incoming Interest from the PIT
in-record and adding the specified Nack header. If the PIT in-record is missing, this action has no effect.

In many cases the strategy may want to send a Nack to every downstream that still has an in-record. The Strategy::sendNacks
method is a helper for this purpose, which accepts a PIT entry and a Nack header. Calling this helper method is equivalent
to invoking send Nack action for every downstream.

5.1.3 Storage

Strategies are allowed to store arbitrary information on PIT entries, PIT in-records, PIT out-records, and Measurements
entries, all of which are derived from StrategyInfoHost type11 . Inside the triggers, the strategy already has access
to PIT entry and can lookup desired in-records and out-records. Measurement entries (Section 3.7) can be accessed via
Strategy::getMeasurements method; a strategy’s access is restricted to Measurements entries under the namespace(s)
under its control (Section 3.7.2).

Strategy-specific information should be contained in a subclass of StrategyInfo. At anytime, the strategy may call
getStrategyInfo, insertStrategyInfo, and eraseStrategyInfo on a StrategyInfoHost to store and retrieve the infor-
mation. Note that the strategy must ensure that each StrategyInfo has a distinct TypeId; if the same TypeId is assigned
to multiple types, NFD will most likely crash.

Since the strategy choice for a namespace can be changed at runtime, NFD ensures that all strategy-stored items under
the transitioning namespace will be destroyed. Therefore, the strategy must be prepared that some entities may not have
strategy-stored items; however, if an item exists, its type is guaranteed to be correct. The destructor of stored item must
also cancel all timers, so that the strategy will not be activated on an entity that is no longer under its control.

Strategy is only allowed to store information using the above mechanism. The strategy object (subclass of nfd::fw::Strategy)
should otherwise be stateless.

5.2 List of Strategies

NFD comes with the following built-in strategies:

• Best route strategy (/localhost/nfd/strategy/best-route, Section 5.2.1) sends Interest to lowest cost upstream.

• Multicast strategy (/localhost/nfd/strategy/multicast, Section 5.2.2) sends every Interest to every upstream.

• Access router strategy (/localhost/nfd/strategy/access, Section 5.2.3) is designed for local site prefix on an ac-
cess/edge router.

• Adaptive SRTT-based Forwarding (ASF) strategy (/localhost/nfd/strategy/asf, Section 5.2.4) sends Interests to
the upstream with the lowest measured SRTT and periodically probes alternative upstreams.

Since the objective of NFD is to provide a framework for easy experimentation, the list of the provided strategies is in no
way comprehensive and we encourage implementation and experimentation of new strategies. Section 5.3 provides insights
to decide when implementation of a new strategy may be appropriate and give step-by-step guidelines explaining the process
of developing new NFD strategies.

11“Host” is in the sense of holding strategy information, not an endpoint/network entity.

42

5.2 List of Strategies 5 FORWARDING STRATEGY

5.2.1 Best Route Strategy

The best route strategy forwards an Interest to the eligible Face with the lowest routing cost. This strategy is implemented
as nfd::fw::BestRouteStrategy class.

Interest forwarding The strategy forwards a new Interest to the lowest-cost eligible Face. After the new Interest is
forwarded, a similar Interest with same Name, Selectors, and Link but different Nonce would be suppressed if it’s received
during a retransmission suppression interval. However, a similar Interest received after the suppression interval is called a
“retransmission”, and is forwarded to the lowest-cost eligible Face that is not previously used; if all Faces have been used, it
is forwarded to an eligible Face that was used earliest.

Note that applying the suppression and retransmission mechanisms does not distinguish whether the Interest come from
the same downstream or a different downstream. Although the former is typically a retransmission from the same consumer
and the latter is typically from a different consumer making use of NDN’s built-in Data multicast, there’s no prominent
difference in terms of forwarding, so they are processed alike.

Retransmission suppression interval Instead of forwarding every incoming Interest, the retransmission suppression
interval is imposed to prevent a malicious or misbehaving downstream from sending too many Interests end-to-end. The
retransmission suppression interval should be chosen so that it permits reasonable consumer retransmissions, while prevents
DDoS attacks by overly frequent retransmissions.

We have identified three design options for setting the retransmission suppression interval:
• A fixed interval is the simplest, but it is hard to find a balance between reasonable consumer retransmissions and

DDoS prevention.
• Doing RTT estimation would allow a retransmission after the strategy believes the previous forwarded Interest is lost

or otherwise won’t be answered, but RTT estimations are not reliable, and in case the consumer applications are also
using RTT estimation to schedule their retransmissions, this results in double control loop and potentially unstable
behavior.

• Using exponential back-off gives consumer applications control over the retransmission and also effectively prevents
DDoS. Starting with a short interval, the consumer can retransmit quickly in a low-RTT communication scenario. The
interval goes up after each accepted retransmission, so an attacker cannot abuse the mechanism by retransmitting too
frequently.

We finally settled with the exponential back-off algorithm. The initial interval is set to 10 milliseconds. After each
retransmission being forwarded, the interval is doubled until it reaches a maximum of 250 milliseconds.

Nack generation The best route strategy uses Nack to improve its performance. When an Interest cannot be forwarded
to an eligible Face, a Nack will be returned to the incoming Face to notify the downstream.

The eligibility of a Face depends on its type. An ad hoc Face is eligible if forwarding an Interest to it does not violate
scope [9]. Additionally, for a multicast or point-to-point Face, besides the scope check, the outgoing Face must not be the
incoming Face. If there are no eligible Faces available, the strategy rejects the Interest and returns a Nack to the downstream
with reason NoRoute.

Currently, the Nack packet does not indicate which prefix that the node has no route to reach, because it is not trivial to
compute this prefix. Also, Nacks will not be returned to multicast or ad hoc Faces.

Nack processing Upon receiving an incoming Nack, the strategy itself does not retry the Interest with other nexthops
(because “best route” forwards to only one nexthop for each incoming Interest), but informs the downstream(s) as quickly
as possible. If the downstream/consumer wants, it can retransmit the Interest, and the strategy would retry it with another
nexthop.

Specifically, depending on the situation of other upstreams, the strategy takes one of these actions:
• If all pending upstreams have Nacked, a Nack is sent to all downstreams.
• If all but one pending upstream have Nacked, and that upstream is also a downstream, a Nack is sent to that downstream.
• Otherwise, the strategy continues waiting for the arrival of more Nacks or Data.
To determine what situation a PIT entry is in, the strategy makes use of the Nacked field (Section 3.4.1) on PIT out-

records, and does not require extra measurement storage.
The second situation, “all but one pending upstream have Nacked and that upstream is also a downstream”, is introduced

to address a specific “live deadlock” scenario, where two hosts are waiting for each other to return the Nack. More details
about this scenario can be found at https://redmine.named-data.net/issues/3033#note-7.

In the first situation, the Nack returned to downstreams need to indicate a reason. In the easy case where there’s only
one upstream, the reason from this upstream is passed along to downstream(s). When there are multiple upstreams, the

43

https://redmine.named-data.net/issues/3033#note-7

5.2 List of Strategies 5 FORWARDING STRATEGY

least severe reason is passed to downstream(s), where the severity of Nack reasons are defined as: Congestion < Duplicate
< NoRoute. For example, one upstream has returned Nack-NoRoute and the other has returned Nack-Congestion. This
forwarder choose to tell downstream(s) “congestion” so that they can retry with this path after reducing their Interest sending
rate, and this forwarder can forward the retransmitted Interests to the second upstream at a slower rate and hope it’s no
longer congested. If we instead tell downstream(s) “no route”, it would make downstreams believe that this forwarder cannot
reach the content source at all, which is inaccurate.

5.2.2 Multicast Strategy

The multicast strategy forwards every Interest to all upstreams, indicated by the supplied FIB entry. This strategy is
implemented as nfd::fw::MulticastStrategy class.

Interest forwarding The strategy forwards (multicasts) a new Interest to all upstream faces from the list of nexthop
records in the FIB entry that do not violate scope. Similar to Best Route Strategy (5.2.1), exponential retransmission
suppression is used to prevent too many Interests. A same Interest (same Name, Selectors, and Link) with different Nonce
is suppressed if it’s received during a retransmission suppression interval. A same Interest received after the suppression
interval is treated as a new Interest. However, unlike Best Route Strategy the suppression is done per upstream rather than
per pit entry. For example: if NFD gets an interest on a face and the application wants to send the same interest back (with
a new Nonce) within the suppression period, then it will not be suppressed for that face because upstream of the interest is
different and no suppression has been calculated on it yet.

Nack generation If there is no eligible upstream, the Interest is rejected and a Nack with reason no route is returned to
the downstream.

Nack processing Nack processing is exactly the same as Best Route Strategy (5.2.1).

5.2.3 Access Router Strategy

The access router strategy (aka access strategy) is specifically designed for local site prefix on an access/edge router. It
is suitable for a namespace where producers are single-homed and are one hop away. This strategy is implemented as
nfd::fw::AccessStrategy class.

The strategy is able to make use of multiple paths in the FIB entry, and remember which path can lead to contents. It
is most efficient when FIB nexthops are accurate, but can tolerate imprecise nexthops, and still be able to find the correct
paths.

The strategy is able to recover from a packet loss in the last-hop link. It retries Interests retransmitted by consumer in
the same manner as best route strategy (Section 5.2.1); The same mechanism also allows the strategy to deal with producer
mobility.

Motivation and Use Case One of NDN’s benefits is that it does not require precise routing: a route indicates that
contents under a certain prefix is probably available from a nexthop. The property brings a challenge to forwarding strategy
design: if an Interest matches multiple routes, which nexthop should we forward it to?

• One option is to forward the Interest to all the nexthops. This is implemented in the multicast strategy (Section 5.2.2).
The Data, if available from any of these nexthops, can be retrieved with shortest delay. However, since every Interest
is forwarded to many nexthops, it has significant bandwidth overhead.

• Another option is to forward the Interest to only one nexthop, and if it doesn’t work, try another nexthop. This is
implemented in the best route strategy (Section 5.2.1). While bandwidth overhead on the upstream side is reduced,
since each incoming Interest can be forwarded to only one nexthop, the consumer has to retransmit an Interest multiple
times in order to reach the correct nexthop. It’s even worse when an upstream does not return a Nack or the Nack
is lost; in this case, the consumer has to wait for a timeout (either based on InterestLifetime or RTO) before it
can decide to retransmit, causing further delays. In addition, repeated consumer retransmissions increase bandwidth
overhead on the downstream side.

• Between these two extremes, we want to design a strategy with a trade-off between delay and bandwidth overhead.
On gateway/access/edge routers of the NDN testbed, despite the availability of automatic prefix propagation (Section 7.6),
the majority of Interest forwarding from an access router to end hosts are relying on routes installed by the nfd-autoreg

tool: when an end host connects to the router, this tool installs a route for the local site prefix toward this end host. Since the
local site prefix is statically configured, these routes will have the same prefix, and an Interest under this prefix will match
all these routes. This is an extreme case of imprecise routing: every end host is a nexthop of a very broad prefix, and they

44

5.2 List of Strategies 5 FORWARDING STRATEGY

are many end hosts. The multicast strategy would forward every Interest toward all end hosts, even if only a small subset of
them can serve the content. The best route strategy would require the consumer to retransmit, in the worst case, as many
times as the number of connected end hosts.

The access strategy is designed for this use case. We want to find contents available on end hosts without forwarding
every Interest to all end hosts, and require minimal consumer retransmissions.

How Access Router Strategy Works The basic idea of this strategy is to multicast the first Interest, learn which
nexthop can serve the contents, and forward the bulk of subsequent Interests toward the chosen nexthop; if it does not
respond, the strategy starts multicasting again to find an alternate path.

This idea is somewhat similar to Ethernet self-learning, but there are two challenges:
• Ethernet switch learns the mapping from an exact address to a switch port, but NDN router needs to learn the mapping

from a prefix of the Interest name to a nexthop in order to be useful for subsequent Interests. What prefix can we
learn from Interest-Data exchanges?

• In Ethernet, each address is reachable via only one path, and a moved host floods an ARP packet to inform the network
about its new location. In NDN, each prefix can be reachable via multiple paths, and it’s the strategy’s responsibility
to detect the chosen nexthop is no longer working so it can start finding an alternate path; a moved producer won’t
actively inform the network of its new location, and a failed producer has no way to ask other producers to flood an
announcement.

Granularity Problem and Solution The first challenge, what prefix can we learn from Interest-Data exchanges, is called
the granularity problem. There are a few differnet approaches to solve this problem, but we pick a simple solution in the
access strategy: learned nexthop is associated with the Data name minus the last component. A commonly adopted NDN
naming convention [12] puts the version number and segment number as the last two components of Data names. Under this
naming convention, the Data name minus the last component covers all segments of a versioned object. We believe it’s safe
to assume that all segments of a version is available on the same upstream, and thus choose this solution.

As a consequence of choosing this simple solution, the access strategy could perform badly if the application does not
follow the above naming convention. Most notably, NDN-RTC [13] realtime conference library (version 1.3 when we did this
analysis12 in Sep 2015) adopts a naming scheme which expresses Interests similar to /ndn/edu/ucla/remap/ndnrtc/user/

remap/streams/camera_1469c/mid/key/2991/data/%00%00 and generates Data names similar to /ndn/edu/ucla/remap/

ndnrtc/user/remap/streams/camera_1469c/mid/key/2991/data/%00%00/23/89730/86739/5/27576. In this name, the
component before data is the frame number (2991 in the example), and the component after data is the segment number
(%00%00 in the example); every Data name has 5 additional components than the Interest name, which carries additional
signaling information for application use.

Admittedly, this is an example of bad naming design because although NDN supports in-network name discovery, the
majority of Interests should carry complete names [14]; appending application-layer metadata onto the Data name violates
this principle. This naming design makes the access strategy multicast every Interest, because the chosen nexthop of an
Interest is recorded on the Data name minus the last component (/ndn/edu/ucla/remap/ndnrtc/user/remap/streams/
camera_1469c/mid/key/2991/data/%00%00/23/89730/86739/5), but the next Interest is /ndn/edu/ucla/remap/ndnrtc/

user/remap/streams/camera_1469c/mid/key/2991/data/%00%01 which does not fall under the prefix where the chosen
nexthop is recorded. As a result, the next Interest is still treated as an “initial Interest” and multicast.

However, even if we change NDN-RTC’s naming scheme so that the Data name is same as the Interest name (i.e. ends
with the segment number), AccessStrategy would only perform slightly better. The chosen nexthop would be recorded on
/ndn/edu/ucla/remap/ndnrtc/user/remap/streams/camera_1469c/mid/key/2991/data, which matches subsequent In-
terests for other segments within the same frame, but cannot match Interests for other frames (such as /ndn/edu/ucla/

remap/ndnrtc/user/remap/streams/camera_1469c/mid/key/2992/data/%00%00). Within a 700Kbps video stream, the
frame number changes more than 50 times per second, and there are about 25 segment numbers per frame. This means, the
access strategy would multicast about 1250 times per second with NDN-RTC 1.3’s naming scheme; each of those multicast
Interests would reach every end host that has a nexthop added by nfd-autoreg, increase their bandwidth usage and CPU
overhead. Changing the Data name to be same as the Interest name would reduce multicasts to 50 times per second, which
is still inefficient.

The fundamental reason of access strategy’s inefficiency with NDN-RTC 1.3 is the mismatch between the assumption of
naming convention behind our granularity solution and the application naming scheme: the chosen nexthop is recorded at
a longer prefix than the actual prefix. It’s also possible for the chosen nexthop to be recorded at a too-short prefix, but
no known application can suffer from the problem; however, if we change the access strategy to record the chosen nexthop

12More details of this analysis can be found at https://redmine.named-data.net/issues/3219.

45

https://redmine.named-data.net/issues/3219

5.2 List of Strategies 5 FORWARDING STRATEGY

at shorter prefixes (such as dropping last 3 components of the Data name, which would accommodate NDN-RTC’s naming
scheme after modification), this problem would happen.

It’s our future work to explore other solutions to the granularity problem.

Failure Detection The second challenge, how to detect the chosen nexthop is no longer working, is currently solved with
a combination of RTT-based timeout and consumer retransmission.

RTT-based timeout We maintain RTT estimations following TCP’s algorithm. If a nexthop does not return Data within
the Retransmission Timeout (RTO) computed from the RTT estimator, we consider the chosen nexthop to have failed,
and multicast the Interest toward all nexthops (except the chosen nexthop, because otherwise the upstream would see
a duplicate Nonce).

There are two kinds of RTT estimators: per-prefix RTT estimators, and per-face RTT estimators. On each prefix where
we learn a chosen nexthop (i.e. the Data name minus the last component), we maintain a per-prefix RTT estimator;
if a subsequent Interest is not satisified within the RTO computed from this per-prefix RTT estimator, the strategy
would multicast the Interest. A per-prefix RTT estimator reflects the RTT of the current chosen nexthop; if a different
nexthop is chosen, this RTT estimator shall be reset.

In order to have a good enough initial estimation, when we reset a per-prefix RTT estimator, instead of starting with
a set of default values, we copy the state from the per-face RTT estimator, which is maintained for each upstream face
and not associated with name prefixes. This design assumes different prefixes served by the same upstream face have
similar RTT; this assumption is one reason that this strategy design is limited for use on one hop, and is unfit for usage
over multiple hops.

consumer retransmission Some consumer applications have application-layer means to detect a non-working path. If the
consumer believes the current path is not working, it could retransmit the Interest with a new Nonce. Unless the
retransmissions are too frequent, the access strategy would take an retransmission as a signal that the chosen nexthop
has stopped working, and multicast the Interest right away.

5.2.4 ASF Strategy

Most strategies in NFD focus on the ability to retrieve content, but may not always find the lowest delay path. To facilitate
optimal forwarding in hyperbolic routing (HR) and address drawbacks (embedding issues, network dynamics, etc.), Adaptive
Smoothed RTT-based Forwarding (ASF) [15] is able to make forwarding decisions based on Data retrieval delay and must
be able to learn the Data retrieval delay of alternative paths.

The strategy can measure the time between when an Interest is forwarded and Data is received, the round-trip time (RTT);
to accommodate for fluctuations in RTT values, the strategy can compute and maintain a Smoothed RTT (SRTT), a moving
average of the RTT samples (SRTT calculation is described below). An SRTT measurement must be maintained for each
next hop under a namespace. ASF chooses the best next hop based on SRTT measurement, and also periodically probes
other next hops to learn their RTTs.

This strategy is implemented as nfd::fw::AsfStrategy class.

Strategy Design The design of the adaptive forwarding strategy is composed of two components:

SRTT-based Forwarding When a Data packet is received, the RTT is recorded (time between Interest forwarded and
Data received). This RTT is used to compute an SRTT; an SRTT measurement is calculated and associated with the FIB
entry which the Interest matched.

When an interest arrives, all available next hops from the FibEntry are divided into three distinct groups.

• Group 1: Next hops with SRTT values

• Group 2: Next hops that do not have measurements

• Group 3: Next hops that timed-out on the previous Interest

The strategy will then try to pick a next hop using the SRTTs or assigned routing protocol costs in the following way:

• If Group 1 is not empty, pick the next hop with the lowest SRTT

• Otherwise, if Group 2 is not empty, pick the next hop with the lowest routing cost

• Otherwise, pick next hop with the lowest routing cost from Group 3

46

5.2 List of Strategies 5 FORWARDING STRATEGY

Figure 13: Probability calculation and assignment for list of sorted NextHops.

SRTT-based Probing The first probe for a namespace is scheduled after the first Interest which matches the FIB entry
arrives. The first probe is scheduled at a random interval from [0, 5] seconds. After the initial probe, probing is scheduled to
occur periodically every 60 seconds. If the measurements for a FIB entry expire, the probing module will consider the next
Interest which creates measurements for the FIB entry as the first Interest received (i.e., the probe will be scheduled at a
random interval from [0, 5] seconds).

If probing is due but no Interests arrive under that namespace, probing will not occur until a matching Interest arrives.
Probes use the same name as the triggering Interest but use a different nonce. A different nonce is used to ensure that if the
probed path is able to reach the Data, the Data will be returned on the probed path as well as the primary path.

The steps for probing are defined as follows using the same next hop grouping described in the previous section:

• Pick the next hop with the lowest routing cost from Group 2

• Otherwise, sort the next hops in Group 1 by SRTT and Group 3 by routing cost; the priority of Group 1 is higher than
Group 3

• Assign a probing probability to each next hop and probabilistically select a next hop for probing

The probing probability of the next hop with rank i = 1, 2, . . . , N in the sorted list is assigned:

P (i) = 2 · N + 1 − i

N · (N + 1)
(1)

An alternative formula to assign probability that could be implemented in the future is:

P (i) =
2N−i

2N − 1
(2)

An example of probing probability calculation is shown in Figure 13.

Detailed Behavior

FaceInfo Measurements The FaceInfo data structure contains information used by the strategy for each Face in a
namespace. FaceInfo maintains the event ID for its scheduled RTO of the last Interest forwarded, the name of the last
Interest forwarded, and the Face’s RTT stats (i.e., last RTT and SRTT).

NamespaceInfo Measurements The NamespaceInfo data structure contains a map which maps a Face’s ID to its
FaceInfo measurements, a boolean indicating whether or not the namespace has been probed yet, and a boolean indicating
if probing is due for the namespace.

Lifetime and Expiration Both the FaceInfo Measurements and the NamespaceInfo Measurements have a lifetime of
300 seconds. NamespaceInfo Measurements should be created or refreshed when an Interest matches a FIB entry, when an
Interest is forwarded for a namespace, and when an Interest times out for a namespace. FaceInfo Measurements should be
created or refreshed when an Interest is forwarded to a Face and when Data is received on a Face.

47

5.3 How to Develop a New Strategy 5 FORWARDING STRATEGY

After Receive Interest Trigger When receiving an Interest, ASF should first check if the received Interest should
be suppressed. The ASF strategy determines if an Interest should be suppressed using the same logic as in the BestRoute
Strategy v4. ASF should then determine if the Interest should be rejected due to the FibEntry having no next hops. The
strategy next will pick a Face to use for forwarding based on the logic outlined in the forwarding section above.

The Interest will be forwarded to the selected Face, and the measurements and RTO are updated. The associated FaceInfo
measurement’s lifetime is extended for 300 seconds, and if an RTO is not already scheduled for the Face, an RTO is scheduled
using the RttEstimator.

Finally, the strategy should check if the namespace is due for probing. If so, the strategy picks a best Face to probe
and forwards the Interest with a new nonce to the selected Face. The same steps to updated the FaceInfo measurement’s
lifetime and RTO are followed for the probe Interest. The namespace is then no longer due for probing, and the next probe
is scheduled in 60 seconds.

Before Satisfy Interest Trigger The strategy should use the incoming Data’s name to perform a longest prefix match
to retrieve the NamespaceInfo measurements. If the NamespaceInfo measurements do not exist, the inability to retrieve the
measurements is logged and the method returns. Otherwise, the FaceInfo is retrieved from the NamespaceInfo using the
incoming Face’s ID, the RTT is recorded, and the FaceInfo measurement’s lifetime is extended. If the last Interest forwarded
to the Face is a prefix of the incoming Data’s name, the RTO is canceled.

RTO Interest Timeout If an Interest with an RTO scheduled on a Face times out, the FaceInfo measurements are
retrieved; the RTT is set to TIMEOUT and the RTO information is cleared. In some cases, a number of “silent” timeouts may
be configured for the strategy, which means the strategy waits for the specified number of successive timeouts before setting
the RTT to TIMEOUT.

Nack Support On an incoming Interest, if the relevant FIB entry does not have any next hops, the strategy will send
a NoRoute Nack. All received Nacks are handled by setting the timeout flag in the corresponding face’s measurements.

Consumer Retransmissions The ASF strategy follows the same suppression logic as implemented in the BestRoute
Strategy v4. On retransmission outside the suppression period, the strategy processes the Interest using the same logic as
described in the forwarding section above.

Router Retransmissions The ASF strategy does not perform router-based retransmissions.

SRTT Calculation When an RTT measurement is added to a FaceInfo Measurement’s RttEstimator, the SRTT is
also updated. If the RTT measurement is the first sample for this FaceInfo Measurement, the SRTT is set equal to the RTT.
Otherwise, the SRTT is computed as follows:

α×RTTsample+ (1 − α) × previousSRTT ; α = 0.125 (3)

5.3 How to Develop a New Strategy

Before starting development of a new forwarding strategy, it is necessary to assess necessity of the new strategy, as well
strategy capabilities and limitations (Section 5.3.1). The procedure of developing a new built-in strategy is outlined in
Section 5.3.2.

5.3.1 Should I Develop a New Strategy?

In many network environments, it may be sufficient to use one of the existing strategies: best-route, multicast, access, or
ASF. In cases when an application wants a fine-grain control of Interest forwarding, it can use NDNLPv2’s NextHopFaceId

field to specify an outgoing face for every Interest. However, this could control the outgoing face of local forwarder only. In
other cases, a new strategy development could be warranted, provided that the desired behavior can fit within the strategy
API framework.

When developing a new strategy, one needs to remember that the strategy choice is local to a forwarder and only one
strategy can be effective for the namespace. Choosing the new strategy on a local forwarder will not affect the forwarding
decisions on other forwarders. Therefore, developing a new strategy may require reconfiguration of all network nodes.

The only purpose of the strategy is to decides how to forward Interests and cannot override any processing steps in the
forwarding pipelines. If it is desired to support a new packet type (other than Interest and Data), a new field in Interest or

48

5.3 How to Develop a New Strategy 5 FORWARDING STRATEGY

Data packets, or override some actions in the pipelines (e.g., disable Content Store lookup), it can be only accomplished by
modification of the forwarding pipelines.

Even with the mentioned limitations, the strategy can provide a powerful mechanism to control how Data is retrieved in
the network. For example, by using a precise control of how and where Interests are forwarded and re-transmitted, a strategy
can adapt Data retrieval for a specific network environment. Another example would be an application of limits on how
much Interests can be forwarded to which Faces. This way a strategy can implement various congestion control and DDoS
protections schemes [16,17].

5.3.2 Develop a New Strategy

The initial step in creating a new strategy is to create a class, say MyStrategy that is derived from nfd::fw::Strategy.
This subclass must at least override the triggers that are marked pure virtual and may override other available triggers that
are marked just virtual. The class should be placed in daemon/fw directory of NFD codebase, and needs to be compiled into
NFD binary; dynamic loading of external strategy binary may be available in the future.

If the strategy needs to store information, it is needed to decide whether the information is related to a namespace or
an Interest. Information related to a namespace but not specific to an Interest should be stored in Measurements entries;
information related to an Interest should be stored in PIT entries, PIT downstream records, or PIT upstream records. After
this decision is made, a data structure derived from StrategyInfo class needs to be declared. In existing strategy classes,
such data structures are declared as nested classes as it provides natural grouping and scope protection of the strategy-specific
entity, but your strategy is not required to follow the same model. If timers (Section 10.3) are needed, EventId fields needs
to be added to such data structure(s).

After creating the data structures, you may implement the triggers with the desired strategy logic. When implementing
strategy logic, refer to Section 5.1.1 describing when each trigger is invoked and what is it expected to do.

Notes and common pitfalls during strategy development:

• When retrieving a stored item from an entity, you should always check whether the retrieved element is nullptr

(Section 5.1.3). Otherwise, even the strategy logic guarantees that item will always be present on an entity, because
NFD allows dynamic per-namespace strategy change, the expected item could not be there.

• Measurements entries are cleaned up automatically. If Measurements entries are used, you need to call this->

getMeasurements()->extendLifetime to avoid an entry from being cleaned up prematurely.

• Before satisfy Interest trigger (Section 5.1.1) may be invoked with either pending Interest or recently satisfied Interest.

• The strategy is allowed to retry, but retries should not be attempted after the PIT entry expires.

• If implementing a timer, do not retain shared pointers of Face, pit::Entry, and other items. Instead, retain a weak
pointer. In the timer callback, .lock() the weak pointer into a shared pointer, check it’s not nullptr prior to use.

• Timers must be cancelled in the destructor of the stored item (Section 5.1.3). This is necessary to ensure that the
strategy will not be accidentally triggered on an entity that is no longer being managed by the strategy.

• The strategy is responsible for implementing namespace-based scope control.

• The strategy is responsible for performing congestion control.

Finally, make your strategy available for selection:

1. Choose an NDN name to identify the strategy. It is recommended to use a name like /localhost/nfd/strategy/

my-strategy and append a version number. A version number component is required. The version number should be
incremented whenever there is a non-trivial change to the strategy behavior.

2. Optionally, the strategy may accept parameters (Section 3.6). Parameters are used for things like “minimum suppression
timer”, “ceiling of exponential back-off”, and so on. They are passed to the strategy constructor, as part of the strategy
instance name after the version component.

3. Register the strategy class with NFD REGISTER STRATEGY macro.

After that, the strategy is ready to use and can be activated by a Strategy Choice management command (Section 6.6), such
as nfdc set-strategy.

49

6 MANAGEMENT

6 Management

NFD management offers the capability to monitor and control NFD through a configuration file and an Interest-based API.
NFD management is divided into several management modules. Each management module is responsible for a subsystem

of NFD. It can initialize the subsystem from a section in the NFD configuration file, or offer an Interest-based API to allow
others to monitor and control the subsystem.

Section 6.1 gives an overview of the NFD configuration file and of the basic mechanisms in NFD Management protocol [3].
Section 6.2 describes the dispatcher and authenticator used in the protocol implementation. Section 6.3, 6.4, 6.5, 6.6 explain
the details of the four major management modules. Section 6.7 introduces two additional management modules that are
used in configuration file parsing. Section 6.8 offers ideas on how to extend NFD management.

6.1 Protocol Overview

All management actions that change NFD state require the use of control commands [4], a form of signed Interests. These
allow NFD to determine whether the issuer is authorized to perform the specified action. Management modules respond
with control responses to inform the user of the command success or failure. Control responses have status codes similar to
HTTP, and describe the action that was performed or any errors that occurred.

Management actions that just query the current state of NFD do not need to be authenticated. These actions are defined
in NFD Management Protocol [3] as status datasets, and are currently implemented in NFD as a simple Interest/Data
exchange.

6.2 Dispatcher and Authenticator

As shown in figure 14, managers utilize ndn::Dispatcher as an abstraction to deal with common Interest/Data processing,
so that they can focus on performing the required low-level operations on the module of NFD that they manage.

reject

invalid

reject

dispatcher

manager

re
gi

st
er

C
om

m
an

dH
an

dl
er

re
gi

st
er

St
at

us
D

at
as

et
H

an
dl

er

re
gi

st
er

N
ot

ifi
ca

tio
nS

tre
am

N
ot

ifi
ca

tio
n

ControlCommandHandler

ParametersValidate

Authorzation

StatusDatasetHandler

Authorzation

fail

succeed

accept

valid

reject

append & end

ControlResponse Status Dataset / Response

In
te

re
st

D
at

a

Figure 14: Overview of the manager Interest/Data processing via the dispatcher.

More specifically, a manager always consists of a series of handlers, each of which is responsible for dealing with a
control command request or a status dataset request. Per the management protocol, these requests follow a namespace
pattern of /localhost/nfd/<manager-name>/<verb>. Here, verb describes the action that the manager-name manager
should perform. For example, /localhost/nfd/fib/add-nexthop directs the FIB Manager to add a next hop (command
arguments follow the verb).

50

6.2 Dispatcher and Authenticator 6 MANAGEMENT

A manager registers a handler with the dispatcher with a partial name that is composed of the manager’s name and a
verb. After all managers have registered their handlers, the dispatcher creates full prefixes using those partial names plus each
registered top-level prefix (e.g., /localhost/nfd), and then sets up interest filters for them. When a request arrives to the
dispatcher, it is directed to some management handler after being processed by interest filters. On the other hand, all types
of responses, such as of control responses, status datasets, etc., go through the dispatcher, for concatenation, segmentation,
and signing.

For control commands, a handler is always registered along with an authorization method and a parametersValidate

method. A request can be directed to the handler if and only if it is accepted by authorization and its control parameters
can be validated by parametersValidate. For status datasets, there is no need to validate any parameters, therefore the
authorization is made to accept all requests13.

Furthermore, managers that produce notifications, such as the FaceManager, will also register notification streams to the
dispatcher. This type of registration returns a postNotification, through which the manager will only need to generate
the notification content, leaving the rest of the work (constructing the packet, signing, etc.) to the dispatcher.

6.2.1 Manager Base

ManagerBase is the base class for all managers. This class holds the manager’s shared Dispatcher and CommandValidator,
and provides a number of commonly used methods. In particular, ManagerBase provides the methods to register a command
handler, to register a status dataset handler, and to register notification streams. Moreover, ManagerBase also provides con-
venience methods for authorizing control commands (authorize), for validating control parameters (validateParameters),
and also for extracting the name of the requester from the Interest (extractRequester).

On construction, ManagerBase obtains a reference to a Dispatcher, that is responsible to dispatch requests to the target
management handler, and a CommandValidator, that will be used for control command authorization later. Derived manager
classes provide the ManagerBase constructor with the name of their privilege (e.g., faces, fib, strategy-choice). This
privilege is used when specifying the set of authorized capabilities for a given NDN identity certificate in the configuration
file.

6.2.2 Command Authenticator

The CommandAuthenticator provides authentication and authorization of control commands.
Rules for authentication and authorization are specified in the “authorizations” section of the NFD configuration file.

In that section, each authorize subsection lists a single NDN certificate and a set of privileges. An example of an authorize

subsection is:

authorize

{

certfile keys/operator.ndncert

privileges

{

faces

strategy-choice

}

}

Unlike most other validators, CommandAuthenticator does not attempt to retrieve signing certificates during the authen-
tication step. This is because the authenticator needs to operate before routes are established. Thus, every certificate used to
sign control commands must be explicitly specified in the configuration. The value in the “certfile” key is a filename that
refers to an NDN certificate (version 1); it can be either an absolute path, or a path relative to the configuration file. For
convenience in non-production systems, a special value “any” can be used in “certfile”, granting any signing certificate the
privileges listed in the “privileges” subsection. Under the “privileges” subsection, a set of privileges can be specified,
where each privilege is the management module name. Supported privileges are: faces, fib, strategy-choice.

The NFD initialization procedure creates a CommandAuthenticator instance and invokes setConfigFile, in which the
authenticator registers itself as a processor of the “authorizations” section of NFD configuration file. The authenti-
cator instance is then given to the constructor of each manager that accepts control commands. The manager invokes
CommandAuthenticator::makeAuthorization method for each accepted command verb, which returns an ndn::mgmt::

Authorization callback function that can be used with the dispatcher; this makeAuthorization invocation also tells the

13This may be changed whenever data access control is desired.

51

6.3 Forwarder Status 6 MANAGEMENT

authenticator which management module names are supported. Finally, the initial configuration is parsed, which populates
the internal data structures of the authenticator.

When a control command arrives, the dispatcher passes the command Interest to the ndn::mgmt::Authorization callback
function returned by CommandAuthenticator::makeAuthorization. This authorization callback has four steps:

1. Based on management module and command verb, find out what signing certificates are allowed. Although the dis-
patcher does not directly pass management module and command verb to the authorization callback, this information is
captured when the authorization callback was initially constructed, because the manager invokes CommandAuthenticator::
makeAuthorization once for every distinct command verb and thus each gets a different authorization callback instance.

2. If “certfile any” applies to this management module and command verb, the control command is authorized, and
the remaining steps are skipped.

3. Check whether the Interest is signed by one of the listed certificates by inspecting the KeyLocator field. If not, the
control command is rejected.

4. Pass the Interest to the ndn::security::CommandInterestValidator which checks the timestamps on command
Interests to prevent replay attacks. A single command Interest validator instance is shared among all authorization
callbacks. If the timestamp is unacceptable, the control command is rejected.

5. Finally, the signature is verified against the public key using Validator::verifySignature function, and the control
command is either accepted or rejected based on the result of the signature verification.

The benefit of this design is that it takes advantage of the management module and command verb information that is
already known from the dispatcher, so that name lookups are not repeated to determine permissible signing certificates.

A weakness in this procedure is the risk of denial-of-service attack: signature verification is performed after timestamp
checking, therefore an attacker can forge command Interests with the KeyLocator of an authorized signing certificate in order
to manipulate the internal state of the command Interest validator, and cause subsequent Interests signed by that certificate
to be rejected14.

6.3 Forwarder Status

The Forwarder Status Manager (nfd::ForwarderStatusManager) provides information about NFD and basic statistics about
the forwarder through the method listGeneralStatus, which is registered to the dispatcher with the name status/general.
The supplied information include NFD’s version, startup time, Interest/Data/Nack packet counts, and various table entry
counts, and is published with a freshness period of 1 second to avoid excessive processing overhead.

6.4 Face Management

The Face Manager (nfd::FaceManager) creates and destroys faces for all configured protocol types. Some attributes of an
existing face can also be changed via this manager. Currently, these attributes are the face persistency (Section 2.1) and, on
local faces, whether local fields are allowed or not (Section 2.3.1).

6.4.1 Command Processing

On creation, the Face Manager registers three command handlers: createFace, updateFace, and destroyFace, with names
faces/create, faces/update and faces/destroy respectively.

createFace creates a unicast face, for protocols that support it.
FaceUri is used to parse the incoming URI in order to determine the type of face to create. The URI must be
canonical. A canonical URI for UDP and TCP tunnels should specify either IPv4 or IPv6, have IP address in-
stead of hostname, and contain port number (e.g., “udp4://192.0.2.1:6363” is canonical, but “udp://192.0.2.1”
and “udp://example.net:6363” are not). Non-canonical URI results in a code 400 “Non-canonical URI” control
response. The URI scheme (e.g., “tcp4”, “tcp6”, etc.) is used to lookup the appropriate ProtocolFactory via
FaceSystem::getFactoryByScheme. Failure to find a factory results in a code 406 “Unsupported protocol” control
response. Otherwise, the Face Manager calls ProtocolFactory::createFace method to initiate the potentially asyn-
chronous process of face creation (DNS resolution, connection to remote host, etc.), supplying afterCreateFaceSuccess

14See https://redmine.named-data.net/issues/3821

52

https://redmine.named-data.net/issues/3821

6.5 FIB Management 6 MANAGEMENT

and afterCreateFaceFailure callbacks. These callbacks will be called by the face system after the face is either suc-
cessfully created or failed to be created, respectively. Unauthorized, improperly-formatted, conflicting, or otherwise
failing requests will be responded with appropriate failure codes and failure reasons. Refer to the NFD Management
protocol specification [3] for the list of possible error codes. After a new Face has been created, the Face Manager
adds the new Face to the Face Table15 and responds with a code 200 “OK” control response to the original control
command.

updateFace can change the non-readonly properties of a face.
The target face can be determined by the FaceId extracted from the ControlParameters supplied to this command.
The FaceId could be set to zero, implying an update of the same face on which this command was received. If the
target face does not exist or the IncomingFaceIdTag is missing on the command Interest, this attempt of update fails
with code 404. All changes on the target face will be performed after validation, leading to a code 200 “OK” response
whose body contains ControlParameters describing the updated properties. On the contrary, if any of the requested
changes is invalid, such as enabling local fields on a non-local face or changing the persistency to an unsupported value,
the command will fail with a code 409 response whose body contains the invalid fields as ControlParameters.

destroyFace attempts to close the specified face.
The Face Manager responds with code 200 “OK” if the face is successfully destroyed or it cannot be found in the Face
Table, but no errors occurred. Note that the Face Manager does not directly remove the face from the Face Table, its
removal is a side effect of calling Face::close.

6.4.2 Datasets and Event Notification

The Face Manager provides two datasets: Channel Status and Face Status. The Channel Status dataset lists all channels (in
the form of their local URI) that this NFD has created, and can be accessed under the /localhost/nfd/faces/channels

namespace. Face Status, similarly, lists all created Faces, but provides much more detailed information, such as flags and
incoming/outgoing Interest/Data/Nack counts. The Face Status dataset can be retrieved from the /localhost/nfd/faces/

list namespace.
These datasets are returned when listFaces and listChannels methods are invoked. A third method, queryFaces,

serves to obtain the status of only those faces that satisfy a set of constraints, provided as a parameter. When the Face
Manger is constructed, it registers these three handlers to the dispatcher with the names faces/list, faces/channels and
faces/query respectively.

In addition to these datasets, the Face Manager also publishes notifications when Faces are created, destroyed, go up,
or go down. This is done using the postNotification function returned after registering a notification stream to the
dispatcher with the name faces/events. Two methods, afterFaceAdded and afterFaceRemoved, that take the function
postNotification as argument, are connected to the FaceTable’s onAdd and onRemove signals [18]. Whenever these two
signals are emitted, the connected methods will be invoked immediately, where the postNotification will be used to publish
notifications through the dispatcher.

6.5 FIB Management

The FIB Manager (nfd::FibManager) allows authorized users (normally it is only the RIB Management, see Section 7) to
modify NFD’s FIB. It also publishes a dataset of all FIB entries and their next hops.

At a high-level, authorized users can request the FIB Manager to: (i) add a next hop to a prefix; (ii) update the routing
cost of a next hop; (iii) remove a next hop from a prefix. The first two capabilities correspond to the add-nexthop verb,
while removing a next hop falls under remove-nexthop. These two verbs are used along with the manager name fib to
register the following handlers of control commands:

• addNextHop: add next hop or update cost of existing next hop
• removeNextHop: remove specified next hop

Note that addNextHop will create a new FIB entry if the requested entry does not already exist. Similarly, removeNextHop
will remove the FIB entry after removing the last next hop.

FIB Dataset One status dataset handler, listEntries, is registered to the dispatcher with the name fib/list, to
publish FIB entries according to the FIB dataset specification. On invocation, the whole FIB is serialized in the form of a
collection of FibEntry and nested NextHopList TLVs, which are appended to a StatusDatasetContext of the dispatcher.

15The Face Table is a table of Faces that is managed by the Forwarder. Using this table, the Forwarder assigns each Face a unique ID, manages
active Faces, and performs lookups for a Face object by FaceId when requested by other modules.

53

6.6 Strategy Choice Management 6 MANAGEMENT

6.6 Strategy Choice Management

The Strategy Choice Manager (nfd::StrategyChoiceManager) is responsible for setting and unsetting forwarding strategies
for the namespaces via the Strategy Choice table. Note that setting/unsetting the strategy applies only to the local NFD.
Also, the current implementation requires that the selected strategy has been added to a pool of known strategies in NFD at
compile time (see Section 5). Attempting to change to an unknown strategy will result in a code 404 “strategy not found”
response. By default, there is at least the root prefix (“/”) available for strategy changes, which defaults to the “best route”
strategy. However, it is an error to attempt to unset the strategy for root (code 403).

Similar to the FIB and Face Managers, the Strategy Choice Manager registers, when constructed, two command han-
dlers, setStrategy and unsetStrategy, as well as a status dataset handler listChoices to the dispatcher, with names
strategy-choice/set, strategy-choice/unset, and strategy-choice/list respectively.

On invocation, setStrategy and unsetStrategy will set/unset the specified strategy, while listChoices will serialize
the Strategy Choice table into StrategyChoice TLVs, and publish them as the dataset.

6.7 Configuration Handlers

6.7.1 General Configuration File Section Parser

The general namespace provides parsing for the identically named general configuration file section. The NFD startup
process invokes setConfigSection to trigger the corresponding onConfig method for the actual parsing.

At present, this section is limited to specifying an optional user and group name to drop the effective uid and gid of the
running NFD process, if supported by the operating system, for safer operations. The general section parser initializes a
global PrivilegeHelper instance to perform the actual (de-)escalation work.

6.7.2 Tables Configuration File Section Parser

TablesConfigSection provides parsing for the tables configuration file section. This class can then configure the vari-
ous NFD tables (Section 3) appropriately. Currently, the tables section supports changing Content Store capacity and
cache replacement policy, per-prefix strategy choices, and network region names. Like other configuration file parsers,
TablesConfigSection is registered as the processor of its corresponding section by the NFD startup process via setConfigFile
method, which invokes onConfig.

6.8 How to Extend NFD Management

Each manager is an interface for some part of the lower layers of NFD. For example, the Face Manager handles Face
creation/destruction. The current set of managers are independent and do not interact with one another. Consequently,
adding a new manager is a fairly straightforward task; one only needs to determine what part(s) of NFD should be exported
through an Interest/Data API and create an appropriate command Interest interpreter.

In general, NFD managers do not need to offer much functionality through a programmatic API. Most managers only
need to register request handlers or notification streams to ndn::Dispatcher, so that the corresponding requests are routed
to them and the produced notifications can be sent out. Some managers may also require to hook into the configuration
file parser. All managerial tasks to control NFD internals should be performed via the defined Interest/Data management
protocol.

54

7 RIB MANAGEMENT

7 RIB Management

In NFD, the routing information base (RIB) stores static or dynamic routing information registered by applications, operators,
and NFD itself. Each piece of routing information is represented by a route and is associated with a particular namespace. The
RIB contains a list of RIB entries [19] each of which maintains a list of Routes [19] associated with the same namespace.
RIB entries form a RIB tree structure via a parent pointer and children pointers.

Routing information in the RIB is used to calculate next hops for FIB entries in the FIB (Section 3.1). The RIB manager
manages the RIB and updates the FIB when needed. While a FIB entry can contain at most one NextHop record toward
the same outgoing face, a RIB entry can contain multiple Routes toward the same outgoing face since different applications
may create routes to the same outgoing face each with different parameters. These multiple Routes are processed by the RIB
manager to calculate a single NextHop record toward an outgoing face for the FIB entry (Section 7.3.1).

The RIB manager is implemented as an independent module of NFD, which runs as a separate thread and communicates
with NFD through a face.16 This separation was done in order to keep packet forwarding logic lightweight and simple, as
RIB operations can require complex manipulations. Figure 15 shows the high-level interaction of the RIB Manager with
NFD and other applications. A more detailed interaction is shown in Figure 16.

Applications and Routing protocols

ndnping, NLSR, …

 RIB Manager RIB

NFD
FIB

Data Traffic

RIB updates

FIB updates

Figure 15: RIB Manager—system diagram

NFD provides various route inheritance flags for prefix registration that allow fine grained control and features such as
hole-punching in a namespace. Depending on the flag, a single registration request may result in multiple FIB entry changes.
The RIB manager takes the responsibility of processing these route inheritance flags in place of the FIB Manager. In other
words, the RIB manager receives all registration requests, processes the included route inheritance flags, and creates FIB
updates as needed, which makes the forwarder leaner and faster. To facilitate this FIB update calculation, a RIB entry stores
a list of inherited routes that have been calculated by the FIB Updater (Section 7.3) and applied to the entry’s namespace.
Each RIB entry also keeps a count of the number of its routes which have the CAPTURE flag set (Section 7.3.1). This list
of inherited routes and the count of routes with their CAPTURE flag set are used by the FIB Updater to help calculate FIB
updates.

The RIB manager provides an automatic prefix propagation feature which can be used to propagate knowledge of locally
registered prefixes to a remote NFD. When enabled, the Auto Prefix Propagator component handles these propagations (Sec-
tion 7.6).

As the RIB can be updated by different parties in different ways, including various routing protocols, application’s
prefix registrations, and command-line manipulation by sysadmins, the RIB manager provides a common interface for these

16On NFD-android platform (https://github.com/named-data/NFD-android), RIB manager runs within the same thread as NFD, but is still
independent.

55

https://github.com/named-data/NFD-android

7 RIB MANAGEMENT

NLSR

Create Face

RIB Manager

Request IncomingFaceId feature

Listen on prefix:
/localhost/nfd/rib

Read NFD configuration file
and load validators

NFD

Start event loop

Create Face

Register Prefix
(/localhost/nfd/rib/register/<TLV-Encoded Options>

Forward to RIB Manager

Do route calculation
and get next hops

● Register prefix
● Translate flags, update RIB
● Create FIB updates

 Update FIB

Enable IncomingFaceID
feature on RIB Manager's face

Listen on prefix:
/localhop/nfd/rib

Set Interest Filters

Forward to RIB Manager

Add incoming Face ID to interest

Update FIB*

* Self-registration of NLSR is complete here. Similar steps are followed by other
applications for self-registration. Please note that the steps beyond this point
are only required by a routing protocol.

● Register NLSR
● Translate flags, update RIB
● Create FIB updates

Figure 16: RIB Manager—timing diagram

56

7.1 Initializing the RIB Manager 7 RIB MANAGEMENT

processes and generates a consistent forwarding table. These different parties use the RIB Manager’s interface through
control commands [4], which need to be validated for authentication and authorization. The RIB manager listens for control
commands with the command verbs register and unregister under the prefixes /localhost/nfd/rib and /localhop/nfd/rib [19].
The steps taken in processing these control commands are described in detail in Section 7.2. Applications should use the
RIB management interface to manipulate the RIB, and only the RIB manager should use the FIB management interface to
directly manipulate NFD’s FIB.

7.1 Initializing the RIB Manager

When an instance of the RIB Manager is created, the following operations are performed:

1. Command validation rules are loaded from the the rib block of the NFD configuration file from the localhost security
and localhop security subsections.

2. The Auto Prefix Propagator is initialized from the auto prefix propagate subsection with values to set the forwarding cost
of remotely registered prefixes, the timeout interval of a remote prefix registration command, how often propagations
are refreshed, and the minimum and maximum wait time before retrying a propagation.

3. The control command prefixes /localhost/nfd/rib and /localhop/nfd/rib (if enabled) are “self-registered” in NFD’s
FIB. This allows the RIB manager to receive RIB-related control commands (registration/unregistration requests) and
requests for RIB management datasets.

4. The IncomingFaceId feature [5] is requested on the face between the RIB manager and NFD. This allows the RIB
manager to get the FaceId from where prefix registration/unregistration commands were received (for “self-registrations”
from NDN applications).

5. The RIB manager subscribes to the face status notifications using the FaceMonitor class [18] to receive notifications
whenever a face is created or destroyed so that when a face is destroyed, Routes associated with that face can be
deleted.

7.2 Command Processing

When the RIB manager receives a control command request, it first validates the Interest. The RIB manager uses the com-
mand validation rules defined in the localhost security and localhop security sections of the rib block in the NFD configuration
file to determine if the signature on the command request is valid. If the validation fails, it returns a control response with
error code 403. If the validation is successful, it confirms the passed command is valid and if it is, executes one of the
following commands:

• Register Route: The RIB Manager takes the passed parameters from the incoming request and uses them to create
a RIB update. If the FaceId is 0 or omitted in the command parameters, it means the requester wants to register
a route to itself. This is called a self-registration. In this case, the RIB manager creates the RIB update with the
requester’s FaceId from the IncomingFaceId field. The RIB Manager then passes the RIB update to the RIB to begin
the FIB update process (Section 7.3). The FIB Updater is invoked and if the FIB update process is successful, the
RIB searches for a route that matches the name, FaceId, and Origin of the incoming request. If no match is found, the
passed parameters are inserted as a new route. Otherwise, the matching route is updated. In both cases, the route is
scheduled to expire after the passed expiration period and if the expiration period is being updated, the old expiration
time is cancelled. If the registration request creates a new RIB entry and automatic prefix propagation is enabled, the
Auto Prefix Propagator’s afterInsertRibEntry method is invoked.

• Unregister Route: The RIB Manager takes the passed parameters from the incoming request and creates a RIB
update. If the FaceId is 0 or omitted in the command parameters, it means the requester wants to unregister a route
to itself. This is called a self-unregistration. In this case, the RIB manager creates the RIB update with the requester’s
FaceId from the IncomingFaceId field. The RIB manager then passes the RIB update to the RIB to begin the FIB
update process (Section 7.3). The FIB Updater is invoked and if the FIB update process is successful, the Route with
the same name, FaceId, and origin is removed from the RIB. If automatic prefix propagation is enabled, the Auto Prefix
Propagator’s afterEraseRibEntry method is invoked.

In both cases, the RIB Manager returns a control response with code 200 if the command is received successfully. Because
one RIB update may produce multiple FIB updates, the RIB Manager does not return the result of the command execution

57

7.3 FIB Updater 7 RIB MANAGEMENT

since the application of multiple FIB updates may take longer than the InterestLifetime associated with the RIB update
command. Figure 17 shows the verb dispatch workflow of the RIB manager.

If the expiration period in the register command parameters is not set to infinity, the route will be scheduled to expire
after the expiration period. When the route expires, steps similar to an unregistration command are performed to remove
the route, as well as any corresponding inherited routes, from the FIB and RIB.

7.3 FIB Updater

The FIB Updater is used by the RIB Manager to process route inheritance flags (Section 7.3.1), generate FIB updates, and
send FIB updates to NFD. The RIB is only modified after FIB updates generated by a RIB update are applied by the FIB
Updater successfully. The RIB Manager takes parameters from incoming requests and creates a RIB update that is passed
to the RIB using the Rib::beginApplyUpdate method. The RIB creates a RibUpdateBatch, a collection of RIB updates
for the same FaceId, and adds the batch to a queue. The RIB will advance the queue and hand off each batch to the FIB
Updater for processing. Only one batch can be handled by the FIB Updater at a time, so the RIB will only advance the
queue when the FIB Updater is not busy. The FIB Updater processes the route inheritance flags of the update in the received
RibUpdateBatch, generates the necessary FIB updates, and sends the FIB updates to the FIB as needed. If the FIB updates
are applied successfully, the RIB update is applied to the RIB. Otherwise, the FIB update process fails, and the RIB update
is not applied to the RIB.

If a FIB update fails:

1. in case of a non-recoverable error (eg. signing key of the RIB Manager is not trusted, more than 10 timeouts for the
same command), NFD will terminate with an error;

2. in case of a non-existent face error with the same face as the RibUpdateBatch, the RibUpdateBatch is abandoned;

3. in case of a non-existent face error with a different face than the RibUpdateBatch, the FIB update that failed is skipped;

4. in other cases (eg. timeout), the FIB update is retried.

onLocalhostRequest()
Or

onLocalhopRequest()

validate
Command

Print Error
and Continue

registerEntry()

Rib::beginApplyUpdate()

validate
Parameters()

validate
Parameters()

unregisterEntry()

 Expiration
Time?

Yes

scheduler::schedule()

Create RibUpdate with
REGISTER action

Yes Yes

No

No No

Yes

Yes

No

Rib::beginApplyUpdate()

Create RibUpdate with
UNREGISTER action

sendSuccessResponse() sendSuccessResponse()

Figure 17: Verb dispatch workflow of the RIB Manager

58

7.4 RIB Status Dataset 7 RIB MANAGEMENT

7.3.1 Route Inheritance Flags

The route inheritance flags allow fine grained control over prefix registration. The currently defined flags and examples of
route inheritance can be found at [19].

7.3.2 Cost Inheritance

Currently, NFD implements the following logic to assign costs to next hops in the FIB when CHILD INHERIT is set. When
the flag is set on the route of a RIB entry, that route’s face and cost are applied to the longer prefixes (children) under the
RIB entry’s namespace. If a child already has a route with the face that would be inherited, the inherited route’s face and
cost are not applied to that child’s next hops in the FIB. Also, if a child already has a route with the face that would be
inherited and the child’s route has its CHILD INHERIT flag set, the inherited route’s face and cost are not applied to the next
hops of the child nor the children of the child namespace. If a RIB entry has neither the CHILD INHERIT nor the CAPTURE

flag set on any of its routes, that RIB entry can inherit routes from longer prefixes which do not have the same FaceId as
one of the RIB entry’s routes. Examples of the currently implemented logic are shown in Table 1.

Future versions will assign the lowest available cost to a next hop face based on all inherited RIB entries not blocked by
a CAPTURE flag. Examples of the future logic are shown at [19].

Table 1: Nexthop cost calculation. The nexthops and their costs for each RIB entry are calculated using the RIB (the table
on the left) and are installed into the FIB (the table on the right).

Name prefix Nexthop FaceId CHILD INHERIT CAPTURE Cost
/ 1 true false 75
/a 2 false false 50
/a/b 1 false false 65
/b 1 true false 100
/b/c 3 true true 40
/b/c/e 1 false false 15
/b/d 4 false false 30

Name prefix (Nexthop FaceId, Cost)
/ (1, 75)
/a (2, 50), (1, 75)
/a/b (1, 65)
/b (1, 100)
/b/c (3, 40)
/b/c/e (1, 15), (3, 40)
/b/d (4, 30), (1, 100)

7.4 RIB Status Dataset

The RIB manager publishes a status dataset under the prefix /localhost/nfd/rib/list which contains the current contents of
the RIB. When the RIB Manager receives an Interest under the dataset prefix, the listEntries method is called. The RIB
is serialized in the form of a collection of RibEntry and nested Route TLVs [19] and the dataset is published.

7.5 Readvertise

The Readvertise module provides a system where some policy can decide whether a route from the local RIB should be
readvertised to some destination. It is triggered whenever the contents of the RIB change. Each given Readvertise instance
has exactly one ReadvertisePolicy instance and one ReadvertiseDestination instance. Since Readvertise is a platform
that can model several kinds of prefix propagation scenarios, a separate Readvertise instance must be maintained for each
scenario. Currently NFD contains only one instance, used to communicate changes in the contents of the RIB to NLSR.

Contents of RIB
change

Route is added
Route is removed

Policy chooses
to readvertise
route

Call the destination's
advertise() function.

If nRibRoutes == 0,
call the destination's
withdraw() function

Readvertise

Create a
ReadvertisedRoute
object if necessary.
Increment nRibRoutes

Decrement
nRibRoutes

On Success,
readvertise
periodically

On Failure,
retry with
exponential
backoff

On Success,
delete the
ReadvertisedRoute

ReadvertisePolicy

Checks the new route
against some criteria.
If it passes, the policy
asks to readvertise.

ReadvertiseDestination

Check if destination is
available. If so, continue.
If not, perform these actions
when it becomes available.

Figure 18: The simplified structure an operation of the Readvertise module.

The Readvertise module subscribes to Signals that the RIB maintains, which are signaled to after a RIB route is added
and before one is removed. On route addition, Readvertise consults its ReadvertisePolicy instance. If the policy chooses to

59

7.6 Auto Prefix Propagator 7 RIB MANAGEMENT

readvertise a prefix, which may not be exactly the prefix associated with the RIB route, it will ask Readvertise to advertise
the prefix to the destination, which will create a ReadvertisedRoute object if one does not exist, and increment the count
of how many RIB routes advertise the prefix. How the destination actually models this is an implementation detail. For
example, the Readvertise-to-NLSR policy and destination pair uses RibMgmt commands sent to a prefix that the local NLSR
is listening on to communicate advertisements and withdrawals of routes. On route removal, Readvertise will check to see if
any other RIB routes advertise this prefix. If not, it will call the destination’s withdraw function. On successful withdrawal,
the ReadvertisedRoute will be deleted. A failure from either an advertisement or withdrawal will prompt retries with
exponential backoff.

If at any time the destination becomes unavailable, Readvertise will wait until next the destination is next available to
advertise or withdraw any ReadvertisedRoutes as needed. Destination availability is left as an implementation detail, to be
decided case-by-case by the destination implementer.

7.5.1 ReadvertisePolicy

When Readvertise receives a Signal that a RIB route has been added, it will call the handleNewRoute() function. The
ReadvertisePolicy defines what kinds of prefixes should be advertised, specifically which prefix to advertise and what
signing credentials to sign those advertised prefixes with. For example, in the Readvertise-to-NLSR case, the advertised
prefix is just the prefix associated with the RIB route that triggered the advertisement. However, a policy could choose to
advertise any prefix, perhaps the shortest sub-prefix that it can sign with some keychain.

Each policy must also define a refresh interval that specifies how often successfully advertised prefixes should be refreshed
at the destination.

7.5.2 ReadvertiseDestination

As stated above, if the ReadvertisePolicy chooses to advertise a prefix, it will provide Readvertise with a prefix and
signing credentials to advertise. Then Readvertise will call the advertise() function. How the function works is left as an
implementation detail per-destination. Additionally, each destination must define the withdraw() function and should have
some mechanism to manage its availability. The semantics of a destination’s availability are left for the implementer to decide,
keeping in mind that Readvertise will not attempt to advertise or withdraw prefixes while the destination is unavailable.
Whenever a destination’s availability changes, that destination should emit a Signal to alert Readvertise.

7.6 Auto Prefix Propagator

The Auto Prefix Propagator can be enabled by the RIB manager to propagate necessary knowledge of local prefix regis-
trations to a single connected gateway router. Since gateway routers are currently configured to accept prefix registration
commands under /localhop/nfd/rib, the Auto Prefix Propagator cannot handle connections to multiple gateway routers; the
/localhop/nfd/rib prefix does not allow the Auto Prefix Propagator to distinguish which gateway router the propagations
should and should not be forwarded to. Figure 19 provides an example of a locally registered prefix being propagated to a
connected gateway router. The Auto Prefix Propagator propagates prefixes by registering prefixes with a remote NFD and
revokes prefixes by unregistering prefixes from a remote NFD.

Gateway Router Gateway Router

Application

Propagation

Local registration

Figure 19: A local prefix registration is propagated to a connected gateway router

60

7.6 Auto Prefix Propagator 7 RIB MANAGEMENT

7.6.1 What Prefix to Propagate

To reduce not only the cost of propagations but also changes to the router’s RIB, the propagated prefixes should be aggregated
whenever possible. The local RIB Manager owns a key-chain consisting of a set of identities, each of which defines a namespace
and can cover one or more local RIB entries. Given a RIB entry, the Auto Prefix Propagator queries the local key-chain for
signing identities that are authorized to sign a prefix registration command for a prefix of the RIB prefix. If one or more
signing identities are found, the identity with the shortest prefix that can sign a prefix registration command is chosen, and
the Auto Prefix Propagator will then attempt to propagate that shortest prefix of the prefix to the router. Figure 20 presents
a high level example of prefix propagation.

Router / Remote NFD

End Host / Local NFD

app1 app2 app3

register:
/ndn/ucla/alice/app2

register:
/ndn/ucla/alice/app1

register:
/ndn/ucla/bob/test/app3

register:
/ndn/ucla/alice

signed by:
/ndn/ucla/alice

register:
/ndn/ucla/bob

signed by:
/ndn/ucla/bob

* /ndn/ucla/alice
 /ndn/ucla/bob/
 /ndn/ucla/bob/test

Key-chain

Figure 20: An example of prefix propagation

If the propagation succeeds, an event is scheduled to propagate the same prefix to refresh this propagation after a pre-
defined duration. By contrast, if the propagation fails, another event is scheduled to propagate the same prefix to retry this
propagation after some waiting period that is calculated based on an exponential back-off strategy.

7.6.2 When to Propagate

The Auto Prefix Propagator monitors RIB insertions and deletions by subscribing to two signals, Rib:afterInsertEntry
and Rib:afterEraseEntry respectively. Once those two signals are emitted, two connecting (the connections are established
when Auto Prefix Propagator is enabled) methods, AutoPrefixPropagator::afterInsertRibEntry and
AutoPrefixPropagator::afterEraseRibEntry, are invoked to process the insertion or deletion, respectively.

When an insertion is processed, the Auto Prefix Propagator will not attempt to propagate prefixes scoped for local use
(i.e., starts with /localhost) or that indicate connectivity to a router (i.e., the link local NFD prefix). The Auto Prefix
Propagator also requires an active connection to the gateway router before attempting a propagation. The Auto Prefix
Propagator considers the connection to the router as active if the local RIB has the link local NFD prefix registered and
inactive if the local RIB does not have the link local NFD prefix registered. If the prefix has not been propagated previously,
a propagation attempt will be made for the prefix.

Similarly, a revocation after deletion requires a qualified RIB prefix (not starting with /localhost or the link local
NFD prefix), an active connection to a gateway router, that the prefix has been propagated previously, and that no other
existing RIB prefix caused a propagation for the same prefix.

Figure 21 demonstrates a simplified workflow of a successful propagation. The process for revocation is similar.

7.6.3 Secure Propagations

To enable gateway routers to process remote registrations, the rib.localhop-security section must be configured on
the router. A series of polices and rules can be defined to validate registration/unregistration commands for propaga-
tions/revocations.

According to the trust schema, a command for propagation/revocation cannot pass the validation unless its signing
identity can be verified by the configured trust anchor on the gateway router.

7.6.4 Propagated-entry State Machine

A propagated entry consists of a PropagationStatus which indicates the current state of the entry, as well as a scheduled
event for either a refresh or retry. In addition, it stores a copy of the signing identity for the entry. All propagated entries are

61

7.6 Auto Prefix Propagator 7 RIB MANAGEMENT

Rib AutoPrefixPropagator Controller RibManager
0: insert()

1: afterInsertRibEntry()

1: afterInsertEntry()

2: getPrefixPropagationParameters()

3: afterRibInsert()

5: start() 6: startCommand()

7: onLocalhopRequest()

ValidatorConfig

8: validate()

9: onCommandValidated()

10: registerEntry()

11: sendSuccessResponse()

12: processCommandResponse()
13: afterPropagateSucceed()

Local RIB Manager Remote RIB Manager

4: startPropagation()

14: onRefreshTimer()

15: redoPropagation()
refresh interval

Figure 21: The simplified workflow of a successful propagation

maintained as an unordered map (AutoPrefixPropagator::m propagatedEntries), where the propagated prefix is used as
the key to retrieve the corresponding entry.

More specifically, a propagated entry will stay in one of the following five states in logic.

• NEW, the initial state.

• PROPAGATING, the state when the corresponding propagation is being processed but the response is not back yet.

• PROPAGATED, the state when the corresponding propagation has succeeded.

• PROPAGATE FAIL, the state when the corresponding propagation has failed.

• RELEASED, indicates this entry has been released. It’s noteworthy that this state is not required to be explicitly
implemented, because it can be easily determined by checking whether an existing entry can still be accessed. Thus,
any entry to be released is directly erased from the list of propagated entries.

Given a propagated entry, there are a series of events that can lead to a transition with a state switch from one to another,
or some triggered actions, or even both. All related input events are listed below.

• rib insert, corresponds to AutoPrefixPropagator::afterRibInsert, which happens when the insertion of a RIB
entry triggers a necessary propagation.

• rib erase, corresponds to AutoPrefixPropagator::afterRibErase, which happens when the deletion of a RIB entry
triggers a necessary revocation.

• hub connect, corresponds to AutoPrefixPropagator::afterHubConnect, which happens when the connectivity to a
router is established (or recovered).

• hub disconnect, corresponds to AutoPrefixPropagator::afterHubDisconnect, which happens when the connectiv-
ity to the router is lost.

• propagate succeed, corresponds to AutoPrefixPropagator::afterPropagateSucceed, which happens when the
propagation succeeds on the router.

• propagate fail, corresponds to AutoPrefixPropagator::afterPropagateFail, which happens when a failure is
reported in response to the registration command for propagation.

62

7.7 Extending RIB Manager 7 RIB MANAGEMENT

• revoke succeed, corresponds to AutoPrefixPropagator::afterRevokeSucceed, which happens when the revocation
of some propagation succeeds on the router.

• revoke fail, corresponds to AutoPrefixPropagator::afterRevokeFail, which happens when a failure is reported
in response to the unregistration command for revocation.

• refresh timer, corresponds to AutoPrefixPropagator::onRefreshTimer, which happens when the timer scheduled
to refresh some propagation is fired.

• retry timer, corresponds to AutoPrefixPropagator::onRetryTimer, which happens when the timer scheduled to
retry some propagation is fired.

A state machine is implemented to maintain and direct transitions according to the input events. Figure 22 lists all
related events and the corresponding transitions.

rib insert

rib erase

hub connect

hub disconnect

propagate succeed

propagate fail

revoke succeed

revoke fail

refresh timer

retry timer

logically
IMPOSSIBLE

-> RELEASED

-> PROPAGATING

start propagation

logically
IMPOSSIBLE

logically
IMPOSSIBLE

NEW

logically
IMPOSSIBLE

logically
IMPOSSIBLE

logically
IMPOSSIBLE

logically
IMPOSSIBLE

logically
IMPOSSIBLE

logically
IMPOSSIBLE

-> RELEASED

logically
IMPOSSIBLE

-> NEW

-> PROPAGATED

set refresh timer

PROPAGATING

-> PROPAGATE_FAIL

set retry timer

 PROPAGATING

start propagation

 PROPAGATING

logically
IMPOSSIBLE

logically
IMPOSSIBLE

logically
IMPOSSIBLE

-> RELEASED
start revocation

cancel refresh timer

logically
IMPOSSIBLE

-> NEW

logically
IMPOSSIBLE

PROPAGATED

logically
IMPOSSIBLE

-> PROPAGATING

start propagation

 PROPAGATED

-> PROPAGATING

start propagation

logically
IMPOSSIBLE

logically
IMPOSSIBLE

-> RELEASED

cancel retry timer

logically
IMPOSSIBLE

-> NEW

logically
IMPOSSIBLE

PROPAGATE_FAIL

logically
IMPOSSIBLE

PROPAGATE_FAIL

PROPAGATE_FAIL

logically
IMPOSSIBLE

-> PROPAGATING

start propagation

-> NEW

logically
IMPOSSIBLE

RELEASED

RELEASED

RELEASED

start revocation

RELEASED

RELEASED

RELEASED

RELEASED

logically
IMPOSSIBLE

logically
IMPOSSIBLE

Figure 22: The transition table of propagated-entry state machine.

7.6.5 Configure Auto Prefix Propagator

When the RIB manager loads configurations from the rib section in the NFD configuration file, the Auto Prefix Propagator
will load its configurations from the sub section rib.auto prefix propagate.

Table 2 presents the common parameters shared by all propagations and which parameters are configurable.

7.7 Extending RIB Manager

The RIB Manager currently supports two commands (register and unregister), RIB dataset publishing, and the automatic
prefix propagation feature. However, the functionality of the RIB Manager can be extended by introducing more commands

63

7.7 Extending RIB Manager 7 RIB MANAGEMENT

Table 2: Shared parameters for prefix propagation

member variablea default setting configurableb

m controlParameters

Cost 15 YES

Origin ndn::nfd::ROUTE ORIGIN CLIENT NO

FaceId 0 NO

m commandOptions
Prefix /localhop/nfd NO

Timeout 10,000 (milliseconds) YES

m refreshIntervalc 25 (seconds) YES

m baseRetryWait 50 (seconds) YES

m maxRetryWait 3600 (seconds) YES

athese parameters are maintained in some member variables of AutoPrefixPropagator.
bindicates whether this parameter can be configured in the NFD config file.
cthis setting must be less than the idle time of UDP faces whose default setting is 3,600 seconds.

and features. For example, in the current implementation, if a node wants to announce a prefix, it needs to communicate
with a specific routing protocol. Once the RIB manager defines an interface for prefix announcement, e.g., advertise and
withdraw commands, the process of announcing and withdrawing prefixes in routing protocols could become more uniform
and simple.

64

8 CONGESTION CONTROL

8 Congestion Control

NFD implements a simplified version of the congestion control scheme described in [20]. The current approach consists of
three parts:

1. Congestion Detection: Each node detects congestion locally by monitoring its outgoing queues.

2. Congestion Signaling: After detecting congestion, NFD marks Data packets to inform consumers (and potentially
downstream routers).

3. Consumer Rate Adjustment: End consumers react to congestion signals by adjusting their Interest sending rate.

8.1 Congestion Detection

Every NFD face monitors its outgoing queue size to decide whether the link is congested. More specifically, each face applies
a simplified version of the CoDel Active Queue Management scheme [21].

A face enters the congested state (and marks the first packet) when the queue size first exceeds a threshold (default:
64KiB). As long as the queue size stays above this threshold, a new packet will be marked every interval (default: 100 ms),
and this interval will be decreased with every marked packet. Thus, the congestion signal becomes stronger if the queue
persists. Once the queue size falls below the threshold, the face leaves the congested state, and the marking interval is reset
to the default value.

The congestion detection can be enabled in multiple ways:

• The default is configured in NFD’s configuration file by setting face system.general.enable congestion marking

to yes or no.

• For a specific face, congestion detection can be enabled/disabled via nfdc face create by using the congestion-marking
<on|off> parameter. Using the nfdc command overrides the value set in NFD’s configuration file.

Congestion detection is currently not supported on Ethernet and WebSocket faces.

8.2 Congestion Signaling

Once a face enters the congested state, congestion is signaled with the CongestionMark field in the NDNLPv2 header.17. If
using the ndn-cxx library, this congestion field can be read and written by both consumer and producer applications:

• uint64 t PacketBase::getCongestionMark()

• void PacketBase::setCongestionMark(uint64 t mark)

Where PacketBase means Interest, Data, or Nack, and a mark value of 0 indicates that the mark is unset.

8.3 Consumer Adaptation

The consumer can use congestion marks as an early indication of congestion, and thus reduce its sending rate before the
queue buffer overflows. Hence, a consumer should treat congestion marks just like timeouts (trigger a window decrease). The
CoDel scheme ensures that congestion marks are infrequent (initially only once per 100ms) unless the congestion reaches an
extreme level.

Currently, the command-line application ndncatchunks18 supports congestion reaction by default. For testing, it can be
disabled with the option --aimd-ignore-cong-marks.

17The CongestionMark header field is defined as nonNegativeInteger to allow future extensions for more fine-grained congestion signaling.
18https://github.com/named-data/ndn-tools/tree/master/tools/chunks

65

https://github.com/named-data/ndn-tools/tree/master/tools/chunks

9 SECURITY

9 Security

Security consideration of NFD involves two parts: interface control and trust models.

9.1 Interface Control

The default NFD configuration requires superuser privileges to access raw ethernet interfaces and the Unix socket location.
Due to the research nature of NFD, users should be aware of the security risks and consequences of running as the superuser.

It is also possible to configure NFD to run without elevated privileges, but this requires disabling ethernet faces and
changing the default Unix socket location19 (both in the NFD configuration file, see Section 10.1). However, such measures
may be undesirable (e.g. performing ethernet-related development). As a middle ground, users can also configure an
alternate effective user and group id for NFD to drop privileges to when they are not needed. This does not provide any real
security benefit over running exclusively as the superuser, but it could potentially buggy code from damaging the system
(see Section 10.1).

9.2 Trust Model

Different trust models are used to validate command Interests depending on the recipient. Among the four types of commands
in NFD, the commands of faces, fib, and strategy-choice are sent to NFD, while rib commands are sent to the RIB
Manager.

9.2.1 Command Interest

Command Interests are a mechanism for issuing authenticated control commands. Signed commands are expressed in terms
of a command Interest’s name. These commands are defined to have five additional components after the management
namespace: command name, timestamp, random-value, SignatureInfo, and SignatureValue.

/signed/interest/name/<timestamp>/<nonce>/<signatureInfo>/<signatureValue>

The command Interest components have the following usages:

• timestamp is used to protect against replay attack.

• nonce is a random value (32 bits) which adds additional assurances that the command Interest will be unique.

• signatureInfo encodes a SignatureInfo TLV block.

• signatureValue encodes the a SignatureBlock TLV block.

A command interest will be treated as invalid in the following four cases:

• one of the four components above (SignatureValue, SignatureInfo, nonce, and Timestamp) is missing or cannot be
parsed correctly;

• the key, according to corresponding trust model, is not trusted for signing the control command;

• the signature cannot be verified with the public key pointed to by the KeyLocator in SignatureInfo;

• the producer has already received a valid signed Interest whose timestamp is equal or later than the timestamp of the
received one.

Note that in order to detect the fourth case, the producer needs to maintain a latest timestamp state for each trusted
public key20 For each trusted public key, the state is initialized as the timestamp of the first valid Interest signed by the key.
Afterwards, the state will be updated each time the producer receives a valid command Interest.

Note that there is no state for the first command Interest. To handle this special situation, the producer should check
the Interest’s timestamp against a proper interval (e.g., 120 seconds):

[current timestamp− interval/2, current timestamp+ interval/2].

The first Interest is invalid if its timestamp is outside of the interval.

19libndn-cxx expects the default Unix socket location, but this can be changed in the library’s client.conf configuration file.
20Since public key cryptography is used, sharing private keys is not recommended. If private key sharing is inevitable, it is the key owner’s

responsibility to keep clock synchronized.

66

9.3 Local Key Management 9 SECURITY

9.2.2 NFD Trust Model

With the exception of the RIB Manager, NFD uses a simple trust model of associating privileges with NDN identity cer-
tificates. There are currently three privileges that can be directly granted to identities: faces, fib, and strategy-choice.
New managers can add additional privileges via the ManagerBase constructor.

A command Interest is unauthorized if the signer’s identity certificate is not associated with the command type. Note
that key retrievals are not permitted/performed by NFD for this trust model; an identity certificate is either associated with
a privilege (authorized) or not (unauthorized). For details about how to set privileges for each user, please see Section 10
and Section 6.

9.2.3 NFD RIB manager Trust Model

RIB manager uses its own trust model to authenticate rib type command Interests. Applications that want to register a
prefix in NFD (i.e., receive Interests under a prefix) may need to send an appropriate rib command Interest. After RIB
manager authenticates the rib command Interest, RIB manager will issue fib command Interests to NFD to set up FIB
entries.

Trust model for NFD RIB manager defines the conditions for keys to be trusted to sign rib commands. Namely, the
trust model must answer two questions:

1. Who are trusted signers for rib command Interests?

2. How do we authenticate signers?

Trusted signers are identified by expressing the name of the signing key with a NDN Regular Expression [22]. If the signing
key’s name does not match the regular expression, the command Interest is considered to be invalid. Signers are authenticated
by a rule set that explicitly specifies how a signing key can be validated via a chain of trust back to a trust anchor Both
Signer identification and authentication can be specified in a configuration file that follows the Validator Configuration File
Format specification [23].

RIB manager supports two modes of prefix registration: localhost and localhop. In localhop mode, RIB manager
expects prefix registration requests from applications running on remote manchines, (i.e., NFD is running on an access
router). When localhop mode is enabled, rib command Interests are accepted if the signing key can be authenticated along
the naming hierarchy back to a (configurable) trust anchor. For example, the trust anchor could be the root key of the NDN
testbed, so that any user in the testbed can register prefixes through the RIB manager. Alternatively, the trust anchor could
be the key of a testbed site or instituion, thus limiting RIB manager’s prefix registration to users at that site/institution.

In localhost mode, RIB manager expects to receive prefix registration requests from local applications. By default, RIB
manager allows any local application to register prefixes However, the NFD administrator may also define their own access
control rules using the same configuration format as the trust model configuration for localhop mode.

9.3 Local Key Management

NFD runs as a user level application. Therefore, NFD will try to access the keys owned by the user who runs NFD. The
information about a user’s key storage can be found in a configuration file client.conf. NFD will search the configura-
tion file at three places (in order): user home directory (~/.ndn/client.conf), /usr/local/etc/ndn/client.conf, and
/etc/ndn/client.conf. Configuration file specify the locator of two modules: Public-key Information Base (PIB) and
Trusted Platform Module (TPM). The two modules are paired up. TPM is a secure storage for private keys, while PIB is
provide public information about signing keys in the corresponding TPM. NFD will lookup available keys in the database
pointed by PIB locator, and send packet signing request to the TPM pointed by TPM locator.

67

https://named-data.net/doc/ndn-cxx/current/tutorials/utils-ndn-regex.html
https://named-data.net/doc/ndn-cxx/current/tutorials/security-validator-config.html
https://named-data.net/doc/ndn-cxx/current/tutorials/security-validator-config.html

10 COMMON SERVICES

10 Common Services

NFD contains several common services to support forwarding and management operations. These services are an essential
part of the source code, but are logically separated and placed into the core/ folder (if they are shared with other binaries
such as the nfdc tool) or into the daemon/common/ folder (if used exclusively by the NFD binary).

In addition to core services, NFD also relies extensively on the ndn-cxx support library, which provides many basic
functions such as: packet format encoding/decoding, data structures for management protocol, and security framework. The
latter, within the context of NFD, is described in more detail in Section 9.

10.1 Configuration File

Many aspects of NFD are configurable through a configuration file, which adopts the Boost INFO format [24]. This format
is very flexible and allows any combination of nested configuration structures.

10.1.1 User Info

Currently, NFD defines 6 top level configuration sections: general, log, tables, face system, authorizations, and rib.

• general: The general section defines various parameters affecting the overall behavior of NFD. Currently, the imple-
mentation only allows user and group parameter settings. These parameters define the effective user and effective
group that NFD will run as. Note that using an effective user and/or group is different from just dropping privileges.
Namely, it allows NFD to regain superuser privileges at any time. By default, NFD must be initially run with and
be allowed to regain superuser privileges in order to access raw ethernet interfaces (Ethernet face support) and create
a socket file in the system folder (Unix face support). Temporarily dropping privileges by setting the effective user
and group id provides minimal security risk mitigation, but it can also prevent well intentioned, but buggy, code from
harming the user’s system. It is also possible to run NFD without superuser privileges, but it requires the disabling
of ethernet faces (or proper configuration to allow non-root users to perform privileged operations on sockets) and
modification of the Unix socket path for NFD and all applications (see your installed nfd.conf configuration file or
nfd.conf.sample for more details). When applications are built using the ndn-cxx library, the Unix socket path for
the application can be changed using the client.conf file. The library will search for client.conf in three specific
locations and in the following order:

– ~/.ndn/client.conf

– /SYSCONFDIR/ndn/client.conf (if compiling from source, SYSCONFDIR equals /usr/local/etc by default)

– /etc/ndn/client.conf

• log: The log section defines the logger configuration such as the default log level and individual NFD component log
level overrides. The log section is described in more detail in the Section 10.2.

• tables: The tables section configures NFD’s tables: Content Store, PIT, FIB, Strategy Choice, Measurements, and
Network Region. Currently supported settings include the following:

– cs_max_packets: Content Store capacity limit in number of packets. Default is 65536, which corresponds to
about 500 MB, assuming maximum size of 8 KB per Data packet.

– cs_policy: The Content Store replacement policy. Can be set to lru (the default) or priority_fifo.

– cs_unsolicited_policy: The policy used by the Content Store to decide whether to admit or drop an incoming
unsolicited Data packet. Available policies are: drop-all (the default), admit-local, admit-network, admit-all.

– strategy_choice: This subsection selects the initial forwarding strategy for each specified prefix. Entries are
listed as <namespace> <strategy-name> pairs (space-separated).

– network_region: This subsection contains a set of network regions used by the forwarder to determine if an
Interest carrying a forwarding hint has reached the producer region. Entries are a list of names.

• face system: The face system section fully controls the allowed face protocols, channels and channel creation pa-
rameters, and settings of multicast faces. Specific protocols may be disabled by commenting out or removing the
corresponding nested block in its entirety. Present but empty sections will result in enabling the corresponding protocol
with its default parameters.

NFD supports the following face protocols:

68

10.1 Configuration File 10 COMMON SERVICES

– unix: Unix protocol

This section can contain the following parameter:

∗ path: sets the path for Unix socket (default is /var/run/nfd.sock)

Note that if the unix section is present, the created Unix channel will always be in a “listening” state. Commenting
out the unix section disables Unix channel creation.

– tcp: TCP protocol

This section can contain the following parameters:

∗ listen: controls whether the created TCP channel is in listening mode and creates TCP faces when an
incoming connection is received (enabled by default)

∗ port: sets the TCP listener port number (default is 6363)

∗ enable_v4: controls whether IPv4 TCP channels are enabled (enabled by default)

∗ enable_v6: controls whether IPv6 TCP channels are enabled (enabled by default)

– udp: UDP protocol

This section can contain the following parameters:

∗ listen: controls whether the created UDP channel is in listening mode and creates UDP unicast faces when
incoming packets are received from a new peer (enabled by default)

∗ port: sets UDP unicast port number (default is 6363)

∗ enable_v4: controls whether IPv4 UDP channels are enabled (enabled by default)

∗ enable_v6: controls whether IPv6 UDP channels are enabled (enabled by default)

∗ idle_timeout: sets the time in seconds before closing an idle on-demand UDP unicast face (default is 600
seconds)

∗ mcast: controls whether UDP multicast faces need to be created (enabled by default)

∗ mcast_group: UDP IPv4 multicast group (default is 224.0.23.170)

∗ mcast_port: sets UDP multicast port number for IPv4 (default is 56363)

∗ mcast_group_v6: same as mcast_group but for IPv6 faces

∗ mcast_port_v6: same as mcast_port but for IPv6 faces

∗ mcast_ad_hoc: controls whether all UDP multicast faces are considered ad hoc (disabled by default)

– ether: Ethernet protocol (NDN directly on top of Ethernet, without requiring IP protocol)

This section can contain the following parameters:

∗ listen: controls whether the created Ethernet channel is in listening mode and creates Ethernet unicast faces
when incoming packets are received from a new peer (enabled by default)

∗ idle_timeout: sets the time in seconds before closing an idle on-demand Ethernet unicast face (default is
600 seconds)

∗ mcast: controls whether Ethernet multicast faces need to be created (enabled by default)

∗ mcast_group: sets the Ethernet multicast group (default is 01:00:5E:00:17:AA)

∗ mcast_ad_hoc: controls whether all Ethernet multicast faces are considered ad hoc (disabled by default)

– websocket: WebSocket protocol (to connect to NFD from JavaScript applications running in a web browser)

This section can contain the following parameters:

∗ listen: controls whether the created WebSocket channel is in listening mode and creates WebSocket faces
when incoming connections are received (enabled by default)

∗ port: WebSocket listener port number (default is 9696)

∗ enable_v4: controls whether IPv4 WebSocket channels are enabled (enabled by default)

∗ enable_v6: controls whether IPv6 WebSocket channels are enabled (enabled by default)

• authorizations: The authorizations section provides a fine-grained control for management operations. As described
in Section 6, NFD has several managers, the use of which can be authorized to specific NDN users. For example, the
creation and destruction of faces can be authorized to one user, management of FIB to another, and control over
strategy choice to a third user.

69

10.1 Configuration File 10 COMMON SERVICES

To simplify the initial bootstrapping of NFD, the sample configuration file does not restrict local NFD management
operations: any user can send management commands to NFD and NFD will authorize them. However, such config-
uration should not be used in a production environment and only designated users should be authorized to perform
specific management operations.

The basic syntax for the authorizations section is as follows. It consists of zero or more authorize blocks. Each
authorize block associates a single NDN identity certificate, specified by the certfile parameter, with privileges

blocks. The privileges block defines a list of permissions/managers (one permission per line) that are granted to the
user identified by certfile defines a file name (relative to the configuration file format) of the NDN certificate. As a
special case, primarily for demo purposes, certfile accepts value ”any”, which denotes any certificate possessed by any
user. Note that all managers controlled by the authorizations section are local. In other words, all commands start
with /localhost, which are possible only through local faces (Unix face and TCP face to 127.0.0.1).

Note for developers:

The privileges block can be extended to support additional permissions with the creation of new managers (see
Section 6). This is achieved by deriving the new manager from the ManagerBase class. The second argument to the
ManagerBase constructor specifies the desired permission name.

• rib: The rib section controls behavior and security parameters for NFD RIB manager. This section can contain three
subsections: localhost_security, localhop_security, and auto_prefix_propagate. localhost_security controls
authorizations for registering and unregistering prefixes in RIB from local users (through local faces: Unix socket or
TCP tunnel to 127.0.0.1). localhop_security defines authorization rules for so called localhop prefix registrations:
registration of prefixes on the next hop routers. auto_prefix_propagate configures the behavior of the Auto Prefix
Propagator feature of the RIB manager (Section 7.6).

Unlike the main authorizations section, the rib security section uses a more advanced validator configuration, thus
allowing a greater level of flexibility in specifying authorizations. In particular, it is possible to specify not only specific
authorized certificates, but also indirectly authorized certificates. For more details about validator configuration and
its capabilities, refer to Section 9 and Validator Configuration File Format specification [23].

Similar to the authorizations section, the sample configuration file, allows any local user to send register and
unregister commands (localhost_security) and prohibits remote users from sending registration commands (the
localhop_security section is disabled). On NDN Testbed hubs, the latter is configured in a way to authorize any
valid NDN Testbed user (i.e., a user possessing valid NDN certificate obtained through ndncert website [25]) to send
registration requests for user namespace. For example, a user Alice with a valid certificate /ndn/site/alice/KEY/...

/ID-CERT/... would be allowed to register any prefixes started with /ndn/site/alice on NDN hub.

The auto_prefix_propagate subsection supports configuring the forwarding cost of remotely registered prefixes, the
timeout interval of a remote prefix registration command, how often propagations are refreshed, and the minimum and
maximum wait time before retrying a propagation:

– cost: The forwarding cost for prefixes registered on a remote router (default is 15).

– timeout: The timeout (in milliseconds) of prefix registration commands for propagation (default is 10000).

– refresh_interval: The interval (in seconds) before refreshing the propagation (default is 300). This setting
should be less than face_system.udp.idle_time, so that the face is kept alive on the remote router.

– base_retry_wait: The base wait time (in seconds) before retrying propagation (default is 50).

– max_retry_wait: maximum wait time (in seconds) before retrying propagation between consecutive retries (default
is 3600). The wait time before each retry is calculated based on the following back-off policy: initially, the wait time
is set to base_retry_wait. The wait time is then doubled for each retry unless it is greater than max_retry_wait,
in which case the wait time is set to max_retry_wait.

10.1.2 Developer Info

When creating a new management module, it is very easy to make use of the NFD configuration file framework. Most heavy
lifting is performed using the Boost.PropertyTree [24] library and NFD implements an additional wrapper (ConfigFile) to
simplify configuration file operations.

1. Define the format of the new configuration section. Reusing an existing configuration section could be problematic,
since a diagnostic error will be generated any time an unknown parameter is encountered.

70

https://named-data.net/doc/ndn-cxx/current/tutorials/security-validator-config.html
https://github.com/named-data/ndncert

10.2 Logging 10 COMMON SERVICES

2. The new module should define a callback with prototype void(*)(ConfigSection..., bool isDryRun) that imple-
ments the actual processing of the newly defined section. The best guidance for this step is to take a look at the existing
source code of one of the managers and implement the processing in a similar manner. The callback can support two
modes: dry-run to check validity of the specified parameters, and actual run to apply the specified parameters.

As a general guideline, the callback should be able to process the same section multiple times in actual run mode
without causing problems. This feature is necessary in order to provide functionality of reloading configuration file
during run-time. In some cases, this requirement may result in cleaning up data structures created during the run. If
it is hard or impossible to support configuration file reloading, the callback must detect the reloading event and stop
processing it.

3. Update NFD initialization in daemon/nfd.hpp and daemon/nfd.cpp files. In particular, an instance of the new man-
agement module needs to be created inside the initializeManagement method. Once module is created, it should be
added to ConfigFile class dispatch. Similar updates should be made to reloadConfigFile method.

As another general recommendation, do not forget to create proper test cases to check correctness of the new config
section processing. This is vital for providing longevity support for the implemented module, as it ensures that parsing
follows the specification, even after NFD or the supporting libraries are changed.

10.1.3 Configuration Reload

NFD reloads the configuration upon receiving a SIGHUP signal.

10.2 Logging

One of the most important core services is the logging subsystem. NFD’s logger provides support for multiple log levels,
which can be configured in the configuration file individually for each module. The configuration file also includes a setting
for the default log level that applies to all modules, except those explicitly listed.

10.2.1 User Info

Log level is configured in the log section of the configuration file. The format for each configuration setting is a key-value
pair, where key is name of the specific module and value is the desired log level. Valid values for log level are:

• NONE: no messages

• ERROR: show only error messages

• WARN: show also warning messages

• INFO: show also informational messages (default)

• DEBUG: show also debugging messages

• TRACE: show also trace messages

• ALL: all messages for all log levels (most verbose)

Individual module names can be found in the source code by looking for NFD_LOG_INIT(<module name>) statements in
.cpp files, or using the --modules command-line option of the nfd program. There is also a special default_level key,
which defines the log level for all modules that are not explicitly listed in the configuration (if not specified, the default log
level is INFO).

Log levels can also be configured via the NDN_LOG environment variable. See ndn-log(7) manual page (part of ndn-cxx)
for syntax and examples.

10.2.2 Developer Info

To enable logging in a new module, very few actions are required from the developer:

• include "common/logger.hpp" header file

• declare the new logging module in a .cpp file using the NFD_LOG_INIT(<module name>) macro

• use NFD_LOG_<LEVEL>("statement to log") macros in the source code

71

10.3 Global Scheduler 10 COMMON SERVICES

10.3 Global Scheduler

The ndn-cxx library includes a scheduler class that provides a simple way to schedule arbitrary events (callbacks) at arbitrary
time points. Normally, each module/class creates its own scheduler object. An implication of this is that a scheduled object,
when necessary, must be cancelled in a specific scheduler, otherwise the behavior is undefined.

NFD packet forwarding has a number of cases that require shared ownership of scheduled events. To simplify this and other
event operations, NFD includes a per-thread global scheduler. To use this scheduler, one needs to include common/global.hpp
and call getScheduler() to obtain a reference to the global scheduler for the current thread.

10.4 Global I/O Service

The NFD packet forwarding implementation is based on Boost.Asio [26], which provides efficient asynchronous operations.
The main feature of this is the io_service abstraction. io_service implements the dispatching of any scheduled events
in an asynchronous manner, such as sending packets through operating system sockets, processing received packets and
incoming connections, and many others including arbitrary function calls (e.g., the Scheduler class in ndn-cxx library is also
based on this abstraction).

Logically, io_service is just a queue of callbacks (explicitly or implicitly added). In order to actually execute any of
these callback functions, at least one application thread must call the io_service::run method. The thread that called the
run method then starts processing enqueued callbacks in an application-defined manner.

The current version of NFD uses a single global instance of io_service in each execution thread. Specifically, both
the main and the RIB thread call the run method on their own instance of io_service. This logic is implemented in
daemon/main.cpp.

Some NFD classes may require to specify an io_service object. For example, to create a TCP face, it is necessary
to provide an io_service reference as a constructor parameter to boost::asio::ip::tcp::socket. In such cases, it is
sufficient to include the daemon/global.hpp header file and supply getGlobalIoService() as the argument. The rest will
be handled by the existing NFD framework.

10.5 Hash Computation Routines

Common services also include several hash functions, based on city hash algorithm [11], to support fast name-based operations.
Since efficient hash table index size depends on the platform, NFD includes several versions, for 16-bit, 32-bit, 64-bit, and
128-bit hashing.

The NameTree implementation generalizes the platform-dependent use of hash functions using a template-based helper
(see computeHash function in daemon/table/name-tree-hashtable.cpp). Depending on the size of size_t type on the
platform, the compiler will automatically select the correct version of the hash function.

Other hash functions may be included in the future to provide tailored implementations for specific usage patterns. In
other words, since the quality of the hash function is usually not the sole property of the algorithm, but also relies on the
hashed source (hash functions need to hash uniformly into the hash space), depending on which Interest and Data names
are used, other hash functions may be more appropriate. Cryptographic hash functions are also an option, however they are
usually prohibitively expensive.

10.6 Privilege Helper

When NFD is run as a super user (may be necessary to support Ethernet faces, enabling TCP/UDP/WebSocket faces on
privileged ports, or enabling Unix socket face in a root-only-writeable location), it is possible to run most of the operations in
unprivileged mode. In order to do so, NFD includes a PrivilegeHelper class that can be configured through configuration
file to drop privileges as soon as NFD initialization finishes. When necessary, NFD can temporarily regain privileges to do
additional tasks, e.g., (re-)create multicast faces.

72

11 TESTING

11 Testing

In general, software testing consists of multiple levels of testing. The levels that have primarily been supported during the
NFD development process include unit and integration tests.

At the unit test level, individual units of source code (usually defined in a single .cpp file) are tested for functional
correctness. Some of the developed unit tests in NFD involve multiple modules and interaction between modules (e.g.,
testing of forwarding strategies). However, even in these cases, all testing is performed internally to the module, without any
external interaction.

NFD also employs integration testing, where NFD software and its components is evaluated as a whole in a controlled
networking environment.

11.1 Unit Tests

NFD uses Boost Test Library [27] to support development and execution of unit testing.

11.1.1 Test Structure

Each unit test consists of one or more test suites, which may contain one or more locally defined classes and/or attributes
and a number of test cases. A specific test case should test a number of the functionalities implemented by a NFD module.
In order to reuse common functions among the test suites of a test file or even among multiple test files, one can make use
of the fixture model provided by the Boost Test Library.

For example, the tests/daemon/face/face.t.cpp file, which tests the correctness of the daemon/face/face.hpp file,
contains a single test suite with a number of test cases and a class that extends the DummyFace class. The test cases check
the correctness of the functionalities implemented by the daemon/face/face.hpp file.

11.1.2 Running Tests

In order to run the unit tests, one has to configure and compile NFD with the --with-tests command-line option (using
--debug is also strongly recommended while developing). Once the compilation is done, one can run all the unit tests by
typing:

./build/unit-tests-<module>

One can run a specific test case of a specific test suite by typing:

./build/unit-tests-<module> -t <TestSuite>/<TestCase>

11.1.3 Test Helpers

The ndn-cxx library provides a number of helper tools to facilitate development of unit tests:

• DummyClientFace <ndn-cxx/util/dummy-client-face.hpp>: a socket-independent Face abstraction to be used
during the unit testing process.

• UnitTestSystemClock and UnitTestSteadyClock <ndn-cxx/util/time-unit-test-clock.hpp>: abstractions to
mock the system and steady clocks used inside ndn-cxx and NFD implementation.

In addition to library tools, NFD’s unit testing environment also includes a few NFD-specific common testing helpers and
fixtures:

• ClockFixture (tests/clock-fixture.hpp): a base fixture that overrides steady clock and system clock.

• KeyChainFixture (tests/key-chain-fixture.hpp): a base fixture that provides an in-memory ephemeral KeyChain
and can be used to create temporary identities. Identities added via KeyChainFixture::addIdentity are automatically
deleted during test case teardown.

• LimitedIo (tests/daemon/limited-io.hpp): class to execute a limited number of I/O operations. It allows to
specify either an upper bound to the number of operations or an execution time limit, which will fail the test case if
not respected. Note that this class is not a fixture.

73

11.2 Integration Tests 11 TESTING

• DummyTransport (tests/daemon/face/dummy-transport.hpp): a dummy Transport subclass used in testing
Faces and LinkServices.

• DummyLinkService (tests/daemon/face/dummy-link-service.hpp): a dummy LinkService subclass that logs
all sent and received packets.

• StrategyTester (tests/daemon/fw/strategy-tester.hpp): a framework to test a forwarding strategy. This helper
extends the tested strategy to offer recording of its invoked actions, without passing them to the actual forwarder
implementation.

• TopologyTester (tests/daemon/fw/topology-tester.hpp): a framework to construct a virtual mock topology and
implement various network events (e.g., failing and recovering links). The purpose is to test the behavior of the
forwarder core plus a forwarding strategy in a simulated network topology.

11.1.4 Test Code Guidelines and Naming Conventions

The current implementation of NFD unit tests uses the following naming convention:

• A test suite for the folder/module-name.hpp file (and its corresponding .cpp file) should be placed in tests/folder/

module-name.t.cpp. For example, the test suite for daemon/fw/forwarder.hpp should be placed in tests/daemon/

fw/forwarder.t.cpp.

• A test suite should be named TestModuleName and nested under test suites named after directories. For example, the
test suite for the daemon/fw/forwarder.hpp file should be named Fw/TestForwarder (“daemon” part is not needed,
as daemon-related unit tests are split into a separate unit tests module unit-tests-daemon).

• A test suite should be declared inside the same namespace of the tested type plus an additional tests namespace. For
example, a test suite for the nfd::Forwarder class is declared in the namespace nfd::tests and a test suite for the
nfd::cs::Cs class is declared in the nfd::cs::tests namespace. If needed, the parent test sub-namespace(s) can be
imported with the using namespace directive.

• A test suite or test case that needs access to the global io_service instance or that interacts with it in any way should
use GlobalIoFixture to get proper automatic setup and teardown of the io_service. In particular, this guideline
applies to most test suites under tests/daemon/. If a custom fixture is required for such a test suite or test case, the
custom fixture should derive from GlobalIoFixture. If a test case needs to sign Data, it should use KeyChainFixture

or a fixture that derives from the latter. When feasible, ClockFixture or GlobalIoTimeFixture should be used to
mock clocks.

11.2 Integration Tests

The NFD team has developed a number of integrated test cases (https://gerrit.named-data.net/admin/repos/NFD/
integration-tests) that can be run in a dedicated test environment.

The easiest way to run the integration tests is to use Vagrant (https://www.vagrantup.com/) to automate creation and
running of VirtualBox virtual machines. Note that the test machine will need at least 9 GB of RAM and at least 5 CPU
cores.

• Install VirtualBox and Vagrant on the test system.

• Clone the integration tests repository:

git clone https://gerrit.named-data.net/NFD/integration-tests

cd integration-tests

• Run run-vagrant-tests.sh script that will create necessary virtual machines and run all the integration tests.

• Resulting logs can be collected using the collect-logs.sh script.

74

https://gerrit.named-data.net/admin/repos/NFD/integration-tests
https://gerrit.named-data.net/admin/repos/NFD/integration-tests
https://www.vagrantup.com/

REFERENCES REFERENCES

References

[1] Named Data Networking Project, “NDN Packet Format Specification,” https://named-data.net/doc/NDN-packet-spec/
current/.

[2] ——, “NFD: Named Data Networking Forwarding Daemon,” https://named-data.net/doc/NFD/current/.

[3] ——, “NFD management protocol,” https://redmine.named-data.net/projects/nfd/wiki/Management.

[4] ——, “Control command,” https://redmine.named-data.net/projects/nfd/wiki/ControlCommand.

[5] ——, “NDNLPv2,” https://redmine.named-data.net/projects/nfd/wiki/NDNLPv2.

[6] D. Katz and D. Ward, “Bidirectional Forwarding Detection (BFD),” RFC 5880 (Proposed Standard),
RFC Editor, Fremont, CA, USA, Jun. 2010, updated by RFCs 7419, 7880, 8562. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc5880.txt

[7] B. Adamson, C. Bormann, M. Handley, and J. Macker, “Multicast Negative-Acknowledgment (NACK) Building
Blocks,” RFC 5401 (Proposed Standard), RFC Editor, Fremont, CA, USA, Nov. 2008. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc5401.txt

[8] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Braynard, “Networking
named content,” in Proceedings of the 5th International Conference on Emerging Networking Experiments
and Technologies, ser. CoNEXT ’09. New York, NY, USA: ACM, 2009, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1658939.1658941

[9] J. Shi, “Namespace-based scope control,” https://redmine.named-data.net/projects/nfd/wiki/ScopeControl.

[10] J. M. L. Muñoz, “Boost multi-index containers library,” https://www.boost.org/doc/libs/1 65 0/libs/multi index/doc/
index.html, 2003–2015.

[11] Google, “The CityHash family of hash functions,” https://github.com/google/cityhash, 2013.

[12] Y. Yu, A. Afanasyev, Z. Zhu, and L. Zhang, “NDN technical memo: Naming conventions,” NDN, NDN Memo, Technical
Report NDN-0023, Jul 2014.

[13] P. Gusev and J. Burke, “NDN-RTC: Real-time videoconferencing over Named Data Networking,” NDN, NDN Technical
Report NDN-0033, Jul 2015.

[14] Named Data Networking Project, “NDN protocol design principles,” https://named-data.net/project/
ndn-design-principles/.

[15] V. Lehman, A. Gawande, B. Zhang, L. Zhang, R. Aldecoa, D. Krioukov, and L. Wang, “An experimental investigation
of hyperbolic routing with a smart forwarding plane in NDN,” NDN, NDN Technical Report NDN-0042, Jul 2016.

[16] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A case for stateful forwarding
plane,” Computer Communications, vol. 36, no. 7, pp. 779–791, 2013, iSSN 0140-3664. [Online]. Available:
http://dx.doi.org/10.1016/j.comcom.2013.01.005

[17] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang, “Interest flooding attack and
countermeasures in Named Data Networking,” in Proc. of IFIP Networking 2013, May 2013. [Online]. Available:
http://networking2013.poly.edu/program-2/

[18] A. Afanasyev, J. Shi, Y. Yu, and S. DiBenedetto, ndn-cxx: NDN C++ library with eXperimental eXtensions: Library
and Applications Developer’s Guide. NDN Project (named-data.net), 2015.

[19] Named Data Networking Project, “RIB management,” https://redmine.named-data.net/projects/nfd/wiki/RibMgmt.

[20] K. Schneider, C. Yi, B. Zhang, and L. Zhang, “A practical congestion control scheme for named data networking,” in
Proceedings of the 3rd ACM Conference on Information-Centric Networking, 2016, pp. 21–30.

[21] K. Nichols, V. Jacobson, A. McGregor (Ed.), and J. Iyengar (Ed.), “Controlled Delay Active Queue
Management,” RFC 8289 (Experimental), RFC Editor, Fremont, CA, USA, Jan. 2018. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc8289.txt

75

https://named-data.net/doc/NDN-packet-spec/current/
https://named-data.net/doc/NDN-packet-spec/current/
https://named-data.net/doc/NFD/current/
https://redmine.named-data.net/projects/nfd/wiki/Management
https://redmine.named-data.net/projects/nfd/wiki/ControlCommand
https://redmine.named-data.net/projects/nfd/wiki/NDNLPv2
https://www.rfc-editor.org/rfc/rfc5880.txt
https://www.rfc-editor.org/rfc/rfc5401.txt
http://doi.acm.org/10.1145/1658939.1658941
https://redmine.named-data.net/projects/nfd/wiki/ScopeControl
https://www.boost.org/doc/libs/1_65_0/libs/multi_index/doc/index.html
https://www.boost.org/doc/libs/1_65_0/libs/multi_index/doc/index.html
https://github.com/google/cityhash
https://named-data.net/project/ndn-design-principles/
https://named-data.net/project/ndn-design-principles/
http://dx.doi.org/10.1016/j.comcom.2013.01.005
http://networking2013.poly.edu/program-2/
https://redmine.named-data.net/projects/nfd/wiki/RibMgmt
https://www.rfc-editor.org/rfc/rfc8289.txt

REFERENCES REFERENCES

[22] Y. Yu, “NDN regular expression,” https://named-data.net/doc/ndn-cxx/current/tutorials/utils-ndn-regex.html.

[23] ——, “Validator configuration file format,” https://redmine.named-data.net/projects/ndn-cxx/wiki/
CommandValidatorConf.

[24] M. Kalicinski and S. Redl, “Boost.PropertyTree library,” https://www.boost.org/doc/libs/1 65 0/doc/html/property
tree.html, 2008–2013.

[25] Named Data Networking Project, “NDNCERT,” https://github.com/named-data/ndncert.

[26] C. Kohlhoff, “Boost.Asio library,” https://www.boost.org/doc/libs/1 65 0/doc/html/boost asio.html, 2003–2017.

[27] G. Rozental and R. Enficiaud, “Boost.Test library,” https://www.boost.org/doc/libs/1 65 0/libs/test/doc/html/index.
html, 2001–2017.

76

https://named-data.net/doc/ndn-cxx/current/tutorials/utils-ndn-regex.html
https://redmine.named-data.net/projects/ndn-cxx/wiki/CommandValidatorConf
https://redmine.named-data.net/projects/ndn-cxx/wiki/CommandValidatorConf
https://www.boost.org/doc/libs/1_65_0/doc/html/property_tree.html
https://www.boost.org/doc/libs/1_65_0/doc/html/property_tree.html
https://github.com/named-data/ndncert
https://www.boost.org/doc/libs/1_65_0/doc/html/boost_asio.html
https://www.boost.org/doc/libs/1_65_0/libs/test/doc/html/index.html
https://www.boost.org/doc/libs/1_65_0/libs/test/doc/html/index.html

	Introduction
	NFD Modules
	How Packets are Processed in NFD
	How Management Interests are Processed in NFD

	Face System
	Face
	Transport
	Internal Transport
	Unix Stream Transport
	Ethernet Unicast Transport
	Ethernet Multicast Transport
	UDP Unicast Transport
	UDP Multicast Transport
	TCP Transport
	WebSocket Transport
	Developing a New Transport

	Link Service
	Generic Link Service
	Vehicular Link Service
	Developing a New Link Service

	FaceSystem, ProtocolFactory, and Channel Classes
	Initialization
	Inside a ProtocolFactory
	Outgoing Unicast Face Creation
	Multicast Face Creation

	NIC-associated Permanent Faces
	NDNLPv2

	Tables
	Forwarding Information Base (FIB)
	Structure and Semantics
	Usage

	Network Region Table
	Content Store (CS)
	Semantics and Usage
	Lookup Table
	Cache Replacement Policy

	Interest Table (PIT)
	PIT Entry
	PIT

	Dead Nonce List
	Structure, Semantics, and Usage
	Capacity Maintenance

	Strategy Choice Table
	Structure and Semantics
	Usage

	Measurements Table
	Structure
	Usage

	NameTree
	Structure
	Operations and Algorithms
	Shortcuts

	Forwarding
	Forwarding Pipelines
	Interest Processing Path
	Incoming Interest Pipeline
	Interest Loop Pipeline
	Content Store Hit Pipeline
	Content Store Miss Pipeline
	Outgoing Interest Pipeline
	Interest Finalize Pipeline

	Data Processing Path
	Incoming Data Pipeline
	Data Unsolicited Pipeline
	Outgoing Data Pipeline

	Nack Processing Path
	Incoming Nack Pipeline
	Outgoing Nack Pipeline

	Helper Algorithms
	FIB lookup

	Forwarding Strategy
	Strategy API
	Triggers
	Actions
	Storage

	List of Strategies
	Best Route Strategy
	Multicast Strategy
	Access Router Strategy
	ASF Strategy

	How to Develop a New Strategy
	Should I Develop a New Strategy?
	Develop a New Strategy

	Management
	Protocol Overview
	Dispatcher and Authenticator
	Manager Base
	Command Authenticator

	Forwarder Status
	Face Management
	Command Processing
	Datasets and Event Notification

	FIB Management
	Strategy Choice Management
	Configuration Handlers
	General Configuration File Section Parser
	Tables Configuration File Section Parser

	How to Extend NFD Management

	RIB Management
	Initializing the RIB Manager
	Command Processing
	FIB Updater
	Route Inheritance Flags
	Cost Inheritance

	RIB Status Dataset
	Readvertise
	ReadvertisePolicy
	ReadvertiseDestination

	Auto Prefix Propagator
	What Prefix to Propagate
	When to Propagate
	Secure Propagations
	Propagated-entry State Machine
	Configure Auto Prefix Propagator

	Extending RIB Manager

	Congestion Control
	Congestion Detection
	Congestion Signaling
	Consumer Adaptation

	Security
	Interface Control
	Trust Model
	Command Interest
	NFD Trust Model
	NFD RIB manager Trust Model

	Local Key Management

	Common Services
	Configuration File
	User Info
	Developer Info
	Configuration Reload

	Logging
	User Info
	Developer Info

	Global Scheduler
	Global I/O Service
	Hash Computation Routines
	Privilege Helper

	Testing
	Unit Tests
	Test Structure
	Running Tests
	Test Helpers
	Test Code Guidelines and Naming Conventions

	Integration Tests

	References

