
NDN Technical Report NDN-0073. http://named-data.net/techreports.html
Revision 1: May 2021

A Brief Introduction to State Vector Sync
Philipp Moll, Varun Patil, Nishant Sabharwal, Lixia Zhang

UCLA
Los Angeles, USA

{phmoll,varunpatil,nsabharwal,lixia}@cs.ucla.edu

ABSTRACT
This report provides a brief introduction to State Vector Sync (SVS),
a sync protocol for Named Data Networking (NDN). To support
distributed applications, sync protocols synchronize the data names
of a shared dataset among a group of participants. In this report, we
explain how the SVS design is influenced by the lessons that have
been cumulated over previous sync protocol designs and describe
the protocol and its functions to allow experimentation with the
SVS library implementations.

1 INTRODUCTION
In Named Data Networking (NDN) [10], applications communicate
by requesting named, secured content chunks. To do so, one needs
to know the set of available data names. This goal is easy to achieve
with the traditional client-server application paradigm, where the
server informs the client of the available data. However, in a dis-
tributed application with multiple participants, where any of them
may produce new data items at any time, it is challenging to keep
all participants synchronized with all available data.

A sync protocol addresses this challenge for applications devel-
oped over NDN. A group of participants in the same sync group
maintains a shared dataset, with each data item having a unique
name. The role of sync is to keep the dataset state – i.e., the names
of all data items – synchronized among all the participants.

Compared to other sync protocol designs that preceded SVS, a
distinct goal in the SVS design is the desire to operate effectively
and resiliently in both infrastructure-based and infrastructure-free
environments. In the latter case, network infrastructure is either
non-exist, eg., ad hoc mobile, or otherwise disrupted, eg., during
disaster recovery.

In this report, we start with providing a brief background on
sync protocols with a focus on lessons learned from previous devel-
opments. We then describe the SVS protocol, the ongoing efforts in
extending SVS scalability, and finally wrap up the report with the
remaining issues and future plans.

2 NDN SYNC PROTOCOL DESIGN
Over the years, a variety of NDN sync protocols have been de-
veloped. The first sync protocol (CCNx 0.8 Sync [5]) supports the
synchronization of datasets made of application data names that
follow a hierarchically structured tree. The protocol performs hash-
ing at each node of its direct child node data names, and uses the
digest at the tree’s root node to represent the dataset state. Each
participant communicates its dataset state with others in the group
using its root digest. Receiving a digest from another participant
that differs from the local digest indicates a dataset state inconsis-
tency. However, the different digest does not tell whether the local
or the remote dataset is newer, nor exactly which data item caused

the difference; the problem gets worse when multiple participants
publish data simultaneously. When a digest difference is detected,
the protocol walks down the tree level by level, branch by branch,
to identify dataset state differences. This step may take multiple
rounds.

2.1 Use of Sequential Naming in Sync
Instead of supporting the synchronization of arbitrary dataset
names, the ChronoSync [11] protocol adopts the sequential data
naming convention and names data items using sequence num-
bers, similar to TCP’s use of sequence numbers in its reliable de-
livery mechanism. With sequential data naming, every participant
publishes data under a participant-specific publishing prefix, and
names individual data items with monotonically increasing se-
quence numbers. Knowing the participants publishing prefix and
its latest sequence numbers thereby allows inferring the names
of all the participant’s previously published data items. Conse-
quently, knowing the [participant-prefix, seq#]-tuples of all
participants allows inferring the names of all data items in the
dataset. Similar to CCNx 0.8 Sync, ChronoSync uses a digest to
represent the dataset state, with the digest computed across all
[participant-prefix, seq#]-tuples in the sync group. Thereby,
ChronoSync inherits the limitation that additional means to identify
dataset differences are required. However, using sequential naming
brings advantages in dataset state reconciliation: instead of walking
down the name tree to identify data item differences, ChronoSync
uses a simpler recovery mechanism. If participant 𝑃1 cannot figure
out the dataset difference with a received digest 𝐷 , 𝑃1 requests the
list of [participant-prefix, seq#]-tuples from the sender of
𝐷 .

A vigilant reader might raise a question regarding the use of
sequence numbers as data item identifiers: although sequence num-
bers simplify a sync protocol design, in general, sequence numbers
cannot replace semantic names of application data. We discuss this
mismatch in Section 4.

2.2 Vector-Based Sync Protocols
The branch of state vector-based sync protocols is inspired by the
concept of Vector Clock [2]. Combined with the sequential data
naming convention, this protocol family encodes the dataset state in
so-called state vectors – a data structure storing the latest sequence
number of every participant as a vector. In contrast to digest-based
protocols, a state vector encodes the state of the entire dataset,
making it possible to directly infer the exact difference(s) when
comparing two state vectors. Fig. 1 visualizes the relation between
sequential data naming and the dataset encoding using state vectors.

The first state vector-based protocol is VectorSync [6]. VectorSync
maintains two separate data structures. A membership info object

http://named-data.net/techreports.html


Philipp Moll, Varun Patil, Nishant Sabharwal, Lixia Zhang

/ucla/alice/111 /ucla/bob/129 /usc/ted/112

/ucla/alice/112 /ucla/bob/130 /usc/ted/113

/ucla/alice/113 /ucla/bob/131 /usc/ted/114

... ... ...

Shared Dataset

/ucla/alice: 113 /ucla/bob: 131 /usc/ted: 114

[/ucla/alice: 113, /ucla/bob: 131, /usc/ted: 114]State
Vector

Figure 1: Relation between the Dataset State and the Repre-
sentation as a State Vector

summarizes information about all active producers in the sync
group. The version vector encodes the latest sequence numbers
of each producer. This version vector, however, does not include
participant-specific publishing prefixes and requires that all par-
ticipants in a sync group have the latest membership info object.
Otherwise, the individual vector entries cannot be assigned to the
correct participant.

Since NDN aims to enable asynchronous communications, re-
quiring perfectly consistent membership information among all
group members is deemed infeasible. Therefore, VectorSync was
quickly followed by another sync protocol DataSet Synchronization
in NDN (DSSN) [9], which made a simple yet significant change to
VectorSync that supports dataset synchronization among a group
of sensors that enter a sleeping state from time to time. DSSN
changed the vector format from a list of sequence numbers to a list
of [participant-prefix, seq#]-tuples. Each DSSN sync inter-
est carries a state vector, which directly encodes the entire shared
dataset state. Directly carrying the dataset state enables a DSSN
message to be interpreted by any recipient, independent from the
degree of state inconsistency between participants.

DSSN is designed to work in environments with intermittent
connectivity among stationary nodes. Using DSSN as a starting
point, the Distributed Dataset Synchronization over Disruptive Net-
works protocol (DDSN) [1] extended DSSN to work in wireless ad-
hoc environments with high node movement dynamics. Therefore,
DDSN introduces a number of features tailored for such target envi-
ronments, including i) transmission prioritization that determines
which messages to send first during short transient connectivity
between nodes, and ii) an inactive mode to reduce traffic and to
improve on energy consumption when participants detect no oth-
ers within operating distance. The exclusive focus of DDSN on
disruptive environments, however, makes it perform sub-optimally
in well-connected networks.

Combining the lessons learned from the aforementioned proto-
cols led to the development of State Vector Sync (SVS). SVS inherits
DSSN’s State Vector encoding of sync interests but removes fea-
tures that are specifically tailored for sensor communications and
disruptive environments. Also, SVS further simplifies the overall
design as we explain next.

/<grp-prefix>/<state-vector>/<signature>

/<publishing-prefix>/<grp-prefix>/<seq-no>

/ucla/cs/irl/chatroom/[/ucla/alice: 10, ...]/c9ff1f50...

/ucla/cs/alice/ucla/cs/irl/chatroom/124

(1) (2) (3)

(1) (2) (3)

(1) (2) (3)

(1) (2) (3)

(a) Sync Interest Naming Scheme and Example

(b) Data Item Naming Scheme and Example

Figure 2: Naming for Sync Interest and Data Items

3 THE DESIGN OF STATE VECTOR SYNC
In SVS, a sync group uses a multicast group prefix that allows
reaching all other participants in the sync group. Moreover, each
participant uses a participant-specific data publishing prefix under
which the participant’s data items are made available. The protocol
uses a single message type which is referred to as sync interest,
for dataset synchronization. Those sync interests are sent to the
multicast group prefix in two cases: i) event-driven to inform other
participants about a recent change, and ii) periodically, to maintain
a consistent view on the dataset, even under loss of event-driven
messages.

Sync interests carry the state vector in the interest name. To
prevent unauthorized parties from injecting incorrect state, sync
interests are authenticated using interest signatures [3]. We illus-
trate the naming scheme for sync interests and an example name
in Fig. 2a.

As indicated in Figure 1, SVS’s state vector contains tuples con-
sisting of the participants’ data publishing prefixes and their latest
sequence numbers. The naming scheme for data items and an ex-
ample name are illustrated in Fig. 2b. While the publishing prefix
component (1) supports forwarding the interest towards the data
producer, the group prefix component (2) allows dispatching inter-
ests to the corresponding application on a processing host.

3.1 Sync Interest Processing Behavior
During operation, sync participants differentiate between two states:
the steady state and the suppression state. In the steady state, a par-
ticipant is not aware of any dataset change and listens to incoming
sync interests. A sync interest timer is maintained to trigger send-
ing periodic sync interests (first message in Fig. 3). These periodic
sync interests act as a heartbeat mechanism and mitigate dataset
changes communicated in preceding sync interests that suffered
from packet loss. One can adjust the sync interest overhead in the
network by adjusting the periodic sync interest timer (eg., 30 sec-
onds with small random variation). As one of the next step, we
are also looking into dynamically tune this interval based on the
observed packet loss rate to balance the low overhead with low
sync latency.

When receiving an incoming sync interest, the incoming sync
interest can either carry i) up-to-date, ii) newer, or iii) outdated
dataset state1. When receiving an up-to-date or newer state, the

1Up-to-date dataset state refers to the state vector of the incoming sync interest carrying
the same sequence numbers for every state vector entry compared to the local records.



A Brief Introduction to State Vector Sync

/ucla/alice

} Steady
State

Periodic Sync Interest to Multicast Prefix: /grp-prefix/
[/ucla/alice: 10, /ucla/bob: 15, /usc/ted: 24]

seq=10
/ucla/bob
seq=15

/usc/ted
seq=24

Alice Publishes new Data
Event Triggered Sync Interest to Multicast Prefix: /grp-prefix/

[/ucla/alice: 11, /ucla/bob: 15, /usc/ted: 24] Dataset State
Reconciliation}

Data Interest
Name: /ucla/alice/grp-prefix/11

Publication
Name: /ucla/alice/grp-prefix/11

Publication
Retrieval
(Application Layer)}

Figure 3: The SVS Protocol in Action

receiving participant assumes that all other sync participants re-
ceived the same information, hence triggering a sync interest as a
response is not meaningful. In this case, the periodic sync interest
timer is reset without triggering a new sync interest.

When receiving an incoming sync interest carrying an outdated
state, the suppression state is entered. In this case, the receiving
participant has more up-to-date information than received and aims
to reconcile the state difference by sending a sync interest carrying
the participant’s dataset state to the group. However, immediately
responding to the outdated sync interest may lead to a high number
of sync interests in the network (considering other participants also
responding with sync interests). Therefore, a random suppression
timer is initiated. While the timer elapses, incoming sync interests
are monitored. If an incoming sync interest already reconciles the
missing state, no action on timer expiry is set. Otherwise, timer
expiry triggers a new sync interest carrying the participant’s dataset
state to the group, which mitigates the missing state. Thereafter,
the participant migrates from suppression back to the steady state.

When a sync participant produces a new publication, its se-
quence number is increased and immediately emits an event-driven
sync interest carrying the new dataset state (second message in
Fig. 3). Thereby, other sync participants learn about the dataset
change. Besides, the sending participant resets its periodic sync
interest timer. We note that retrieving the actual data item (third
and fourth message in Fig. 3) is out-of-scope of a sync protocol
since application demands may vary (eg., reliability, or requirement
to fetch every publication).

3.2 Why SVS Sync Interests Do Not Solicit
Responses

As a significant departure from earlier vector-based sync protocol
designs, SVS sync interests are used as one-way notification only,
and do not trigger reply data packets. This design decision is based
on the lessons learned from previous sync protocol designs as we
describe below:

Outdated dataset state means that the sequence number of at least one state vector
entry is lower. If the state vector of the incoming sync interest is not outdated and
the sequence number of at least one state vector entry is higher compared to the local
records, the sync interest carries newer dataset state.

1) All sync protocols use sync interests to carry the dataset
state; they differ only in the encoding of the dataset state.

2) Participants in a sync group multicast sync interests to the
group. Soliciting notifications of dataset state changes using
multicast interests leads to three issues:
i) Given the time of next dataset state change is unpre-

dictable, a reply-soliciting sync interest stays pending on
all forwarders (long-lived) until its lifetime expires, and
gets refreshed by a follow-up sync interest. This creates
a persistent PIT state from every member to every other
member in the sync group.

ii) A multicast interest solicits a reply from each of multiple
potential producers. If multiple producers reply around the
same time, due to NDN’s one-interest-one-data principle
only one of the replies is delivered to the interest sender.

iii) As a consequence: different members in the group are
likely to receive different updates, which leads to dataset
state divergence, which will take up to multiple interest-
data exchange cycles to converge.

Instead of using multicast sync interests to solicit replies, SVS uses
multicast sync interests to let each participant notify the rest of
the group of its own dataset state. Removing replies to multicast
interests removes all the above-identified issues.

4 ONGOING EFFORTS TO IMPROVE SVS
In this section, we identify a few additional issues related to the
SVS design.

SVS Scalability. Looking at the design of SVS might raise scalability
concerns, because the state vector design carries the entire dataset
state in the sync interest name. A big number of sync participants
leads to a big state vector size, and interests have a strict upper
size limit by network MTU (maximum transmission unit). Efficient
state vector encoding and compression schemes may help alleviate
this concern to certain degree only. The most promising direction
is to utilize SVS’s property of each [producer, sequence number]
pair is independent from other pairs, therefore each sync interest is
not required to carry the full dataset state. As part of our ongoing
work, we are evaluating approaches that let sync interests carry
partial state vectors.

SVS Data Naming. With sequential data item naming, data item
names no longer carry the complete application semantic informa-
tion; instead a sequential name carries the producer’s name, and
replaced the lower part of the name by a sequence number. Do-
ing so enables SVS to scale well with large number of data items
with a compact dataset state representation. As next step, we plan
to enable SVS to support pub/sub APIs with general application
layer data names, by providing a mapping between each app data
name and the sequence number assigned by SVS, so that when
a participant fetches a data item using its sequence number, the
producer can reply with the original data packet produced by the
application (by encapsulating it in the content of an outer packet
with the sequence number name).

This solution takes after the solution described in Nichols [4],
where the reply to a sync interest contains NDN Data packet(s),
with the original semantic name as produced by the application



Philipp Moll, Varun Patil, Nishant Sabharwal, Lixia Zhang

This proposed approach should enable synchronizing arbitrary
application names using SVS by requiring SVS maintain a mapping
table between sequence numbers and original names.

SVS Group Membership Management. Also, one might consider
the management of group membership as part of sync. However,
we argue that membership management should not be part of
the transport layer. Deciding whether a sync interest sender is
authorized requires information that is available in upper layers
only. Some higher-level libraries [8] can provide support for this
verification using standard NDN security mechanisms. Although
not part of the conceptual design of SVS, we aim to integrate SVS
as transport in such libraries.

5 WRAPPING UP
This technical report introduces the function of SVS yet not pro-
viding performance comparisons or a broad discussion of design
decisions. Preliminary evaluations (not part of the report) showed
a good performance of SVS on networks with no or minor packet
loss. Further, SVS improves on traffic and computational overhead
compared to the DDSN implementation.

With this report, we expect to provide information to render
existing SVS libraries useful for NDN experimentation.We highlight
the availability of the online specification of SVS [7]. Furthermore,
the aforementioned reference features open-source SVS libraries in
different programming languages and refers to demo applications
showcasing the use of SVS.

We plan to update this report according to the SVS protocol
updates over time.

ACKNOWLEDGMENTS
We would like to thank Justin Presley from Tennessee Tech for his
efforts in developing the Python implementation of SVS. This work
is partially supported by the National Science Foundation under
award CNS-1719403.

REFERENCES
[1] Tianxiang Li, Zhaoning Kong, Spyridon Mastorakis, and Lixia Zhang. 2019. Dis-

tributed Dataset Synchronization in Disruptive Networks. In 16th IEEE Interna-
tional Conference on Mobile Ad-Hoc and Smart Systems (IEEE MASS). IEEE, 10.
https://doi.org/10.1109/MASS.2019.00057

[2] Barbara Liskov and Rivka Ladin. 1986. Highly Available Distributed Services
and Fault-Tolerant Distributed Garbage Collection. In Proceedings of the Fifth
Annual ACM Symposium on Principles of Distributed Computing (Calgary, Alberta,
Canada) (PODC ’86). ACM, 29–39. https://doi.org/10.1145/10590.10593

[3] Named Data Networking (NDN) project. 2021. NDN Packet Format Specification
version 0.3 – Signed Interest. https://named-data.net/doc/NDN-packet-spec/
current/signed-interest.html accessed: 2021-05-20.

[4] Kathleen Nichols. 2019. Lessons Learned Building a Secure Network Measure-
ment Framework Using Basic NDN. In Proceedings of the 6th ACM Conference on
Information-Centric Networking (ICN ’19). Association for Computing Machinery,
New York, NY, USA, 112–122. https://doi.org/10.1145/3357150.3357397

[5] ProjectCCNx. 2012. CCNx Synchronization Protocol. CCNx 0.8.2 docu-
mentation. https://github.com/ProjectCCNx/ccnx/blob/master/doc/technical/
SynchronizationProtocol.txt

[6] Wentao Shang, Alexander Afanasyev, and Lixia Zhang. 2018. VectorSync: Dis-
tributed Dataset Synchronization over Named Data Networking - Named Data
Networking (NDN). Technical Report. Named Data Networking. 9 pages. https:
//named-data.net/publications/techreports/ndn-0056-1-vectorsync/

[7] NDN Project team. 2021. Spec and API description of the StateVectorSync (SVS).
NDN documentation. https://named-data.github.io/StateVectorSync/

[8] Jeff Thompson, Peter Gusev, and Jeff Burke. 2019. NDN-CNL: A Hierarchi-
cal Namespace API for Named Data Networking. In Proceedings of the 6th
ACM Conference on Information-Centric Networking (Macao, China) (ICN ’19).

Association for Computing Machinery, New York, NY, USA, 30–36. https:
//doi.org/10.1145/3357150.3357400

[9] Xin Xu, Haitao Zhang, Tianxiang Li, and Lixia Zhang. 2018. Achieving resilient
data availability in wireless sensor networks. (2018), 1–6. https://doi.org/10.
1109/ICCW.2018.8403581

[10] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patrick
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
Data Networking. ACM SIGCOMM Computer Communication Review (CCR) 44, 3
(July 2014), 66–73.

[11] Zhenkai Zhu and A. Afanasyev. 2013. Let’s ChronoSync: Decentralized dataset
state synchronization in Named Data Networking. In Proceedings of the 21st IEEE
International Conference on Network Protocols (ICNP). 1–10.

https://doi.org/10.1109/MASS.2019.00057
https://doi.org/10.1145/10590.10593
https://named-data.net/doc/NDN-packet-spec/current/signed-interest.html
https://named-data.net/doc/NDN-packet-spec/current/signed-interest.html
https://doi.org/10.1145/3357150.3357397
https://github.com/ProjectCCNx/ccnx/blob/master/doc/technical/SynchronizationProtocol.txt
https://github.com/ProjectCCNx/ccnx/blob/master/doc/technical/SynchronizationProtocol.txt
https://named-data.net/publications/techreports/ndn-0056-1-vectorsync/
https://named-data.net/publications/techreports/ndn-0056-1-vectorsync/
https://named-data.github.io/StateVectorSync/
https://doi.org/10.1145/3357150.3357400
https://doi.org/10.1145/3357150.3357400
https://doi.org/10.1109/ICCW.2018.8403581
https://doi.org/10.1109/ICCW.2018.8403581

	Abstract
	1 Introduction
	2 NDN Sync Protocol Design
	2.1 Use of Sequential Naming in Sync
	2.2 Vector-Based Sync Protocols

	3 The Design of State Vector Sync
	3.1 Sync Interest Processing Behavior
	3.2 Why SVS Sync Interests Do Not Solicit Responses

	4 Ongoing Efforts to Improve SVS
	5 Wrapping Up
	Acknowledgments
	References

