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Abstract—Distributed data set synchronization protocols (sync
protocols for brevity) provide an abstraction for connection-
agnostic multiparty communication in NDN. A number of sync
protocols have been proposed over the years, each featuring dif-
ferent design choices in data naming, dataset state representation,
and state propagation mechanisms, which led to different design
tradeoffs. In this report, we survey all the NDN sync protocols
that have been developed, highlighting their commonalities as
well as fundamental differences through detailed analysis and
side-by-side comparisons. We also articulate the remaining issues
to be addressed to make sync protocols available to a broad range
of applications.

REVISION HISTORY

Revision 1 (May 2017): The initial version of the survey
discusses six sync protocols that had been developed by
the time: CCNx 0.8 Sync, CCNx 1.0 Sync, ChronoSync,
RoundSync, iSync, and PSync.
Revision 2 (May 2021): This second vision adds the descrip-
tion and discussion of six new sync protocols which were
developed after 2017: VectorSync, StateVectorSync, ICT-Sync,
PLI-Sync, syncps, and QuadTreeSync. In addition, some parts
of the initial report are also restructured and revised.

I. INTRODUCTION

Named Data Networking (NDN) [1], [2] is a proposed new
Internet architecture that shifts the communication model from
host-centric, as in today’s TCP/IP networks, to data-centric.
At the network layer, NDN provides a simple communication
primitive that lets a data consumer to send an Interest packet
with a name or name prefix to retrieve a Data packet which is
named under that prefix and can be verified. While the Interest-
Data exchange primitive has significantly narrowed the seman-
tic gap between the application layer and the network layer in
today’s TCP/IP network architecture, it is cumbersome to use
when building distributed applications that often involve some
form of data or state sharing and synchronization among mul-
tiple parties. For example, file sharing, collaborative editing,
and group messaging all collect and distribute state and data
among groups of participants. With the TCP/IP architecture,
whenever communication involves more than two parties, the
applications have to either establish multiple TCP connections
between the peers or rely on (at least logically) centralized
infrastructure to support multiparty communication.

The data-centric nature of the NDN architecture provides
a foundation for distributed dataset synchronization protocols

(Sync protocols, or Sync, for brevity) as an important layer
of abstraction for multiparty communication on top of the
network layer Interest-Data exchange primitives. Distributed
applications and services rely on sync protocols to keep
each other informed about updates in the dataset and to
learn about newly published data. This use of NDN Sync to
provide reliable data-centric communication differs from data
retrieval via a TCP connection in three fundamental ways.
First, sync naturally supports data retrieval among multiple
parties, while TCP supports data exchange between two parties
only. Second, it does not require all communicating parties to
be interconnected at the same time as TCP does. Third, it does
not care from where the data is returned since the security is
attached to the data instead of its container or communication
channel.

NDN can achieve distributed dataset synchronization by
synchronizing the namespace of the shared dataset among a
group of distributed entities (called Sync entities). To share
a new data item, a producing (side of) applications injects
its name into the dataset. After learning the new name, the
consumer (sides of) application decides whether to fetch the
new data according to its own needs and available resources.
One may view sync as a transport-layer protocol in the NDN
architecture, bridging the gap between the functionality re-
quired by the distributed applications and the one-Interest-one-
Data datagram retrieval semantics offered by NDN network-
layer primitives.

Different sync protocols have been developed over the years,
each having distinct features and differentiating from protocols
before. Observing the development of existing Sync protocols
allows one to gain insights into the design decisions and their
rationals. Different terminology, scarce documentation, and the
long history make parsing these lessons from existing work
cumbersome for researchers new to NDN. This report surveys
existing developments and aims to shed light on the funda-
mental differences of available protocols. We introduce the
existing sync protocols and identify the three most important
questions in sync protocol design.

The remainder of the report is organized as follows. We
provide a high-level overview of sync protocols, their com-
ponents, and requirements in Section II. In Section III, we
introduce existing sync protocols and critically reflect their
design decisions. Section IV summarizes the commonalities
and differences of the presented protocols and provides a
qualitative comparison on performance metrics. Section V
discusses ongoing challenges, and Section VI concludes the
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Fig. 1: Comparing the hourglass models of the IP and NDN
architecture (Figure adopted from [3]).

report.

II. A HIGH-LEVEL PICTURE OF SYNC PROTOCOLS

Looking at network architectures, the lowest layer is the
communication media that transports bits, and the highest
layer, applications that exchange information. As visualized
in Figure 1, this basic consideration is the same for the IP and
NDN architecture. Differences, however, can be found in the
narrow waist, the universal layer that is (indirectly) used by all
applications and represents an abstraction for lower network
layers. While IP forwards datagrams to destinations, NDN
fetches named, secured data chunks. Although the two network
services are fundamentally different, in both cases, application
developers do not want to directly utilize the services provided
by the network layer. Therefore we need transport protocols
to bridge the gap between the services desired by applications
and that provided by the network layer.

Engineers building applications on top of the matured IP
architecture can choose among various transport layer pro-
tocols, such as UDP for unreliable packet delivery, or TCP
and QUIC for reliable communication. The range of available
possibilities, however, does not end at the transport layer. A
broad variety of middleware (e.g. ZeroMQ1, gRPC2, MQTT3)
allows choosing between higher-level communication concepts
that are built on top of transport layer protocols and patch
application semantics into IP datagrams, such as message
topics for publish/subscribe.

Looking at the more recent NDN protocol stack still reveals
a gap between the narrow waist and applications that want to
use transport protocols. This is because NDN transport reaches
beyond connecting endpoints and aims to directly offer higher-
level communication concepts that use application semantics.
While middleware in IP needs to augment datagrams with
semantic information, NDN’s named content chunks inher-
ently provide such information. This brings the applications’
need one step closer to the actual network and allows using
functionality provided by the network, such as data-centric
security, network-level multicast, and in-network caching.

One of such transport layer protocols in NDN is distributed
dataset synchronization (sync for short). Sync protocols en-

1https://zeromq.org/, last accessed: 2021-02-19
2https://grpc.io/, last accessed: 2021-02-19
3https://mqtt.org/, last accessed: 2021-05-20

able namespace synchronization in group communication se-
tups. This namespace synchronization allows implementing
reliable multi-producer/multi-consumer communication over
NDN. Therefore, producers add the name of the data to
distribute into a distributed dataset, which is synchronized
among potential consumers. In this section, we examine the
tasks necessary to build such a communication layer and
provide the basic design of a sync protocol.

Essential concepts for sync protocols to work are a) the
application namespace that is synchronized, referred to as data
naming, b) the way the dataset’s state is represented by the
protocol, referred to as dataset state representation, and c) the
sequence of network messages required to synchronize the
dataset, referred to as state sync mechanism. In the following,
the role of these concepts for sync is discussed and used later
for comparing existing sync protocols.

a) Data naming: The unique binding between names
and immutable data objects in NDN allows to uniquely iden-
tify a shared dataset by knowing the hierarchical names of
all data packets in the dataset. Therefore, dataset synchro-
nization in NDN is reduced to the synchronization of the
corresponding namespace. Knowing the available data names
allows retrieving data objects by Interest-Data exchange. Sync
protocols may directly synchronize arbitrary data names, or
leverage a sequential naming convention to simplify the dataset
namespace.

b) dataset state representation: The data structure that
internally represents the state of the shared dataset is essential
for the protocol function and brings certain properties that
can be used by the actual sync mechanism (eg. tree traversal
with tree-based structures). Every sync participant keeps a
local copy of the dataset state and uses the sync protocol to
keep up with the changes generated by other participants in
the sync group. This requires to encode the dataset without
loss of information and allows sync participants to detect and
reconcile the differences in the shared namespace between
distinct states. Examples for such encodings found in existing
sync protocols are tree-based structures, Invertible Bloom
Filters (IBF), and state vectors.

c) State sync mechanism: Each node participating in a
sync group may publish new data to the shared dataset at any
time. The sync protocol ensures that the other nodes in the
group receive the new data and reach an agreement on the
state of the dataset. Existing sync protocols show similarities
in the protocol function which allows sketching a basic sync
protocol design, as visualized in Figure 2. In the basic design,
a sync participant (Alice) publishing new data notifies the
other participants about the existence of the new data (step
1). This is done by either sending a Sync Interest to the other
members of the sync group, or by answering outstanding Sync
Interests. Depending on the protocol, this first message carries
exact information about the changed publication, or only a
notification about a change, without further specifying the
changed publication and eventually requiring additional com-
munication for state synchronization. After having received
the latest name and thereby synchronized the namespace, the
actual publication can be retrieved by Interest-Data exchange
(step 2). Besides, sync protocols may utilize periodic heartbeat
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Fig. 2: Basic Sync Protocol Design

messages that can either be used to detect changes in the
synchronized namespace, or to provide information about
group members.

Figure 2 only shows a basic design, the exact messages sent
by real sync protocols may differ. In the following, general
requirements, as well as efficiency and security considerations
applying to sync protocols are discussed. The commonalities
of the basic design to existing sync protocols allow for trans-
ferring insights and discuss implications of design decisions
later on.

A. Group Communication Requirement

One prerequisite that applies for most sync protocols is a
group communication capability of the underlying network. To
support dataset synchronization inside a group, sync protocols
use a group communication namespace for broadcasting Sync
Interests to all participants of the sync group. To achieve group
communication, the protocol may rely on multicast capability,
or explore other group rendezvous mechanisms. The design of
the group communication mechanism is outside the scope of
the sync protocol and not in the focus of this report. Further
discussion on group communication considerations is provided
in Section V-A.

B. Interest Aggregation and Security Implications

In NDN, Interests with the same name are aggregated
on forwarding nodes in the network. This feature results in
reduced traffic, and a reduced number of Interests to process
on the receiving side. This observation indicates that one focus
of protocol design should concern Interest aggregation.

In the basic sync protocol design, two types of Interests
exist: i) Sync Interests that notify other participants about new
Data, and ii) Interests for publication retrieval. Interests for
publication retrieval carry the same name for all participants
and, hence, are aggregated without further actions. For Sync
Interests, aggregation becomes more tricky. Interest aggrega-
tion of Sync Interests requires that Interest names must not
include identifiers of the sending participant. Besides, since the
dataset’s state is included in Interest names, these Interests are
only aggregated when participants have the same knowledge
of the dataset state.

Also, we want to discuss the relation of security and Interest
aggregation. The receipt of Sync Interests may influence the
dataset state. Without security considerations, this fact allows
adversaries to easily manipulate the sync process by injecting

Sync Interests holding incorrect dataset state. Overcoming this
issue is possible by authenticating Interests. When Interest
senders cryptographically sign the Interest, receivers can verify
if the Interest was sent by an authorized sync participant,
otherwise, the Interest is dropped. Thereby, adversaries are
effectively prevented from injecting incorrect state.

Implementation-wise, signed Interests hold the crypto-
graphic signature as an additional name component. With all
participants using their secret key for signing, the signatures
of individual participants, and thereby the final Interest names,
differ for all participants. As a result, Interest aggregation stops
working.

One way to allow for Interest aggregation with authenti-
cation in place are group key schemes. When all authorized
sync participants use the same group key for Interest signing,
signing results in the same Interest name for all participants –
Interest aggregation works as expected. However, a concept
for group key management is required, yet not the focus
of this report. A concept likely to be usable for group key
management was introduced by Zhu et al. [4] in the context
of a secure audio conferencing tool.

C. Scalability vs. Overhead Trade-off

Sync Interests are used to synchronize the changes among
all participants of a sync group. With a growing dataset size,
the amount of data to synchronize increases. As discussed
earlier, existing protocols can be classified into two classes,
which traces back to a scalability vs. overhead trade-off.
One class directly encodes the dataset state in Sync Interests
or their response Data, accepting a larger packet size. The
other class includes a digest in Sync Interests that allows
inferring whether the dataset changed or not. When changes
occur, the actual dataset state is communicated in follow-up
communication.

While communicating changes directly in the Interest name
reduces communication overhead and improves on dissemi-
nation delay, this approach reduces scalability. Unlike Data
that can be segmented into multiple packets when exceeding
the MTU, this is not possible for Interests. Hence, the dataset
size is capped by the Interest capacity. Keeping in mind that
authenticated Interests carry a cryptographic signature, the
Interest capacity becomes even more constrained.

III. EXISTING SYNC PROTOCOLS

In this section, we examine the set of existing sync pro-
tocols that have been developed for the NDN architecture.
A coarse overview of existing protocols visualizing different
branches of development is shown in Figure 3. Considering
the historical development of sync protocols, early protocols
provide valuable lessons learned used to optimize the design
of state-of-the-art protocols. PSync, syncps, StateVectorSync,
and ICT-Sync are four protocols that represent the latest state
of protocol design. Although QuadTreeSync and PLI-Sync are
later developments, they are developed for special use-cases
and might not be seen as general-purpose protocols. Based
on the basic sync protocol design presented in Section II, we
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Fig. 3: The evolution of existing sync protocols. Arrows between two protocols denote the reuse of existing concepts. Included
years indicate the time when the protocol was first published.

will investigate the function of existing protocols and identify
different design choices and trade-offs.

Table I summarizes the commonalities and differences
among existing sync protocols. In the rest of this section,
we group protocols by their way of dataset representation
and present their operation. For each protocol, we discuss
the three design aspects described in Section II and critically
reflect design decisions and trade-offs. Thereafter, Section IV
provides a brief summary including a preliminary comparison
of efficiency measures, such as synchronization delay and
protocol message size.

A. Merkle Tree-based Sync Protocols

Naming schemes in NDN are often seen as trees, where the
tree’s root is represented by the leftmost name component, and
with every name component, a new tree level is added. This
hierarchical structure, often referred to as Name Tree, already
suggests using a tree-based data structure for representation.
A subset of sync protocols utilize tree-based structures and
Merkle trees [5] for dataset state representation. A Merkle
tree assigns every non-leaf node a cryptographic hash value
representing all child nodes. When the value of a child node
changes, all hash values on the path from the changed node to
the tree’s change. This reduces the task of comparing changes
among multiple copies of a tree to comparing hash values of
tree nodes.

1) CCNx 0.8 Sync: The CCNx 0.8 Sync protocol [6] is the
earliest synchronization solution proposed for the NDN/CCN
architecture. CCNx 0.8 Sync allows a set of repos to synchro-
nize a shared data collection that contains data with arbitrary
application names. The set of data names under a common
collection prefix is organized into a tree structure called the
sync tree (see Fig. 4). Sync tree nodes store a single data name
(ie., a leaf ) or summarize other nodes in lower tree levels.
The structure of the sync tree is determined by the order in
which the data names are added to the collection, which is
independent from the canonical ordering of the data names.

Min: /a/b/1
Max: /a/c/d/7

/a/b/1

Min: /a/b/1
Max: /a/b/5

Min: /a/c/1
Max: /a/c/d/7

/a/b/5 /a/c/1 /a/c/d/7 Min: /a/c/d/1
Max: /a/c/d/2

/a/c/d/1 /a/c/d/2

Collection prefix: /a

NodeHash = H1 NodeHash = H2

H3 H4 H5 H6
NodeHash = H7

H8 H9

RootHash = H0

Fig. 4: Example of a sync tree in CCNx 0.8 Sync

Each node in the sync tree is associated with a hash value:
the value of the leaf node is simply the hash of the name stored
in that node; the value of the non-leaf node is recursively
computed as the arithmetic sum of the hashes of all its
children. In other words, the hash value of a node is the
sum of the hashes of all data names contained in the sub-tree
under that node. For example, in Fig. 4, H3 = Hash(/a/b/1),
H2 = H5+H6+H7, and H0 = H1+H2. The root hash (H0

in Fig. 4) then provides a summary of the entire namespace
(i.e., sum of all data name hashes).

Any producer connected to a repo can publish new data into
the data collection at any time. The sync module in the repo
daemon (called sync agent) keeps track of the insertions of
new data and updates the sync tree accordingly, adjusting the
hash values along the path from the new leaf node to the root.
For example, in Fig. 4 the insertion of a new data “/a/c/d
/2” (marked as the red dashed square at the bottom right) will
cause the sync agent to update the node hashes H7 and H2,
eventually propagating the change up to the root hash H0.

The sync agent periodically advertises the latest root hash by
sending a RootAdvice Interest to all the other repos that store
the same data collection4. The RootAdvice Interest name starts

4The periodic RootAdvice is CCNx 0.8 Sync’s equivalent to periodic Sync
Interests of the basic sync protocol design discussed in Section II.
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TABLE I: Comparison of existing sync protocols in NDN

CCNx 0.8
Sync iSync CCNx 1.0

Sync ChronoSync RoundSync PSync

Synchronized
Namespace Arbitrary names Arbitrary names Arbitrary names Node prefix +

seq#
Node prefix +

seq#
Stream prefix +

seq#

Sync state
representa-

tion
Hash tree IBF of hashes

of names

Manifest
storing names
or digests of

data

Digest tree
(List of

{prefix : seq#})

Digest tree
(List of

{prefix : seq#})
+ round log

IBF of hashes
of names with
highest seq#

State change
detection

Data replying
to RootAdvice
Interest with

local root hash

Interest
carrying digest

of IBF

Interest
carrying hash
of manifest

Data replying
to Sync Interest

with updates

Sync Interest
carrying digest

of current round

Data replying
to Sync Interest
with new IBF

State update
retrieval

NodeFetch
Interest

retrieving child
node hashes

Interest
retrieving IBF

content

Interest
retrieving
manifest

Included in
state change

detection

Data replying
to Data Interest
with updates in
current round

Included in
state change

detection

syncps VectorSync SVS PLI-Sync ICT-Sync Quadtree Sync

Synchronized
Namespace

Stream prefix +
timestamp

Stream prefix +
seq#

Sync prefix +
node prefix +

seq#

Sync prefix +
node prefix +

stream prefix +
seq#

Stream prefix +
seq#

Map chunk
prefix + seq#

Sync state
representa-

tion

IBF of name
digests

State vector
(List of {seq#})

State vector
(List of

{prefix : seq#})

State vector
(List of

{prefix : seq#})

State vector
(List of

{UID : seq#})

Quadtree with
seq# for leaf

nodes

State change
detection

Sync Interest
carrying IBF

Seq# in Sync
Interests and

state vector in
Heartbeat
Interest

State vector in
Sync Interest

State vector in
Sync Interest +
opportunistic
prefetching

Sync Interest
and response

Data

Digests replied
to Sync Interest

State update
retrieval

Included in
state change

detection

Included in
state change

detection

Included in
state change

detection

Included in
state change

detection

Included in
state change

detection

Map chunk
Data replied to
Sync Interests

when traversing
the tree

with a multicast prefix which is shared by all repos, followed
by the current root hash of the sync tree. An incoming remote
root hash that is different from its own indicates an update
to the data collection. The repo who received the changed
RootAdvice sends a NodeFetch Interest, named under the
multicast prefix, and thereby retrieves the list of hashes for
all the children under the root node of the sync tree. The
NodeFetch process is recursively applied to all the nodes in
the sync tree, skipping those with the same hash value between
local and remote, until all nodes with different hash values
have been visited. Once it learns the names of the new data
from the leaf nodes, the sync agent can fetch those data from
the remote repo via Interest-Data exchange and insert the data
in its local copy of the data collection. An example of the
synchronization process in CCNx 0.8 Sync is illustrated in
Fig. 5. Note that Fig. 5 shows the sync protocol between two
repos for clarity. The RootAdvise and NodeFetch Interests are
sent to the multicast prefix and received by all repos storing
the data collection.

One issue in the update propagation mechanism of
CCNx 0.8 Sync arises when multiple repos publish new data
simultaneously. Simultaneous publications result in more than
one reply to a RootAdvice Interest, where only one will
be returned to the Interest issuer. In such a case, the sync
agent who sends the initial RootAdvice Interest needs to issue

additional Interests to fetch other replies.
A side-effect of the CCNx 0.8 Sync algorithm, which

compares the local and remote sync trees and updates the
local state to be the union of the two, is that the repo cannot
remove any data once it is added to the data collection. This
is because the algorithm cannot distinguish the case where a
repo intentionally removed a piece of received data from the
case where the repo has never received the data before. As
a result, the data collection maintained by CCNx 0.8 Sync
is monotonically growing. This might create usability issues
when applications generate a large amount of data and need to
perform garbage collection periodically to reclaim storage. For
example, the NDNVideo application [7] was deployed on top
of the CCNx repo to publish live video streams. This system
had to be cleaned up and restarted every day at midnight to
avoid exceeding the storage capacity of the repo servers.

2) ChronoSync: ChronoSync [8] attempts to improve ef-
ficiency of dataset synchronization by utilizing naming con-
ventions. In particular, each ChronoSync node publishes data
under its own unique name prefix. This prefix also serves as
an identifier for the node in the sync group and is aligned
with the node’s topological prefix of the access network. Data
names are constructed by concatenating the node’s prefix with
a sequence number that starts from zero and gets incremented
for each new data published by the sync node.
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Fig. 5: Synchronization in CCNx 0.8 sync
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Node A
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Node Digest 
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Fig. 6: Example of ChronoSync’s sync tree

Sync nodes maintain a two-level sync tree, as shown in
Fig. 6. Each leaf contains the data prefix and the latest
sequence number of each producer in the sync group. Besides,
leafs are associated with the digest calculated over node’s pre-
fix and the latest sequence number. The tree’s root maintains
a digest containing all leaf nodes in canonical order. Since
the naming convention is to publish data with continuously
increasing sequence numbers (starting from zero), this sync
tree is a condensed representation of the namespace containing
all Data published in the group.

ChronoSync nodes maintain long-lived Sync Interests5 in
the network. This is realized by emitting a new Sync Interest
immediately after the previous one expires or is satisfied.
The Sync Interest stays in the Pending Interest Table (PIT)

5Long-lived Interests are Interests with lifetime set to a value close to the
generation delay of the data they are requesting. The term is employed when
that delay likely exceeds several RTTs – usually longer than a few seconds.

Node A Node B Node C Node D

/a /b /c /d

Seq = 100 Seq = 50 Seq = 21 Seq = 89 Steady state

Sync Interest: D0 Sync Interest: D0 Sync Interest: D0 Sync Interest: D0

New data /a/101
Root Digest = D1

Sync Reply: /a/101

Steady state
Update

sync tree

Sync Interest: D1 Sync Interest: D1 Sync Interest: D1 Sync Interest: D1

Update
sync tree

Update
sync tree

Time Time

Fig. 7: Synchronization process in ChronoSync

of the forwarders in the network so that any reply to the
Sync Interest can be returned to every node in the group as
soon as it is generated. The Sync Interest name starts with
the multicast group prefix and carries the current root digest
of the sender’s local sync tree. The Sync Interest serves two
important purposes: first, it advertises the sender’s digest in
the group so that other nodes can detect inconsistency in the
sync state; second, it requests the next state changes generated
on top of the state identified by the carried digest.

When all nodes have up-to-date information about the
dataset, all nodes generate identical state digests and send
out the same periodic Sync Interests that are aggregated by
the NDN forwarders. When a node publishes new data, its
sequence number is incremented. The node replies to the
outstanding long-lived Sync Interest with the name of its
newly published data (i.e., the node prefix and the sequence
number)6. This Sync Reply is delivered to all other nodes in
the group, following the multicast tree built by the pending
Sync Interests. After they receive the reply, the nodes update
their local sync tree, recompute the root digest, and send out
Sync Interests carrying the new digest. An example of the
synchronization process in ChronoSync is shown in Fig. 7.

To allow efficient state reconciliation, each ChronoSync
node maintains a limited log of historical digests and the
corresponding dataset states. If some node is lagging behind
in the synchronization process and sends out a Sync Interest
with a digest that has been observed by other nodes, these
sync nodes can respond with all the data published in the
group since that digest is announced. Note that when multiple
sync nodes reply to the Sync Interest carrying a previous
digest (potentially with different sets of updates if they are not
synchronized), at most one of those replies will be delivered
to the nodes lagging behind.

In general, sync participants are supposed to recognize
digests in received Sync Interests. However, certain situations
lead to the receipt of unknown digests. In the first case, a
node may receive a Sync Interest with an updated digest
before receiving the Sync Reply that triggered the update.
To handle that situation, ChronoSync injects a random delay
to process the Sync Interest with unknown digest at a later

6If multiple data packets are generated, the Sync Reply carries only the
largest sequence number of all new data.
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time, expecting to receive the corresponding Sync Reply while
waiting.

In the second case, multiple Sync Replies can be generated
in response to the same Sync Interest, if multiple nodes publish
new data at the same time. However, because of NDN’s flow
balance property, nodes will receive no more than one reply to
the Sync Interest. As a result, nodes may receive different data
items, compute different state digests, and start announcing
them in the sync group.

The third and a more complicated case arises if the network
is partitioned for a long period of time and then reconnected.
The sync nodes in different partitions have cumulated multiple
updates to the sync tree, leading to a sequence of digests that
are unrecognizable to the nodes in other partitions.

ChronoSync can handle simple cases when the nodes di-
verge by at most one Sync Reply by resending the previous
Sync Interest with exclude filters that contain the implicit
digests of the received Sync Replies7. However, if multiple
changes have been applied to the sync state at some node, the
mechanism using exclude filters will not be able to retrieve
the diverging sync replies generated by every node (see
RoundSync’s improvements in Section III-A3 for detail). In
such cases, ChronoSync falls back to a recovery mechanism:
when a node observes an unknown digest, it triggers a special
Recovery Interest containing the unknown digest; the nodes
who recognize the digest reply with the complete information
about the sync tree, rather than the specific changes that led
to the digest. When the requesting node receives the reply,
it merges the received sync tree into its local sync tree by
selecting the higher sequence number for every node in the
sync tree.

3) RoundSync: ChronoSync’s inability to efficiently han-
dle simultaneous data generation led to development of the
RoundSync [9] protocol. In ChronoSync, the function of Sync
Interests is overloaded to (1) detect different states among
the sync nodes, and (2) to retrieve the updates from other
nodes. As a result, Sync Replies carrying the updates to the
shared dataset are named after the previous Sync Interest name
which contains the digest of the corresponding sync state.
If a node generates Sync Replies on top of a diverged state
(e.g., in the scenario with partitioned sync group), nodes with
different states cannot derive the name for those Sync Replies
and therefore cannot send Interests to retrieve them. Merging
the diverged sync states only creates new set of sync states,
potentially contributing in further divergence of the states. To
re-synchronize, ChronoSync relies on a recovery mechanism
to receive the entire sync state.

RoundSync removes the need for a recovery mechanism
by dividing the synchronization process into rounds, updating
the semantics of the Sync Interest, and introducing a new
type of Interest packet called Data Interest. Sync Interests in
RoundSync, augmented with round number information, serve
only as a notification mechanism to inform other sync nodes
about the state in the round. When a divergence is detected,
nodes can request the change in the round using a Data

7Please note that exclude filters were removed in the NDN Packet Format
Specification version 0.3. Hence, the latest ChronoSync implementation enters
the recovery mode without using exclude filters.

Node A Node B Node C Node D

/a /b /c /d

Seq = 100 Seq = 50 Seq = 21 Seq = 89

Data Interest:
Round# = 10

New data /a/101
Round Digest = D0

Data Interest Reply:
/a/101 Update

sync state
Sync Interest: D0 Sync Interest: D0 Sync Interest: D0 Sync Interest: D0

Update
sync state

Update
sync state

Time Time

Round 10
Data Interest:
Round# = 10

Data Interest:
Round# = 10

Data Interest:
Round# = 10

Round 11
Data Interest:
Round# = 11

Data Interest:
Round# = 11

Data Interest:
Round# = 11

Data Interest:
Round# = 11

Data Interest:
Round# = 10

Exclude = {…}

Data Interest:
Round# = 10

Exclude = {…}

Data Interest:
Round# = 10

Exclude = {…}

Data Interest:
Round# = 10

Exclude = {…}

Fig. 8: Synchronization process in RoundSync

Interest8. Therefore, published data within a specific round
can be retrieved even if the states are not fully synchronized.
The replies to a Data Interest have the same functionality as
the Sync Reply in the original ChronoSync design, i.e., they
carry the prefix and sequence number of the newly published
data. In addition, RoundSync mandates that a sync node can
publish at most one data packet in each round and must move
to a new round when it receives new data published by others
in the current round. This helps reducing the chances of state
divergence caused by simultaneous data production.

In the example in Fig. 8, a sync node may start publishing
data at round 11 even though it is still trying to synchronize
with other nodes at round 10 or earlier. If multiple nodes
publish data in the same round simultaneously, they will detect
the inconsistency through Sync Interest and then send Data
Interests with exclude filters to retrieve those Data Interest
replies. Since there will be at most one reply from each node
in a single round, the exclude filter mechanism will allow the
nodes to eventually retrieve all updates.

RoundSync maintains digest for each round in a rounds log
table. To allow nodes who missed the Sync Interests in earlier
rounds to detect and recover the missing data, RoundSync also
computes cumulative digests that covers the entire dataset as
observed in a round and is piggybacked in the Data Interest
replies of future rounds. Upon receiving a different cumulative
digest for some round that is long before the node’s current
round, the sync node sends out a Recovery Interest to fetch the
full sync state and the current round number S from the node
who generated that cumulative digest, instead of retrieving
missing data round-by-round (which may take a long time).
After receiving the reply, the node merges the received dataset
with its own, discards the rounds log entries for the rounds
before S and resumes normal RoundSync operation for the
rounds after S.

4) Quadtree Sync: The Quadtree Sync Protocol (QSP) [10]
is tailored for the synchronization of data with a geographic
context, such as found in online games or GIS applications.

8Names of Data Interests do not include a state digest but only the round
number.
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c) Peer P1, responsible for region
R27, divides the game world

into 28 regions.

Fig. 9: Hierarchic structure of geographic regions in Quadtree
Sync. (Figure adopted from [10])

While this specialization on geographic data renders QSP not
being usable as general purpose sync protocol, the protocol
shows similarities to CCNx 0.8 Sync and improves on the
data dissemination delay.

QSP structures a geograhpic area by covering it with a
quadtree9. The root of the tree represents the whole area to
synchronize; every tree level divides an area into quadrants,
making the represented area smaller with every tree level. The
tree’s leaf nodes represent the smallest regions handled by
QSP and are referred to as map chunks. Every map chunk has
assigned a sequence number that is increased whenever the
region changes. In addition, the quadtree is built as Merkle
tree, allowing to efficiently find changed map chunks when
comparing multiple copies of a tree. By including the quadtree
structure in the naming scheme, a name in QSP directly
refers to a region of the synchronized area. These semantically
enriched names allow applications constructing names and
requesting information based on the application needs, instead
of worrying about network-related addressing issues.

QSP assumes that a sync participant is responsible for
managing a certain region of the overall geographic area and
publishes changes of that region. Besides, changes outside
the participants region (referred to as remote regions) can
be subscribed. Therefore, every sync participant maintains a
copy of the quadtree covering the whole geographic region.
For subscribing to a remote region, participants issue a Sync
Interest having the name of the remote region as name. In
addition, the local hash value of the corresponding tree node
is appended to the Sync Interests name. The sync participant
managing the requested region (referred to as region owner)
receives the Sync Interest and compares the received hash
value to its own hash value. In case the hash values match,
the region did not change and no further synchronization is
required. If the hash values do not match, a change occurred;
synchronization is required. In this case, the region owner
can decide how to proceed. It can either i) lookup changed
chunks in a local history and return the changes, ii) send
back hash values of the requested regions child nodes (or
even of child nodes several levels lower in the tree to speed
up synchronization), or iii) enumerate the sequence numbers
of all leaf nodes belonging to the requested region in the
Sync Interests answer. The selected option depends on the
current situation. In case no lookup of changed map chunks

9Quadtrees are tree-based data structures, where every non-leaf node has
exactly four children.

is possible, lower level hash values, or sequence numbers of
leaf nodes need are returned. In case the requested region is
large in size, enumerating sequence numbers might not be
feasible. Lower level hash values are returned and changes
are retrieved by followup Sync Interests for smaller regions.
Two examples for structuring an area in smaller regions using
QSP are visualized in Figure 9.

QSP differs from the basic sync protocol design in two
aspects. First, Sync Interests are neither used to notify about
new data in a push-style nor by using long-lived Interests.
Instead, changes are requested periodic Sync Interests. Second,
the protocol works without relying on a multicast prefix, since
Interests do not target all participants, but a specific region of
the area to synchronize.

Besides, one unique feature of QSP is the clear separation
of sync participants from the application namespace. While
other sync protocols assume participant-specific data prefixes,
QSP uses the application’s quadtree-based namespace for
Sync and Data Interests and thereby prevents binding the
data to specific participants. This eventually allows a change
of region responsibilities during the sync process, without
requiring to communicate this change of responsibilities to
other participants.

B. Manifest-based Sync Protocols
Manifests are usually used to store metadata of applications.

The idea of manifest-based sync protocols is to encode the
dataset’s sync state in manifests. Exchanging these manifests
informs sync participants about the current sync state. Cur-
rently, only one manifest-based sync protocol is available,
which is discussed in the following.

1) CCNx 1.0 Sync: The design proposal of CCNx 1.0
Sync [11] abandons the CCNx 0.8 Sync design and adopts
a simple manifest-based solution. The manifest packets are
named under a routable data collection prefix announced by
every sync node, followed by the hash of the manifest and
segment numbers. The manifest contains the SHA256 hashes
or the exact names of all data objects in the shared data
collection. When the SHA256 hashes are used, the names of
the data objects are constructed by appending the hash value
to the same data collection prefix in the manifest name. The
application-layer data (with real application names) may be
encapsulated in those data objects.

Each sync node uses Interest packets to advertise the hash
of its local catalog manifest when it generates new data (cf.
Sync Interest in Figure 2). These advertisement Interests are
named under the data collection prefix and forwarded to all
sync nodes announcing that prefix. These Interests have a short
lifetime and do not retrieve any data. To increase the possibility
that all nodes can receive the advertisement, the advertisement
is repeated once or twice within a few seconds after the
first advertisement is sent. Once a node receives a different
hash, it advertises its own hash under the control of a gossip
protocol (with random backoff and duplicate suppression). It
then sends out Interests to retrieve the corresponding (possibly
segmented) manifest packets, compares the names listed in
the manifest with its local namespace, and then retrieves the
missing data over the network.
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Compared to the basic sync protocol design from Section II,
CCNx 1.0 Sync requires one additional step between data an-
nouncement and publication retrieval. While the Sync Interest
only communicates a digest, the actual dataset changes need
to be retrieved as Manifest file using Interest-Data exchange.
Only thereafter, the actual publications can be retrieved.

C. Invertible Bloom Filter-based Sync Protocols

Bloom filters (BF) [12] are a probabilistic data structure that
allow for efficient membership testing by using a bit array.
This allows BFs to be used for testing whether an element is
part of an existing dataset or not. However, the foundation of
BFs is probabilistic, resulting in membership responses can be
false-positive (but not false negative). The false-positive rate
can be controlled by the BF size.

Invertible Bloom Filters (IBF) [13] are an extension of BFs
and allow for operations beyond membership testing only.
With IBF’s set operations, such as difference calculation, be-
come possible, which might be well-suited for sync protocols.
Current representatives of IBF-based sync protocols are iSync,
PSync, and syncps.

1) iSync: iSync [14] supports the synchronization of shared
data with arbitrary application names. To efficiently represent
the sync state, iSync uses IBFs to store all the names from
the shared dataset in a compressed form. Since the IBF can
only store fixed-length items, data names are first mapped to
fixed-length IDs (generated by hashing the names) before they
are added to the IBF. Additionally, a bi-directional mapping
table is maintained by every sync participant so that it can
recover the original NDN names from IDs.

iSync uses “digest broadcast” Interests to advertise its
current state to other nodes periodically (cf. Sync Interests).
Since the encoded size of the IBF is typically large, the
advertisement Interest only carries a digest of the current IBF
from the sending node. When a node receives a digest different
from its own, another Interest to request the corresponding IBF
content is issued. After receiving the IBF, the node subtracts
its own IBF from the received IBF and extracts the individual
IDs from the resulting “difference” IBF. Once the new IDs
are extracted, the original NDN names corresponding to those
IDs are requested, and finally the new publication can be
retrieved by using the original names. An example of iSync’s
synchronization process is shown in Fig. 10.

One limitation in the IBF data structure is that it can only
losslessly encode up to a certain number of items. Beyond
that, some of the stored items cannot be extracted. To prevent
having too many stored items, iSync provides several ways
to control the size of the set difference at multiple levels in
the protocol design. First, the shared dataset is divided into
multiple collections that host data for different applications;
each collection maintains its own IBF independently from
others. Second, iSync enforces each node to periodically
advertise its local sync state and resolve the difference, which
bounds the delay of the data propagation and the size of the
set difference between any two nodes. Third, iSync creates
multiple local IBFs to record the small-step changes during
each sync period. When the advertised IBF (called global

Repo1 Repo2

steady state

Root IBF Digest = D0 Root IBF Digest = D0

Time Time

Publish new data
Root IBF Digest = D1

Sync Interest: D0

Sync Interest: D1

Interest for root IBF

with digest D1

Reply with root IBF

Interest for collection IBF

Reply with collection IBF

Interest for actual name of

the new item in IBF

Reply with actual name

Interest for new data using

actual data name

Reply with new data

Sync Interest: D1

Update sync state
Root IBF Digest = D1

steady state

Fig. 10: Synchronization process in iSync

IBF) contains too many changes, the sync node can fetch the
local IBFs instead and perform more fine-grained difference
reconciliation.

2) PSync: The PSync protocol [15] is designed to support
two use-cases. The partial sync mode allows synchronizing
multiple consumers with a subset of a large data collection
maintained by a single producer. The full-sync mode offers
multi-producer/multi-consumer communication, as provided
by other sync protocols. Publications published by producers
are organized into data streams, where each stream is identi-
fied by a unique data stream prefix. Individual publications of
a data stream are enumerated by appending a sequence number
to the data stream prefix. PSync employs IBFs to represent the
dataset state by storing the hash values of the data names in
fixed-length slots of the IBF. By exploiting the stream-based
namespace structure, the IBF only needs to store the latest
data name of each data stream. This reduces the amount of
information stored by the IBF and hence, allows reducing the
amount of data transmitted over the network.

To support the synchronization of a subset of the dataset
(partial sync mode), PSync introduces a subscription list
allowing consumers to specify the data streams that it is
interested in10. The subscription list is a BF that stores the
data stream prefixes the consumer is interested in. The size
of the BF is determined by the total number of streams a
consumer may want to subscribe to and the false positive rate
the consumer is willing to accept11.

10PSync allows consumers to specify their subscription at the granularity
of data streams.

11Special cases like full subscription may be encoded more efficiently with
special markers.
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ProducerConsumer1 Consumer2
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Time Time

Fig. 11: Partial Sync Process of PSync

Consumers need to learn which data stream prefixes are
contained in the dataset before they can join the sync process.
Therefore, PSync provides an initialization phase, in which
consumers request the available data stream prefixes by send-
ing a Hello Interest to the producer. As a response, all data
stream prefixes including the corresponding latest sequence
numbers are returned. During the sync process, a consumer
keeps a local copy of the producer’s IBF which indicates the
data it has received so far. To sync up with the producer and
to retrieve the latest dataset state, a consumer maintains a
long-lived Sync Interest whose name contains the consumer’s
local IBF copy and the subscription list. When the producer
publishes new data, it first subtracts the IBF of the pending
Sync Interest from the new IBF and thereby extracts the names
of publications that have not been received by the consumer
yet. In the next step, the producer checks whether the data
stream prefixes of those new publications are included in the
consumer’s subscription list. If they are in the subscription list,
the producer generates a Sync Reply containing the original
names of the new publications and the difference IBF that only
contains the new data names. Upon receiving the Sync Reply,
the consumer updates its local IBF copy with the received IBF
and retrieves the new publications by Interest-Data exchange.
Fig. 11 visualizes an example of PSync’s synchronization
process.

In the full-data synchronization mode, all sync participants
are producers and consumers at the same time. Also, every
participant subscribes to the full dataset, which allows drop-
ping the subscription list in Sync Interests. Long-lived Sync
Interests are sent to the multicast prefix and kept pending until
a new publication is produced. When a new publication is
generated, it is added to the producer’s IBF, which is sent as
a reply to the pending Sync Interests. This reply notifies all
sync participants about the newly produced publication.

Comparing PSync’s full sync mode to the basic sync
protocol design from Section II, we would like to highlight
that PSync employs a pull-based approach for the initial Sync
Interest. Participants request changes via long-lived Interests

sent to the multicast prefix. The use of long-lived Interests,
however, is seen as controversial. A long-lived Interest has
to be kept pending on all forwarding nodes for a substantial
time and thereby consumes resources on all forwarding nodes.
On the other hand, in PSync Interests are used for their
intended purpose – requesting Data – instead of for pushing
notifications without awaiting a response, as done by other
protocols.

Focusing on Interest aggregation, we see that the partial
sync mode allows every consumer to define the data they are
interested in. This design results in different names for every
consumer and prevents Interest aggregation. Besides affecting
traffic volume, Interest aggregation potentially reduces the
load on the Interest-receiving side. Producers in PSync do
not simply answer requests with ready-to-use data but need
to calculate the response for every request on the fly by
subtracting the received IBF from the producers IBF. This
might result in higher processing overhead for producers.
With the full data synchronization mode, however, Interest
aggregation works as expected. Besides, the receipt of Interests
in PSync does not affect the dataset state, which removes the
need for authenticated Interests.

For discussing scalability, we revisit the exchanged infor-
mation sent during the sync process. In partial sync mode, a
Sync Interest carries the subscription list as BF and dataset
state as IBF. The size of the subscription list depends on the
number of subscribed data streams, the size of the IBF, on
the number of expected differences. The limited capacity of
Interest packets, however, does not allow growing these data
structures beyond a certain size limit. This ultimately limits
the maximum number of data streams of PSync and thereby
negatively affects scalability.

3) syncps: The main idea of the syncps protocol [16]
(also known as publish/subscribe sync) is to synchronize
lifetime bounded publications by using IBFs for dataset state
representation. syncps behaves fundamentally different from
other protocols since it abandons the separate Interest-Data
exchange for publication retrieval (cf. step 2 in the basic sync
protocol design of Fig. 2). Instead, the actual publications are
transmitted in the response to Sync Interests, leading to low
protocol overhead and data dissemination delay.

The protocol design described in this report was reverse
engineered from syncps’s open-source codebase12. The publi-
cations’ arbitrary data names are hashed to fixed-sized digests
and inserted into an IBF. Publications are assumed to be valid
only for a predefined time after which they are removed from
the IBF again. Sync Interests in syncps carry the sending
participants IBF and are realized as long-lived Interests that are
immediately sent when new Data is published, or periodically
before the previous Sync Interest times out. On receipt of a
Sync Interest, participants subtract the received IBF from the
local IBF and thereby find new publications produced by other
participants, as well as publications that are known locally but
not by the remote participant. For the latter case, up to multiple
publications missing by remote participants are packaged in

12https://github.com/pollere/DNMP-v2/blob/main/syncps/syncps.hpp, last
accessed: 2021-02-19
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the Sync Interests response Data (piggybacking of multiple
Data packets in a single one).

Publications produced by other participants are retrieved by
sending a Sync Interest including the local IBF (indicating
the missing publications). Remote participants receiving the
Interest detect the absence of the latest publications and
transmit the missing publications in the response Data.

While syncps reduces overhead and data dissemination
delay, the piggybacking approach reduces the network’s ability
to make use of semantic name information. Multiple publica-
tions, each having a unique name, are summarized in one Data
packet having a rather generic sync group-specific name. The
name of individual publications could be relevant for multiple
participants of the sync group. Besides, the publications name
is required for network-level multicast and in-network caching
to work. The Sync Interest response Data, however, might
be created for a single participant only, possibly reducing
communication to a host-to-host pattern.

Focusing on scalability, we can identify the IBF in Sync
Interests and the piggybacking approach as limiting factors.
The required IBF size depends on the number of data streams
in the dataset. With many data streams, the IBF size needs
to grow to prevent false positives. Since the IBF is encoded
in Sync Interests, this is only possible up to a certain degree.
However, the lifetime-bound of publication lowers this issue
but brings other issues, such as the requirement for time-
synchronized sync participants.

The piggybacking approach assumes that publications are
small in size and not created simultaneously. Adding NDN
Data packet fields to a large publication might already exceed
the MTU and leads to becoming unable of piggybacking. The
same holds for many simultaneous publications. In this case,
only a subset of publications can be added to one Data and the
transmission of the remaining is postponed to the next Sync
Interest.

D. State Vector-based Sync Protocols

The class of state vector-based sync protocols is distin-
guished by the use of state vectors for representing the latest
dataset state. This idea originates from Vector Clock [17], a
data structure used to provide a partial order to events occur-
ring in distributed systems. A notable difference between state
vector-based protocols compared to previous developments is
denoted by the form of the dataset representation in the initial
Sync Interest. When sending a digest in the Sync Interest,
receivers of the Interest can only infer whether the dataset
changed or not, but no information about the exact change can
be inferred. This makes consecutive communication to retrieve
details about the changes necessary. The state vector-approach
can communicate not only information about the existence of
a change, but concrete dataset changes in the same message.
This potentially leads to lower communication overhead and
improved performance.

A number of state vector-based protocols were proposed.
The basic concept of these protocols is very similar in respect
to protocol design and dataset representation and only differ in
details. The VectorSync protocol [18], [19] laid the foundation

for later developments. Later protocols mainly optimize on dif-
ferent aspects of VectorSync. This report focuses on providing
a detailed introduction to VectorSync in Section III-D1 and
summarizing the differences of later protocols to VectorSync.

1) VectorSync: The VectorSync protocol by Shang et
al. [18], [19] was the first sync protocol that represents the
dataset’s state by using a state vector. In VectorSync, each
producer publishes data under its unique name prefix with
a continuous sequence number allowing to keep track of
individual publications. The latest publication of a producer
is denoted by the latest sequence number; consequently the
latest dataset state is known when knowing the latest sequence
number of every producer. This information is contained in the
state vector.

As indicated in Figure 12a, VectorSync’s state vector en-
codes sequence numbers for every producer prefix. Receiving
a state vector allows comparing the received sequence numbers
to the local copy of the dataset. If any of the received sequence
numbers is higher than in the local dataset, the local dataset
is updated and the actual Data can be retrieved from the
corresponding producer prefix.

To make use of the received sequence numbers, a mapping
from state vector entries to producer prefixes is required. This
mapping is referred to as group membership list. The group
leader – a designated sync participant responsible for keeping
track of the sync group’s participants – is responsible for
maintaining an up-to-date group membership list.

Protocol Design: Focusing on the protocol design, we
see that VectorSync is required to handle two types of data:
i) the current dataset state is synchronized by distributing state
vectors in Sync and Heartbeat Interests. ii) the sync group’s
membership list is distributed by the group leader that keeps
track of the active participants. In the following, both parts of
VectorSync’s protocol are discussed.

The protocol for distributing dataset changes via state
vectors is visualized in Figure 13. Whenever a producer (eg.
Alice) publishes new data, a Sync Interest is broadcasted to
the group prefix (message 1). The Sync Interest contains the
latest sequence number of Alice’s data stream and allows the
other participants (Bob and Ted) to update their local dataset
with the received sequence number. As a response, a Data
containing the updated state vector is sent (message 2). After
having learned about Alice’s new publication, Bob and Ted
request the newly generated data by Interest-Data exchange
(messages 3 and 4).

The second task – maintaining the group’s membership list
– is implemented by a leader-based approach. Every sync
participant broadcasts periodic Heartbeat Interests including
its producer prefix and state vector to the sync group. By
receiving heartbeats, sync participants detect other participants
(and additionally get informed about changes in the dataset).
Also, by convention, the participant with the highest order
producer prefix is chosen as the group leader. Based on the
information received from Heartbeat Interests, the group leader
creates and distributes versioned membership info objects
containing information about all sync participants (eg. data
publishing prefixes, and public key certificates). If participants
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Fig. 12: Relation between application namespace and state vector structures in current state vector-based sync protocols.
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Fig. 13: VectorSync’s message exchange for dataset synchro-
nization in a group of three parties. (Figure adopted from [19])

enter or leave the sync group, a new version of the membership
info object is created and distributed.

Combining the membership management and dataset state
synchronization, VectorSync becomes able to synchronize
datasets across multiple producers and consumers without the
need for long-lived Interests, such as required by other proto-
cols. However, VectorSync’s design allows for optimizations,
which are discussed in the following.
Intermittent connectivity: The separate group membership
management part of the protocol is a limitation in scenarios
with intermittent connectivity. Without having the latest ver-
sion of the membership info object, the individual entries of a
state vector can not be mapped to producer prefixes. Whenever
new producers join or leave, the group leader publishes a
new version of the membership info object, requiring all
sync participants to retrieve it before continuing with dataset
synchronization.

Focusing on scenarios with intermittent connectivity, such
as wireless ad-hoc networks, sync participants can frequently
get disconnected from and reconnected to the rest of the sync
group. This churn requires the group leader to regularly pub-
lishing new versions of the membership info object. Without
up-to-date membership info, sync updates can not be inter-
preted, which adds additional complexity to the protocol. With
network fragmentation, this becomes even worse. Network
fragmentation may result in the sync participants getting split
into multiple sub-groups. Each sub-group needs to agree on a
group leader that publishes membership info objects without
containing the participants located in other sub-groups.

Reviewing VectorSync’s design, it becomes apparent that
handling memberships complicates the sync process and shows
potential for improvement. However, VectorSync’s member-

ship management allows exchanging other relevant informa-
tion, such as data prefixes, sync participants’ certificates, or
group keys. This partially makes-up for the complexity added
by membership management.
Delay Tolerant Networking: A concept related to intermittent
connectivity scenarios is Delay-Tolerant Networking (DTN).
With intermittent connectivity, participants get occasionally
disconnected from others. To allow temporarily disconnected
nodes to receive data, asynchronous concepts for communi-
cation are required. DTN overcomes this absence of end-to-
end communication paths by storing packets and forwarding
them opportunistically to neighboring nodes. This need for
storing packets in the network indicates DTN’s suitability for
content-centric concepts. Epidemic routing (ER) [20] is one
of the most prominent concepts for data distribution in DTN
and already moves towards a data-centric direction. In ER
messages are stored on nodes and continuously replicated to
newly discovered contacts, which employs a flooding-based
behavior. While ER assigns messages unique identifiers that
are comparable to flat names, ER is still based on a connection-
oriented architecture. This requires handling message caching
and replication on the application layer. Besides, ER does
not employ concepts for end-to-end security. In contrast,
VectorSync as an NDN-based sync protocol allows using both:
in-network caching, and data-centric security concepts. This
allows for improvements in security and application complex-
ity when used in DTN. However, VectorSync’s membership
management approach does not work in DTN. Hence, un-
veiling the full potential of data-centric architectures requires
improvements concerning membership management.

2) StateVectorSync: The StateVectorSync protocol
(SVS)13 [21], [22] is the successor of VectorSync and aims
to support dataset synchronization in disruptive networks. In
such networks, network fragmentation occasionally happens
and challenges VectorSync’s group membership management.

The logical consequence to improve on VectorSync’s limi-
tation is removing the leader-based membership management.
This is implemented by slight modifications of the state vector,
as depicted in Figure 12b. Instead of encoding sequence
numbers only, SVS encodes tuples consisting of the produc-
ers’ prefixes and their latest sequence numbers. Otherwise,
the protocol design for dataset synchronization is similar to

13The StateVectorSync protocol is also referred to as Distributed dataset
Synchronization over disruptive Networks (DDSN)
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VectorSync. Differences in the protocol are described in the
following. SVS’s Sync Interests contain the full state vector of
the sending sync participant, instead of the sequence number
of a single data stream only. Thereby, other sync participants
can not only update the state of one data stream but of
the complete dataset. As in VectorSync, the response to the
Sync Interest contains the updated state vector. The actual
publication retrieval stays unchanged.

By removing the necessity for a separate group membership
list, SVS becomes capable of working in environments with
intermittent connectivity. This is shown by a comparison of
SVS and ER [23]. Simulation results show superior perfor-
mance in regards to retrieval delay and resilience to packet
loss.

One limitation of the SVS design is concerning limited
flexibility in regards to the producer’s namespace. While arbi-
trary producer prefixes can be encoded in VectorSync’s group
membership list, the encoding of the producer’s name in SVS
only allows a single name component to identify the producer.
This is one result of removing VectorSync’s membership
management approach. However, we want to highlight the
possibility of allowing arbitrary prefixes by conventions on
application-level, or by adding one level of indirection.

3) PLI-Sync: The Prefetch Loss-Insensitive Sync protocol
(PLI-Sync) [24], [25] is built on top of SVS and aims to
support robust group communication in disadvantaged wireless
networks. The key novelty of PLI-Sync is to combine a slightly
modified version of SVS with opportunistic content prefetch-
ing to increase synchronization efficiency. While earlier sync
protocols allow consumers to decide which Data to retrieve
(messages 3 and 4 in Figure 13), participants in PLI-Sync
retrieve all published Data. This design choice was made to
strengthen resilience in networks with intermittent connectivity
by distributing data as often as possible, and thereby increasing
redundancy.

Concerning namespace design, every sync participant is as-
signed a nodeId. Under this identifier, multiple data streams
can be published, each identifiable by a streamNo, leading
to a naming scheme as follows:

/<grpPrefix>/n/<nodeId>/stream/<streamNo>/<seqNo>

Opportunistic prefetching is realized by sync participants
issuing Interests for sequence numbers not yet produced. These
Interests stay pending in the network until the next data
item is produced and result in instant delivery of thereof. In
addition to prefetching, SVS acts as a fallback solution to
counteract packet loss. Besides, SVS is used for detecting
newly generated data streams, which is not possible with
prefetching only.

Evaluations of PLI-Sync show promising results in heavy
loss scenarios. However, PLI-Sync’s requirement that all par-
ticipants need to fetch all data might reduce PLI-Sync’s
suitability to being used as a general-purpose sync protocol.

4) ICT-Sync: The ICT-Sync protocol [26], [27] is based on
a state vector and aims to support asynchronous communi-
cation. As depicted in Figure 12c, ICT-Sync maintains two
separate data structures for representing the producers of the
sync group and the dataset state. The mapping list (ml) maps

data prefixes to unique identifiers (UID). These UIDs are used
in the status list (sl) – a state vector-like structure – for
assigning the latest sequence number to all UIDs.

The protocol design is similar to VectorSync, but termi-
nology changed. VectorSync’s state vector is referred to as
status list (sl), and the mapping list (ml) is a structure
similar to VectorSync’s membership info. Dissecting ICT-
Sync’s synchronization process, the protocol uses a two-step
approach for dataset synchronization. In the join-phase, sync
participants join the sync group by sending a Sync Interest
containing their (initially empty) sl to the group prefix.
Thereby, every participant starts as a consumer and is informed
about the current dataset state. In the second phase – the
publish-phase – producers register data prefixes by adding
them with corresponding UIDs to their local ml. The new
UIDs are also added to the sl and are appended as state vector
to the Sync Interest’s name. Other participants are informed
about new data by receiving this Sync Interest. Incoming
Sync Interests that not yet contain the newly added UIDs
are answered with Data containing triples in the form of
<UID; data-prefix, latest-sequence-no>. Re-
ceiving this Data allows other participants adding information
about the new data in their ml and sl.

A breaking change introduced by ICT-Sync is the optional
use of intermediate nodes that are utilized for enabling asyn-
chronous communication and to provide data persistence. In-
termediate nodes may be deployed in the network and act like
standard sync participants, with the difference that produced
data is immediately fetched, validated, and persisted. This
allows intermediate nodes to provide a copy of the published
data when original data producers become unavailable, and
hence, provide means for asynchronous communication.

While ICT’s intermediate nodes increase data availability,
they might require to revisit security considerations. By using
intermediate nodes, network components are legitimized to
act as sync participants. They build their own view of the
dataset and create Sync Interests based on their knowledge.
Thereby, intermediate nodes not only forward Interests but
create and broadcast their own messages to the sync group.
This elevates the responsibility of network components from
performing transport-level operations to application-level tasks
and requires other participants to trust intermediate nodes. For
security-critical use-cases, it might not be feasible to extend
trust to network nodes that might be in control of third parties,
such as network operators.

Focusing on Interest aggregation, we suggest using group
keys for Interest authentication in Section II-B. With inter-
mediate nodes being part of the sync group, a group key
approach means that intermediate nodes become able to create
signatures that are indistinguishable from signatures of regular
participants.

While intermediate nodes might open trust-related issues,
ICT-Sync improves on VectorSync by removing the leader-
based membership management approach. As a replacement
for VectorSync’s membership info objects, ICT-Sync’s ml
keeps data of individual producers, such as producer prefixes,
and thereby allows arbitrary data names.
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IV. DISCUSSION ON PROTOCOL DESIGN DECISIONS

In the previous section, we introduced existing NDN sync
protocols. We now explicitly focus on specific design aspects
and the range of possible solutions. We reflect how individual
protocols differ and reflect positive and negative influences of
concrete decisions. Table II provides a preliminary comparison
of performance metrics14 of the existing NDN sync protocols.

A. Sequential vs. Arbitrary Data Naming

One of those design aspects is data naming. ChronoSync,
RoundSync, Quadtree Sync, PSync, and state vector-based
protocols adopt a sequential data naming convention. This
means that data packets are named using sequence numbers
under a common name prefix for each producer (resp. data
stream). This design choice simplifies the representation of the
shared dataset’s namespace. Having continuous and monoton-
ically increasing sequence numbers in the data name allows
producers to summarize their data collection by the highest
sequence number. This reduces the amount of information
that needs to be encoded in the sync state and simplifies the
protocol design since the sync protocol only needs to focus
on synchronizing the latest sequence numbers rather than the
whole namespace.

Looking at protocols with sequential data naming, we iden-
tify varying freedom in choosing data prefixes. ChronoSync,
RoundSync, PSync, VectorSync, and ICT-Sync allow produc-
ers to specify their own data prefix. SVS, PLI-Sync, and
Quadtree Sync, however, force sync participants to use the
group prefix as a common prefix and use the producer’s
identifier as an intermediate name component only. We want
to highlight that the restriction of being bound to a common
data prefix often comes with simplified protocol design. Eg.
to allow using producer-specific prefixes, VectorSync and ICT-
Sync require additional mappings from producer identifiers to
actual prefixes. Maintaining these mappings is integrated into
protocol design and bloats the actual sync process. SVS, in
contrast, does not need a separate mapping and the receipt of
a single Sync Interest already allows inferring the dataset state.
More complex naming schemes may be supported by adding
one-level of indirection, or by application-level conventions.

In contrast to sequential naming, CCNx 0.8 Sync, CCNx 1.0
Sync, iSync, and syncps allow for arbitrary application names.
These protocols allow synchronizing datasets where individual
publications are not related to each other and provide the
most flexibility. This flexibility, however, comes with higher
overhead during the sync process or similar limitations. So
for instance, CCNx 0.8 Sync requires a request-reply iteration
for every level of the protocols name tree, CCNx 1.0 Sync
maintains a (potentially large) manifest file that needs to be
retrieved for every update, iSync handles up to multiple levels
of indirection to provide scalability, and in syncps the number
of producers is limited by the maximum size of IBFs that can
be encoded in Interest names.

14The basis for comparison in Table II is a qualitative evaluation of protocol
design aspects rather than a quantitative experiment.

B. Push Notifications vs. Pull Subscriptions

The existing sync protocols typically use one of the two
communication models for propagating the information about
the new data published in the sync group. The first model –
referred to as push notifications – is to piggyback information
about dataset changes in multicast Interests. Participants that
receive these Interests can directly change their dataset state
and are informed about the latest change. The second model
– referred to as pull subscriptions – is that sync nodes send
“long-lived” Interests to each other (typically using multicast)
to request data packets that carry information about updates
to the sync state. Without immediate changes to report, these
“long-lived” Interests essentially become temporary “one-
packet” subscriptions to sync state updates generated in the
future.

Pull subscriptions using long-lived Interests require the
network to maintain a soft state (implemented by the Interests
being kept pending on all forwarding nodes) and consume
resources on forwarders in the network. Also, dropped long-
lived Interests (eg. due to congestion) are not detected by
the Interest-sender until timeout, potentially decreasing the
protocol’s performance.

Ideally, to reduce overhead long-lived Interests are aggre-
gated in the network, resulting in a multicast of Data upon
generation. NDN’s flow balance principle, however, leads to
a lack of efficient support of simultaneous data generation. A
single produced Data satisfies all outstanding long-lived Inter-
ests and is efficiently delivered to all other sync participants.
The almost simultaneous generation of a second update on a
different participant can not be delivered until the previously
satisfied long-lived Interests are re-issued. This potentially
leads to outdated Data packets being cached in in-network
caches and requires multiple rounds of Interest-Data exchange
until a consistent state is reached.

Push notifications are implemented as broadcast Interests
that piggyback a notification. This approach misuses Interests
for pushing data, while intended for data retrieval only. Con-
cerning reliability, lost notification Interests can be mitigated
by adding redundancy. Acknowledgments in the protocol
design may be used by the notification producer to ensure
others received the message by repeating the notification until
acknowledged.

One potential issue of Interest notifications is that Interests
are not designed to be authenticated and thereby allow abusive
use if not properly secured. Whenever an Interest changes the
sync state of recipients, the Interest needs to be authenticated
(eg. by using a cryptographic signature). Such authentication,
however, can limit the ability of Interest aggregation.

Example sync protocols utilizing pull-based subscriptions
using long-lived Interests are ChronoSync, PSync and syncps.
The family of state vector-based protocols employs push
notifications by sending authenticated Sync Interests on Data
generation.

C. Data Dissemination Delay

One metric relevant for sync is the data dissemination delay,
i.e., the number of round-trips (RTTs) necessary to propagate



15

TABLE II: Comparison of existing NDN sync protocols on common performance metrics

CCNx 0.8
Sync iSync CCNx 1.0

Sync ChronoSync RoundSync PSync

Data dissem-
ination
delay

Interest period
+ tree walk

Interest period
+ 3.5 RTT (+

RTT to retrieve
local IBFs)

≥ 1.5 RTT
(influenced by
manifest size)

min. 0.5 RTT
for notification
+ 1 RTT for

update retrieval

min. 1.5 RTT
for notification
+ 1 RTT for

update retrieval

0.5 RTT for
notification +

1 RTT for
update retrieval

Interest
overhead Periodic Periodic One per update Long-lived

Interest

Long-lived
Interest + Data

Interest

Long-lived
Interest

Factors af-
fecting Sync
Interest size

Node hash IBF digest Manifest digest State digest (+
exclude filter)

Round digest (+
exclude filter)

IBF +
subscription list

Factors
affecting

Sync Data size

Number of
children under
the requested

node

IBF size
(depending on
the number of

new data)

Number of
dataset entries

Number of
names with
new seq#

Number of
names with new
seq# in a round

IBF size +
number of
names with
new seq#

syncps VectorSync SVS PLI-Sync ICT-Sync Quadtree Sync

Data dissem-
ination
delay

0.5 RTT (Data
as response to

long-living
Sync Interest)

0.5 RTT for
notification +

1 RTT for
update retrieval

0.5 RTT for
notification +

1 RTT for
update retrieval

0.5 RTT with
opportunistic
prefetching

0.5 RTT for
notification +

1 RTT for
update retrieval

Min is 1.5 RTT,
longer with

high amount of
changes

Interest
overhead

Long-lived
Interest Periodic Periodic

Periodic (low
frequency, used

as fallback
only)

Periodic

Periodic per
remote region +

possible tree
traversal

Factors af-
fecting Sync
Interest size

IBF size Number of sync
group members

Number of
publishers

Number of data
streams

Number of data
streams Constant size

Factors
affecting

Sync Data size

Number and
size of new
publications

Number of sync
group members

No response to
Sync Interests

No response to
Sync Interests

No response to
Sync Interests

Number of
changes

new publications to the other members of the sync group.
This delay is substantially influenced by the protocol design.
Protocols that allow inferring the datasets state from a single
message (eg. state vector, or IBF in Sync Interests) employ
a lower data dissemination delay than protocols that only
communicate a digest representing the datasets state. In the
latter case, a digest only allows inferring that the dataset
changed, but requires additional communication to locate the
actual change. These additional messages increase the overall
data dissemination delay.

In CCNx 0.8 Sync, Sync Interests carry a digest representing
the current state of the datasets name tree, or of a subtree.
The synchronization process is triggered periodically based
on an internal sync timer. If the digest indicates a change, the
change is obtained by traversing the name tree. The number
of RTTs required for tree traversal and hence, to retrieve all
updates, depends on the depth of the sync tree. In iSync, the
process usually finishes within 3.5 RTT, unless the number
of changes exceeds the capacity of the global IBF in which
case the nodes need to retrieve additional “local IBFs”. CCNx
1.0 Sync triggers the synchronization process when new data
is published by pushing a digest of the datasets manifest to
remote participants. After receiving a changed manifest digest
(0.5 RTT) participants start retrieving the updated manifest.
The dissemination delay depends on the manifest size.

ChronoSync achieves best synchronization delay without
simultaneous data publishing. Notification about new publica-

tions is delivered as response to the long-lived Sync Interest in
0.5 RTT, Interest-Data exchange for publication retrieval adds
1 RTT and results in a data dissemination delay of 1.5 RTT.
If multiple nodes generate Sync Replies at the same time,
the protocol needs additional round-trips to retrieve all Sync
Replies using Interests with exclude filters. The dissemination
delay grows proportional to the number of simultaneous up-
dates in the group and is bounded by the number of data sync
participants.

In PSync, long-lived Sync Interests sent by the consumer
carry the consumer’s state. This allows the producer to reply
with information about specific changes as soon as they occur,
leading to 0.5 RTT for the notification of a change. The
consequent Interest-Data exchange required to fetch the new
publications results in a data dissemination delay of 1.5 RTT.

Similar to PSync, syncps assumes sync participants to
maintain long-lived Sync Interests carrying the local state in
an IBF. In contrast to PSync, syncps’ replies carry actual pub-
lications instead of notifications about generated publications
only. This immediate response leads to a data dissemination
delay of 0.5 RTT, potentially getting larger with simultaneous
publications. Simultaneous publications on a single participant
are packed in a single response data and does not necessarily
increase the data dissemination delay. If publications are gen-
erated by multiple participants simultaneously, all publishing
participants reply to the same Sync Interest. This procedure
results in only one response getting delivered. Outstanding
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publications are retrieved by consequent Sync Interests, in-
creasing the data dissemination delay by 1 RTT for every
simultaneously publishing participant.

The function of existing state vector-based protocols is
similar and hence, results in similar data dissemination delays.
The notification of new publications via Interest notification
takes 0.5 RTT; the consecutive data retrieval takes 1 RTT
for Interest-Data exchange. The only vector-based protocol
with fundamentally different behavior is PLI-Sync, where
opportunistic prefetching may reduce the dissemination delay
to a minimum of 0.5 RTT.

The data dissemination delay for the Quadtree Sync protocol
depends on various factors, such as the tree size, and the
number of changes. The basic concept of Quadtree Sync is
similar to CCNx 0.8 Sync but improves the tree traversal
process. Instead of retrieving changes for every single tree
level, sync participants in Quadtree Sync request changes for
subtrees. This leads to a lower-bound of 1.5 RTT for the
data dissemination delay (0.5 RTT for notifying changes, and
1 RTT for the publication retrieval). In the case of a subtree
having a high number of changes, Quadtree Sync prevents
large response Data packets by delegating the delivery of
changes to lower level subtrees. This delegation, however,
requires subsequent requests and increases the data dissem-
ination delay.

D. Protocol Overhead

The packet size of sync protocol messages impacts the band-
width utilization caused by sync communication and thereby
becomes a relevant performance metric. In the following
analysis, we focus on the size of dataset state updates carried
in Interest and Data packets.

In IBF-based protocols, the packet size depends on the
configuration of the carried IBF. The size of an IBF is
configured in advance and is based on the number of expected
data streams (number of expected changes to the dataset in
case of PSync) as well as on the acceptable false-positive rate.
Once configured, the IBF’s size is constant and not dependent
on the number of entries carried by the IBF. PSync and syncps
carry the IBF in the Sync Interest and thereby add the IBF’s
size to periodically sent messages. By encoding the IBF in
Interest packets, the maximum Interest packet size implicitly
limits the IBF’s size. This size limitation impacts scalability
since it effectively caps number of possible data streams. The
iSync protocol carries the IBF in Data packets and broadcasts
a digest representing the IBF in Interests only. The IBFs are
delivered in Data packets only when the digest changed. This
reduces the protocol overhead compared to PSync and syncps.

In ChronoSync and RoundSync, a digest is appended to
the Sync Interest’s name, and the response Data contains
updates to the dataset only. Those updates contain the prefix
and the latest sequence number of producers who published
new data. In case of simultaneous publishing, sync participants
send additional Interests with exclude filters that enumerate
implicit digests of all the previously received replies. This may
cause the size of the Interest packets to grow linearly with the
number of simultaneous replies.

In CCNx 0.8 Sync, the size of the NodeFetch reply packets
is proportional to the number of children under the requested
node in the sync tree. Depending on the name tree structure,
the protocol requires multiple NodeFetch packets to resolve
all differences. In CCNx 1.0 Sync, the size of the manifest
is proportional to the number of the included data names,
representing the state of the complete shared data.

State vector-based protocols append the state vector to the
periodic Sync Interest’s name. The state vector’s size depends
on the number of sync participants (resp. number of data
streams) and growing the vector beyond the maximum Interest
size is not possible. In terms of the Sync Interest that notifies
about new changes, different design choices are observed.
In Vector Sync, a publishing node only includes the highest
sequence number of its own data stream. SVS and most other
designs include the whole state vector in the Sync Interest,
which increases the packet size but possibly contributes to
resolving inconsistencies faster.

V. OPEN ISSUES

In this section we discuss open research issues in distributed
dataset synchronization that have not been addressed by ex-
isting sync protocols discussed in this report.

A. Routing Scalability

All NDN sync protocols rely on Sync Interest multicast for
dataset state update exchanges with all the participants in a
sync group. Interest multicast on the Internet with the individ-
ual participants being distributed over a continent might lead to
challenges concerning multicast routing scalability. Supporting
Interest multicast on the forwarding-plane requires the per-
application multicast prefixes being announced everywhere
where sync nodes reside. On a global scale with potentially
many different sync groups, routing per-application multicast
prefixes might not be feasible.

In the context of NDN, routing scalability is a well-
discussed topic. Zhang et al. [28] indicate several proposed
solutions to overcome scalability issues. One potential solution
is using forwarding hints [29]. With forwarding hints, a
differentiation between Data identifiers and locators is made.
An identifier is a name that uniquely identifies a piece of infor-
mation and represents names that are relevant for applications.
Locators are names that indicate the possible location where
Data can be found and is thereby relevant for the forwarding
plane only. Forwarding hints are appended to Interests for
routing it towards a location; when reaching the location, the
forwarding hint is removed for identifier-based forwarding in
the local network. The concept of forwarding hints removes
the need for routing application-level names on the Internet
and thereby allow for higher scalability.

Besides, other approaches for overcoming routing scal-
ability issues are discussed. Among them, utilizing Data
rendezvous, or self-learning. For more information, we kindly
refer the interested reader to [28], which provides an overview
of existing solutions.
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B. Group membership management

Some functionality, such as snapshot creation, requires a
consistent view on the sync group’s members. So for instance,
VectorSync generates group-wide snapshots of the published
data. To do do, VectorSync protocol needs to maintain a
consistent view among all participant in a sync group.

Only a subset of existing sync protocols maintain group
membership information. Some protocols, such as CCNx 0.8
Sync, or iSync do not use the concept of a sync group at
all. In these protocols, the sync state does not reflect the
participant’s identities that are maintaining the shared dataset.
When applications need this information, the group concept
has to be built by the application on top of the sync protocol.
Especially when focusing on security a sync group concept
might yield advantages. Having the group concept in sync
could allow eg. to prevent data generation by unauthorized
users on the network-level.

C. Consistency and data ordering

Consistency in distributed systems has been studied for
decades. Strong consistency models such as linearizability [30]
enforce a global total ordering of events observed by every
node in the system. Weaker consistency models relax the
ordering requirements in different ways. In particular, a sys-
tem with eventual consistency allows to diverge and expose
inconsistent states during the system execution, as long as it
eventually resolves the inconsistency.

For consistency discussions, two factors need to be kept in
mind: a) the consistency requirement varies among different
applications, and b) existing tradeoffs between consistency and
availability might be considered. The primary goal of sync
protocols is to facilitate multi-party data-centric communi-
cation in distributed systems. Therefore existing NDN sync
protocols support weak consistency that favors availability
over consistency. Sync protocols allow participants to publish
and propagate new data at any time. Without permanent
network failure, all sync nodes will eventually receive all data
packets published by others. Different consistency models can
be implemented on application-level on top of sync protocols
to meet the application’s requirements.

VI. CONCLUSION

This report presents an overview of the distributed dataset
synchronization problem in NDN and a survey of twelve
existing sync protocols. By summarizing and comparing their
protocol design, we articulate the different design choices
made in existing sync protocols together with their advantages
and limitations. We hope that new sync protocols developed
in the future can benefit from past experience, as described in
this paper, and address the open issues with innovative ideas.
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