
Distributing the Game State of Online Games:
Towards an NDN Version of Minecraft

Philipp Moll, Sebastian Theuermann, Hermann Hellwagner
Institute of Information Technology

Klagenfurt University
{fistname}.{lastname}@aau.at

Jeff Burke
School of Theater, Film and Television

UCLA
jburke@remap.ucla.edu

Abstract—Online games nowadays play an undeniably im-
portant role in the entertainment industry. The continuously
increasing popularity of these services goes hand in hand with
increased complexity of technical challenges. The networking part
of current games relies on decades-old technologies, which were
never intended to be used for today’s large-scale online games.
Replacing the currently used connection-oriented networking
approach by a content-centric architecture could yield advantages
reaching beyond only avoiding inefficiencies found in IP-based
online games. We propose a concept for a distributed Minecraft
architecture, making use of these advantages by utilizing Named
Data Networking (NDN) as the architectural basis. Our design
decisions were guided by the insights we gained from examining
Minecraft as a representative of current online games.

I. INTRODUCTION

Gaming plays a remarkable role in the modern entertain-
ment industry, becoming more important every year. Accord-
ing to the annual report of the Entertainment Software Asso-
ciation (ESA)1, the US video game industry alone generated
USD 36 billion in revenues in 2017 resulting from 2.6 billion
people worldwide playing video games that year.

Besides the success in entertainment, games are a driv-
ing force behind the development of various hardware and
software products. The possibility to interact with others in
a shared, virtual environment in real-time is a well-known
concept of online multi-player games, but is increasingly
adopted by other applications as well. Using VR for multi-user
conferencing in virtual environments [1] is only one example
where technologies originating from video games are used for
professional applications outside the entertainment sector.

Despite the popularity and importance of gaming, the net-
working part of computer games continues to rely on decades-
old technologies. These technologies were never intended to
be used for low-latency communication and efficient one-to-
many information dissemination, which is part of the reason
for overloaded game servers, especially at peak hours. When
developing new applications based on gaming platforms, it is
important that those platforms are built on a reliable base.
This is one reason why we focus on replacing the current
networking layer of games with a technology better suited to
fulfill the requirements of modern gaming.

1https://www.esaannualreport.com/a-letter-from-michael-d.-gallagher.html,
last accessed: 2019-01-31

Named Data Networking (NDN) [2] is a future Internet
architecture with a strong focus on content instead of connec-
tions, and comes with advantages such as an inherent multicast
functionality and security already implemented at the packet
level. In NDN, a system-wide unique name is assigned to each
piece of information. When requesting information, a so-called
Interest packet carrying the name of the information is emitted
and forwarded through the network based on the name, until a
copy of the requested information is found. This information
is encapsulated in a Data packet and sent back to the requester
on the reverse path of the Interest.

When thinking about the distribution of the game state
of online games as an information (or, content) distribution
problem, where each part of the state is an individual piece of
information, content-oriented approaches generally seem to be
better suited than our current connection-oriented IP architec-
ture. This is what motivates us to replace the networking part
of the well-known game Minecraft by the content-centric NDN
architecture. Apart from being representative for many online
games, Minecraft has a highly modifiable game world and a
richer feature set than many other online games. The content-
centric nature of NDN could be used to split this modifiable
world into small pieces, allowing to distribute the game state,
which opens the possibility to form multi-server or peer-to-
peer architectures. This paper represents the initial work on
this endeavor and presents the basic concepts of this effort.

II. RELATED WORK

The mismatch of the capabilities of IP-based architectures
and the networking requirements of modern games is dis-
cussed and indicated by the simulation of network traffic of
the popular Battle Royale game Fortnite in [3]. Chen et al. [4]
argue that client-server architectures for games do not scale
in IP; they present a decentralized content-oriented gaming
architecture, which outperforms an IP-based architecture in
simulation and emulation. Wang et al. [5] create a demonstra-
tion showing the practicability of NDN for games. They apply
a sophisticated naming scheme to request information about
objects in the proximity of a player.

III. WHAT IS MINECRAFT AND HOW DOES IT WORK?

The game Minecraft is a 3D sandbox construction game
with online multi-player capability. The game world is proce-



durally generated and players have the means to change every
single part of the game world. The world, which is almost
infinite in size, is built out of cubic blocks. Those blocks can be
destroyed, or they can be placed by players to create buildings
or all other imaginable structures. In addition to this building
feature, the game mechanics allow to craft different types of
items or to compete against monsters or other players.

Despite the unusual and intentionally simplistic graphics of
Minecraft, the game is currently very popular. In 2018, 91
million users actively played Minecraft2, and it ranges among
the top 20 games on the live streaming video portal Twitch3.

A. Minecraft as a Research Platform

One reason for the success of Minecraft is the vibrant com-
munity effort to improve the game, by means of modifications,
and the permissive stance of Minecraft’s publisher towards
those modifications.

This openness allows to modify the network stack, which
was already demonstrated by the work of Engelbrecht et
al. [6], who created a distributed version of Minecraft based on
TCP/IP. Besides the possibility to use Minecraft for research
on networking, game elements and mechanics of Minecraft
are well-documented4 and an extensive protocol specification5

exists, which eases research using the game.
Another reason for choosing Minecraft as a platform can be

seen when focusing on the game elements in Minecraft, which
are similar to those found in many other games. The possibility
to permanently influence and change the game world is seen
in many building games. The low-latency demands known
from games of the shooter genre can be found in player-
versus-player game modes supplied by community plugins
for Minecraft as well. Also, when considering the possibility
to extend the game to a peer-to-peer version, the fact that
every player can change the complete world leads to important
research challenges.

B. Minecraft Internals

When trying to improve a system like a game, it is important
to understand the main components of the game first. For
this work, we take Minecraft as a representative for online
games, highlighting that many elements of games and the core
concepts of online games are more or less the same for most
state-of-the-art games. In this section, we dissect the Minecraft
world into the smallest parts and describe the basic process of
the game simulation.

1) Game World: In this paper, the umbrella term object
summarizes all game elements of Minecraft, which are out-
lined in Fig. 1. Blocks are the structural components defining
the game world in Minecraft. Individual blocks are defined by
their material and additional block-specific data. The whole
state of a block can be encoded in only a few bytes.

2https://www.gamesindustry.biz/articles/2018-10-02-minecraft-exceeds-90-
million-monthly-active-users, last accessed: 2019-01-31

3https://www.twitch.tv/, last accessed: 2019-01-31
4https://minecraft.gamepedia.com/Minecraft Wiki, last visited: 2019-01-31
5https://wiki.vg/Protocol, last accessed: 2019-01-31

Object

Block

Living
Entity

Non-living
Entity

Player Mob Item Projectile

Block 
Entity

Entity

... ..
.

Chunk
(16 Sections)

Section 
(16 x 16 x 16 Blocks)

Fig. 1. Hierarchical structure of the objects of Minecraft’s game state and
organization of blocks in sections and chunks.6

Whereas blocks represent static structural components, en-
tities represent dynamic objects. Entities can be classified
into block entities, living entities, and non-living entities. A
block entity can be seen as a complex block which allows
user interaction. Entities which can freely wander around
in the world can be seen as living entities. Living entities
can be mobs, which are creatures controlled by the game
server, or player avatars. In contrast to the almost unrestricted
movement possibilities of living entities, the behavior of non-
living entities can be easily predicted by simply applying
physics. Items are one representative of non-living entities.
An item lies around in the world after it is either dropped by
a living entity or by harvesting a block. Projectiles, such as
arrows, once created fly through the world until they hit an
object.

The game state of Minecraft is represented by all objects
which exist in the world. The structure of the world is defined
by blocks; entities breathe life into the otherwise uneventful
world. Each block in the Minecraft world can be identified by
a coordinate triplet. However, for storage purposes, blocks are
organized into groups of 16x16x16 blocks, which are referred
to as sections. A chunk consists of 16 vertically stacked
sections. The right part of Fig. 1 visualizes this structure.

The dynamic behavior of entities and the fundamental
differences between different types of entities call for a flexible
way of storage, which is why the concept of Named Binary
Tags (NBTs)7 is used. NBTs store entities and their attributes
as binary strings in a tree-like representation.

2) Game Simulation: The game state needs to change over
time. Games can be seen as simulations evolving in defined
time intervals, referred to as tick intervals. Events occurring
during a tick interval are applied to the game state and result
in a new state after the tick interval has elapsed. In Minecraft,
the tick interval is 50 ms, which means that 20 different game
states are traversed each second.

In order to save computing resources, the simulation of
Minecraft’s almost infinite world is restricted to the parts of the
world roughly enclosing the Area of Interest (AoI) of players.
The world outside of this simulated area stays frozen, where
the game state stops evolving until the area is vivified due to
becoming part of a player’s AoI again.

As typical for a client-server setting, the server manages the
primary copy of the game state and distributes replicas of the

6Parts of the image are adopted from https://minecraft.gamepedia.com.
7https://minecraft.gamepedia.com/NBT format, last accessed: 2019-02-01



Fig. 2. Spatial distribution of the information carried by client-bound packets.

game state to all clients. When a client wants to control the
player avatar, it sends a control command to the game server,
which processes all commands received during a tick interval
and thereby creates a new game state, which is distributed as
replicas to all clients after the tick interval has elapsed.

IV. ANALYZING IP-BASED MINECRAFT

Before building a system for gaming over NDN, the current
state-of-the-art is analyzed, and it is evaluated which aspects of
current systems can be improved. Therefore, we analyze how
the internal game state of a Minecraft server changes over time
and how data is sent to clients, by analyzing network traffic
produced during a multi-player Minecraft session.

Besides reviewing the public documentation of Minecraft, a
static code and protocol analysis was conducted, but also the
dynamic behavior was analyzed by conducting an experiment
including four persons playing Minecraft. The players in the
experiment were instructed to build a nether portal. These
game elements allow players to travel from the inital Minecraft
world to the nether dimension, which is a hidden part of the
world, but worth going to because of various factors. The
players were further instructed to build the portal as a team
and to form two groups to complete all sub-tasks required
for building such a portal. This reflects common behavior
for collaborative Minecraft playstyles. The experimental setup
consisted of a dedicated Minecraft server (Minecraft version
1.12.2) and four laptops connected to the server via a local
network. Encryption of Minecraft payload was disabled to
allow for easier traffic analysis. The experiment resulted in
a Minecraft network trace and an observation on how the
server’s internal game state changes over time, which are
analyzed and discussed in the following.

A. Network Traffic of Minecraft

The network traffic during the game was recorded by using
the network traffic analyzer TCPDUMP8 on the server side.
The Minecraft protocol specification was used to map TCP
traffic to Minecraft packets and to extract game specific infor-
mation like entity IDs or the geographic position of objects
in the game world. This allows to distinguish between pack-
ets containing information about blocks and other structural
components of the game world (referred to as block packets)
and packets containing information about entities (referred to
as entity packets).

8https://www.tcpdump.org/, last accessed: 2019-01-28

Focusing on map regions which were updated by network
packets during the game, visualized in Figure 2, we can see
that a large map region is covered by network packets, but
the largest part of packets is focused on only a few chunks in
the center of the covered region. The area covered by network
packets ranges from chunk indices X ∈ {−32, ..., 8} and Z ∈
{−9, ..., 28}, where X represents chunk indices on the east-
west axis and Z indices on the north-south axis of the map.

When interpreting the figure and keeping the players’ in-
structions in mind, we see that the individual player avatars
are close-by on the map and assume that also the AoIs of the
individual players overlap. A game state update happening in
the AoI of a player means that a packet carrying the update
has to be transmitted to the player. Overlapping AoIs mean
that multiple players require the information about the same
update. Because the current trace mostly carries information
for a small map region only, we assume that benefits from
multicasting information can be realized.

To quantify possible benefits achievable by using mul-
ticast, we mapped the information from entity packets
to (chunkId, tickNo, entId, pType) quadruples, where the
chunkId uniquely identifies the chunk where the game state
update occurred, tickNo represents the calculated tick number
since the start of the game, entId denotes the unique identifier
of the entity causing the update, and pType specifies the
packet type according to the protocol specification.

A quadruple uniquely identifies a packet because a unique
entity can perform the same action only once per tick.
Therefore, duplicated quadruples identify packets carrying the
same information redundantly to different clients. We count
2, 646, 065 different entity packets, but only 1, 004, 554 unique
quadruples. Interpreting these amounts, we find that about 62%
of all packets are sent redundantly and could be eliminated by
utilizing an efficient multicasting system.

Further classifying entity packets by grouping them by type,
we can find four different entity types in the network trace. The
classified entity types are players, mobs, items, and projectiles.
Reflecting the nature of these entity types, we know that living
entities are far less restricted in what they can do compared to
non-living entities. This can also be observed when focusing
on the inter-packet intervals of the found entity types (Fig. 3).

As can be seen in Fig. 3, for arrows, the boxplot box
– representing the center 50% of the data – is so narrow

Player
0

20

40

60

80

100

In
te

r-
p
a
ck

e
t 

in
te

rv
a
l 
[t

ic
k
s]

Median
2

Mean
3.10

Item
0

20

40

60

80

100

Median
60

Mean
39.36

Mob
0

20

40

60

80

100

Median
3

Mean
27.51

Arrow (projectile)
0

20

40

60

80

100

Median
20

Mean
20.42

Inter-packet intervals per entity type

Fig. 3. Inter-packet intervals of entity packets reflecting the predictable
behavior of different entity types.



that it even disappears in our representation, meaning that in
most cases the interval between consecutive arrow packets is
20 ticks (1 second). This comes because it is not necessary
to update the state of arrows more frequently, because the
way arrows glide through the world is predictable. The inter-
packet interval for items is less regular, but usually also quite
large, most likely because the behavior of items is influenced
by changes in the world structure (e.g., items falling down if
the ground beneath them is destroyed). For mobs and players,
however, the inter-packet interval is usually very small with
a median of 2 for players and 3 for mobs, resulting from the
unpredictable behavior of living entities. For every movement,
updates need to be sent. The long upper whiskers most likely
result from periods where objects left the AoI of a client and
reentered later.

B. Tracing Changes in the Game State

A Minecraft server plugin was created to observe game state
changes in the Minecraft world. The plugin creates snapshots
of the game state at fixed intervals of 500 ms. By comparing
two consecutive snapshots, changes of the game state can
be calculated. The plugin labels game state changes with the
current server time and stores them in log files, allowing to
analyze the changes in a later post-processing step.

The comparison of game state snapshots results in a fine
grained list of changes. The idea is to make the model of
the game state changes as accurate as possible. By analyzing
the change log, a lower and upper bound for the size of the
game state changes between two consecutive snapshots can
be calculated. The lower bound involves only the number of
actually changed bytes without indication of where to apply
the changes. For the upper bound, changes to a block or entity
are always counted as if all properties of a block or entity
would have changed (transmission of the whole block/entity),
including information on where to apply the changes. Entity
changes make up a large portion of the state change size since
the full NBT representation of an entity is considerably larger
than the full state of a single block. There were always at least
250 concurrently active entities during the recorded multi-
player session. About 73% of all changes to entities affected
living entities and 27% non-living entities. Fig 4 illustrates the
lower and upper bounds calculated for the example Minecraft
session. Interpreting the figure, it becomes noticeable that
entity state changes are the primary contributor in terms of
game state update size. Also, the amount of entity changes
seems to stay roughly the same for longer time periods, while
block changes tend to occur in bursts. For the lower bound,
the mean size of the state changes is about 2.5 kB, while the
mean size for the upper bound is about 140 kB. We expect
the actual size of game state updates for a game server with a
comparable number of simulated chunks and a similar update
interval to be close to the lower bound.

The sum of changes over the whole session was about
14.7 MB for the lower bound and about 845 MB for the upper
bound. Table I breaks down the total number of changes and
relative size of all changes for blocks and entities in greater

0 1000 2000 3000 4000 5000 6000
Time [s]

0
200
400
600
800

Si
ze

 [k
B]

Sum of all changes over time
upper bound
upper bound (avg)
lower bound
lower bound (avg)

0 1000 2000 3000 4000 5000 6000
Time [s]

0
200
400
600
800

Si
ze

 [k
B]

Entity changes over time
upper bound
upper bound (avg)
lower bound
lower bound (avg)

0 1000 2000 3000 4000 5000 6000
Time [s]

0

200

400

600

800

Si
ze

 [k
B]

Block changes over time
upper bound
upper bound (avg)
lower bound
lower bound (avg)

Fig. 4. Lower and upper bounds for the size of game state snapshot
differences.

detail. Although the number of block changes is significantly
larger than the number of entity changes, the collective size of
block changes is small compared to the size of entity changes.
So, while changes to blocks happen more often on average,
their size is dwarfed by the size of entity changes.

Number Size (lower) Size (upper)
abs. % MB % MB %

Block changes 1,271,803 81.2 1.7 11.5 16.4 1.9
Entity changes 294,088 18.8 13.0 88.5 828.2 98.1
Total changes 1,565,891 100.0 14.7 100.0 844.6 100.0

TABLE I
SUMMARY OF BLOCK AND ENTITY CHANGES.

Throughout the gaming session, the number of chunks
simulated by the server was around 500, except for a short
duration with about 1000 simulated chunks, where the player
avatars were separated in different dimensions of the game
world. The median of the number of changed chunks per
second was 30 (mean: 31.2, std. dev.: 13.4), which means
that only a small fraction of all simulated chunks did change
between consecutive snapshots. The mean number of changed
sections per changed chunk was 1.15 (std. dev.: 0.19), meaning
that usually only one section per chunk changes.

V. TOWARDS AN NDN MINECRAFT VERSION

In this section, the insights into state-of-the-art online games
described in the last section are consolidated and used to
design a distributed NDN-based version of Minecraft. By
using the benefits of content-centric architectures, we not only
intend to match the performance of connection-driven archi-
tectures, but also introduce new possibilities for the realization
of a shared game world. The content-oriented paradigms for
sharing the global game state increase the scalability of our
proposed solution, but could be extended to a peer-to-peer
solution as well. Besides that, our proposed system avoids
inefficiencies observed in the client-server communication of
the current Minecraft implementation.

The main components of the proposed architecture are the
distribution of the game state in a server cluster and the
connection of clients to the distributed game state via NDN.



Player‘s AoI

Game state of each region managed 
by individual servers

Distribution of the 
game state 

among servers

Avatar controlled 
by client

Client sends avatar 
movements and receives 

updated game state

Fig. 5. Overview of the NDN-based Minecraft architecture.6

A high-level picture of the components and their interplay is
given in Figure 5.

The distribution of Minecraft’s game state is achieved by
applying the zoning approach [7], where each server manages
the primary copy of the game state for a defined map region.
Immutable replicas of the server’s primary copy are distributed
to the other servers of the multi-server architecture. Finally,
each server can than infer a global game state by using the
received replicas. Details on the game state distribution can
be found in Section V-A.

When connecting clients to the distributed game state
using NDN, fulfilling low-latency demands while avoiding
inefficiencies found in IP-based solutions are our primary
goals. Therefore, latency-tolerant and latency-critical traffic is
handled using different methods. Latency-critical game state
updates in the AoI of the player are handled by the Notify and
Polling approach, introduced in Section V-B. The distribution
of structural information of the world, which is latency-tolerant
information, can benefit from NDN’s inherent multicast and
in-network caching functionalities.

A. Distributing the Game State

The game world in Minecraft consists of independently
managed chunks. This separation into comparatively small
independent parts can be exploited by letting separate servers
simulate different regions of the game world. The amount of
work for an individual server would thereby be limited to
managing the primary copy of the game state of all chunks in
its region. In order to deduce a global game state for the whole
world, servers then have to exchange game state information
with each other.

Our proposed system beneficially uses this concept by
utilizing a server cluster to distribute the computational effort
arising by simulation of chunks, in order to increase the
scalability of the overall system. The real complexity of this
concept lies in the synchronization of the distributed game
state. This becomes necessary during simulation when inter-
dependencies between the individual chunks arise. Examples
for such interdependencies are trees growing across chunk
boundaries or living entities entering and leaving chunks.

Understanding the game state of individual chunks as con-
tent which changes over time, the game state synchronization

among the nodes of the server cluster becomes a content distri-
bution problem. By naming individual chunks and versioning
the changes over time, the game state of each chunk can be
separately requested, decoupling the data from the producing
server. Decoupling the game state from the server allows for
more flexibility on where to persist the state, resulting in higher
reliability in case of server outage.

One way to implement the game state synchronization by
using content distribution approaches is to use distributed
dataset synchronization protocols, such as the NDN-based
PartialSync (PSync) protocol [8]. PSync allows servers to
subscribe to the game state managed by other servers in
order to be notified when new state information is available.
Once notified, the actual game state update can be retrieved
by classical Interest/Data packet exchange. This approach
supports a very fine-grained control of the state updates a
server receives.

B. Connecting Clients to the Distributed Game State

This section describes the concepts used to connect clients
to game states hosted by (potentially multiple) Minecraft
servers via the NDN protocol. We first reformulate our obser-
vations of current IP-based systems and infer efficient NDN-
based solutions for tackling the observed inefficiencies. For
connecting the clients, latency-tolerant traffic and latency-
critical traffic needs to be handled differently. Latency-tolerant
traffic is intended for distributing structural information of the
world, the latter one for game state updates in the AoI of
clients.

1) Distributing Structural Information of the World: In the
current IP-based implementation, the Minecraft server pushes
structural information in the form of encoded chunk data
to the client. Those encoded chunks can be up to a few
kilobytes in size. Considering that structural information often
does not change for long periods, sending this heavy type of
data through the network whenever required by the client is
inefficient, which is why using in-network caching, but also
multicast could result in benefits.

When bringing this procedure to NDN, two issues need to
be addressed. First, the current situation should be improved
and only encapsulating information in NDN packets does not
utilize the full potential of NDN. Second, NDN as a pull-
based system does not support pushing data from the server
to a client, as it is done in IP.

To enable multicasting and in-network caching of chunk
data, a potential naming scheme is outlined. The geographic
position of a chunk, which uniquely identifies it, is used as a
name component. To be able to distinguish between the newest
version and outdated versions of a chunk, an additional version
field, which is increased whenever the structural information
of the chunk changes, is added to the name. Resulting names
could be structured as follows:

/<app-pfx>/<game-pfx>/<chunk-loc>/<chunk-ver>

The app-pfx component specifies Minecraft as the applica-
tion and the game-pfx the target game instance. The chunk-



loc component uniquely specifies a chunk of the world, while
chunk-ver is used to address a specific version of the chunk.

Instead of pushing structural information to clients, the
server only notifies clients about which chunks to retrieve. For
retrieving the chunks, classical Interest/Data exchange is used.
Applying this concept, only the small notification messages are
unicasted to relevant clients. The use of classical Interest/Data
leads to the automatic use of NDN’s built-in multicasting and
in-network caching functionalities.

2) Latency-critical Game State Updates: Game state up-
dates in the AoI of the client can be seen as latency-critical
information, which is usually pushed through the network to
keep the latency as low as possible. As push functionality is
not directly available in NDN, we use Notify and Polling to
achieve push-like behavior for parts of the information.

As analyzed in Section IV, the largest part of the game
state changes is caused by entity updates. The traffic carrying
updates for different entity types shows rather distinctive
patterns. In general, living entities produce data every two
to 20 ticks, whereas non-living entities produce data in larger
intervals ranging between 10 and 60 ticks9. This allows clients
to poll game state updates of entities by using classical
Interest/Data exchange, where the interval between polling
updates is specified by the update rate of the entity. The length
of this polling interval can be adapted by simple heuristics, to
better meet the current demand.

If an entity stops producing data or moves out of the
client’s AoI, polling is not meaningful anymore and stops in a
defined way. If the entity starts moving again or moves back
into the AoI of the client, the polling process needs to be
restarted. Therefore, the server notifies all interested clients
by multicasting a notification. This notification can be realized
by names utilizing chunk locations as name components. The
client’s AoI can be represented as set of chunks around the
player avatar. If a client wants to be notified about changes in
a chunk, it emits a long-living Interest requesting notifications
for that chunk. As soon as the necessity for a notification
occurs, the server sends the notification as a classical NDN
Data packet as response to the pending Interest. Thereby,
the notification is automatically broadcasted to all relevant
clients. An increasing sequence number as last part of the
name of a notification can further be used for loss detection
and recovery. After receiving the notification, the client can re-
/start the polling process for the relevant entity. This interplay
of notifying clients and polling game state updates is referred
to as Notify and Polling approach.

VI. CONCLUSION

In this paper, we analyzed the internals of Minecraft as a
representative for state-of-the-art online games and showed
inefficiencies common to IP-based games. We proposed a
concept for a distributed, NDN-based version of Minecraft,
which distributes the game state among multiple servers in or-
der to improve scalability. Furthermore, the proposed concept

9Sharper interval bounds can be specified when focusing on individual
entity types.

avoids inefficiencies found in IP-based implementations by
utilizing NDN’s inherent multicasting and in-network caching
functionalities. The proposed concepts can be used to manage
the distributed game state in a multi-server architecture as well
as to connect clients to a distributed game state.

In order to evaluate the suitability of the concepts and to
refine them, the next step is to realize them in the form
of real-world prototypes. We already began extending the
existing Minecraft implementation with functionality required
for distributing the game state over multiple servers and
building a proxy to connect the standard Minecraft client to
this cluster over NDN, as proposed in [9].

The implementation and evaluation of the concepts dis-
cussed in this paper is only the first step towards utilizing
the full spectrum of NDN-based solutions to improve the net-
working part of online games. Besides reducing inefficiencies,
NDN could help in other aspects, such as increasing reliability
as well. While recovering from server failures is only little
effort in content-centric architectures, a self-organizing cluster,
formed via NDN sync protocols such as VectorSync [10], could
optimize resource usage, e.g., by dynamically splitting high-
activity map regions to multiple servers or by merging idle
regions and thereby increase player QoE and reduce the usage
of server resources at the same time. Extending this idea could
result in the full distribution of Minecraft’s game state in the
form of a peer-to-peer system.

Software artifacts and traces originating from this work are
published as open source artifacts on Github (https://github.
com/phylib/MinecraftNDN-RAFNET19).

REFERENCES

[1] S. N. B. Gunkel, H. M. Stokking, M. J. Prins, N. van der Stap, F. B. t.
Haar, and O. A. Niamut, “Virtual Reality Conferencing: Multi-user
Immersive VR Experiences on the Web,” in Proc. 9th ACM Multimedia
Systems Conference (MMSys), 2018, pp. 498–501.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
ACM SIGCOMM Comput. Commun. Rev., vol. 44, pp. 66–73, July 2014.

[3] P. Moll, M. Lux, S. Theuermann, and H. Hellwagner, “A Network Traffic
and Player Movement Model to Improve Networking for Competitive
Online Games,” in Proc. 16th Annual Workshop on Network and Systems
Support for Games (NetGames), 2018, pp. 1:1–1:6.

[4] J. Chen, M. Arumaithurai, X. Fu, and K. Ramakrishnan, “G-COPSS:
A Content Centric Communication Infrastructure for Gaming Applica-
tions,” in Proc. IEEE 32nd Int’l. Conference on Distributed Computing
Systems (ICDCS), 2012, pp. 355–365.

[5] Z. Wang, Z. Qu, and J. Burke, “Matryoshka: Design of NDN Multiplayer
Online Game,” in Proc. 1st International Conference on Information-
Centric Networking (ICN), 2014, pp. 209–210.

[6] H. A. Engelbrecht and G. Schiele, “Transforming Minecraft into a
Research Platform,” in Proc. IEEE 11th Consumer Communications and
Networking Conference (CCNC), 2014, pp. 257–262.

[7] A. Yahyavi and B. Kemme, “Peer-to-Peer Architectures for Massively
Multiplayer Online Games,” ACM Computing Surveys, vol. 46, no. 1,
pp. 1–51, Oct. 2013.

[8] M. Zhang, V. Lehman, and L. Wang, “PartialSync: Efficient Synchro-
nization of a Partial Namespace in NDN,” NDN, Tech. Rep. NDN-0039,
2016.

[9] T. Liang, J. Pan, and B. Zhang, “NDNizing Existing Applications:
Research Issues and Experiences,” in Proc. 5th ACM Conference on
Information-Centric Networking (ICN), 2018.

[10] W. Shang, A. Afanasyev, and L. Zhang, “VectorSync: Distributed
Dataset Synchronization over Named Data Networking,” NDN, Tech.
Rep. NDN-0056, 2018.


