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Abstract—The Internet can be made more efficient and robust
with hop-by-hop multipath routing: Each router on the path can
split packets between multiple nexthops in order to 1) avoid failed
links and 2) reduce traffic on congested links. Before deciding
how to split traffic, one first needs to decide which nexthops to
allow at each step. In this paper, we investigate the requirements
and trade-offs for making this choice.

Most related work chooses the viable nexthops by applying
the “Downward Criterion”, i.e., only adding nexthops that lead
closer to the destination; or more generally by creating a Directed
Acyclic Graph (DAG) for each destination. We show that a DAG’s
nexthop options are necessarily limited, and that, by using certain
links in both directions (per destination), we can add further
nexthops while still avoiding loops. Our solution LFID (Loop-
Free Inport-Dependent) routing, though having a slightly higher
time complexity, leads to both a higher number of and shorter
potential paths than related work. LFID thus protects against a
higher percentage of single and multiple failures (or congestions)
and comes close to the performance of arbitrary source routing.

I. INTRODUCTION

While traditional routing protocols (like OSPF [24] or IS-IS
[2]) send packets on the shortest path from source to destination,
there are now many recognized benefits of using multiple non-
shortest paths [14], most importantly 1) failure protection:
routing around link/node failures, and 2) traffic engineering:
distributing the traffic load to avoid congestion.

A common approach to failure protection is IP Fast Rerout-
ing (IPFRR) [30], which provides alternative nexthops for quick
local packet detours on the data plane. Compared to shortest
path routing, IPFRR has clear benefits: it can reroute packets
almost instantly instead of waiting for routes to converge (often
hundreds of milliseconds), which avoids loops and packet drops
during the convergence phase [30].

A common approach to traffic engineering is to use end-to-
end (E2E) tunnels where the source (ingress) node determines
the entire path towards the destination, as done by MPLS [33] or
segment routing [10]. Though frequently used in practice, E2E
traffic engineering does have certain downsides: 1) Scalability:
endpoints need to select a small number of actual paths from an
exponential number of potential ones, trading off path diversity
and path length. 2) Data plane overhead: packets need to carry
additional headers to steer them through the network.

In this work, we consider an approach to combine both
failure protection and traffic engineering: Hop-by-Hop (HBH)
Multipath Routing, which shares the benefits of IP Fast
Rerouting (instant failure protection without relying on routing

Dest. NH Cost Split

LA SV 2 100%

DV DV 1 100%
SV 2 0%

NYC DV 5 60%
SV 6 40%

. . .

(a) FIB for Seattle (b) Abilene Topology

Figure 1: Ex. of HBH Multipath Routing. Depending on the
destination, Seattle uses either 1 or 2 nexthops. The cost denotes
the shortest path (in hops) of using a certain nexthop. The split
ratio can be adapted to react to link failures or congestion.

convergence) and also provides traffic engineering without
per-packet overhead by distributing the path/nexthop decision
throughout the network. In HBH Multipath Routing, each
router’s FIB is equipped not with a single nexthop per
destination, but with a set of nexthops. Every router on the
path (not just edge routers) can then steer traffic by changing
the split ratio for each of its nexthops (not for the entire path)
– see an example in Figure 1. These nexthops can be used both
for failure protection (instantly reset the split ratio to 0%) and
for reducing congestion (gradually change the split ratio).

HBH Multipath Routing comprises two fundamental steps:
First, one needs to decide which nexthops to put in the FIB
and what cost these nexthops should be assigned. This step
determines the potential paths that packets can take, based on
the network topology and link cost/propagation delay. Second,
one needs to determine the split ratio for each nexthop. This
step selects the actual paths from the vast number of potential
ones, considering the current network state, such as link failures
and link utilization. In this paper, we focus solely on the first
step: choosing the right nexthop set.

To choose the right nexthop set, we first establish a list of
requirements. These requirements overlap with the ones for
pure failure protection (see IPFRR in Section V), but with two
crucial differences: First, path lengths are more important: For
failure protection, backup paths are used only temporarily until
either the failed link is restored or the routing protocol finds a
better path – maintaining connectivity is more important than
optimality. But for HBH traffic engineering, multiple paths
may be used for a much longer duration, making it crucial to
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maintain a short length. Second, failed links are bidirectional,
congestion is unidirectional. Thus, if router A detects that link
(A→B) is down, it is safe to assume that link (B→A) is also
down, which extends A’s rerouting options. As a corollary of
this, one can use the incoming port of packets to infer which
other links have failed, and thus to alter forwarding decisions
[5], [34], [38], [8]. However, when splitting traffic to avoid
congestion, other nodes’ forwarding options are naturally less
restricted (due to the absence of failures), thus nexthops must
be chosen more restrictively:

1) Avoid loops for arbitrary NH choice: Packets must not
return to a node they have previously visited, even if any
number of routers can choose independently (without
communication) and arbitrarily from their nexthop set.
An example violation of this requirement is shown for
Loop-free Alternates in Section V.

2) No per-packet state: No packet-specific state is ma-
nipulated in either packet headers or the FIB. Thus,
forwarding decisions are based only on a packet’s
destination, incoming port, and currently failed links.

3) High Number of NHs: A high number of nexthops (and
thus potential paths) allows routers to circumvent more
cases of link/node failure and congestion.

4) Short Paths: The potential paths resulting from the
nexthop set should be kept as short as possible. This helps
to use the available link capacity more efficiently, and
also to reduce the end-to-end latency for delay-sensitive
traffic, like audio/video conferencing.

5) Preserve accurate path length in the FIB: The data
plane should be given an accurate estimate of the path
length caused by using a certain nexthop, to increase
traffic engineering efficiency. We show the downsides
of violating this requirement when discussing ECMP
link-weight tuning in Section II.

Existing HBH Multipath Routing schemes [25], [32], [36],
[37], [13], [27], [22], [40]) have, often implicitly, answered
these requirements with a natural solution called the “Down-
ward Criterion”: Routers only add nexthops that lead closer to
the destination. More generally, the idea is to turn the network
into a directed acyclic graph (DAG) per destination, where
arcs in the graph represent viable nexthops (see Figure 4).

We find that downward paths and DAGs satisfy requirements
1), 2) and 5), but often fall short in the number of potential
paths and sometimes lead to longer paths than necessary (see
Section II and IV). In our work, LFID, we extend the concept
of DAGs to use certain links in both directions (per destination),
but we exhaustively prune nexthops so that the remaining paths
are guaranteed to be loop-free (= acyclic) when excluding the
incoming port at each step.

Our contribution, LFID, can be interpreted in two ways:
First, it is a local failure rerouting scheme that, without using
per-packet state, gives close to optimal protection against an
arbitrary number of uncorrelated link or node failures.

Second, it is a first step towards HBH traffic engineering.
Now using a small amount of state in routing tables (the split
ratio) in order reduce the load on congested links. Here LFID

only specifies the first step: Which nexthop set to choose,
to create good potential paths. It leaves the rest to future
work, e.g., how to detect congestion, what granularity to split
(per-flow/per-prefix), or how exactly to determine the split
ratio. However, irrespective of these specifics, we show that
LFID comes close to the optimal, in number of provided
paths and with an average path stretch of only +1% (Section
IV-E). Compared to DAG-based work, LFID protects against
a higher percentage of single and multiple failures/congestions.
Moreover, LFID often provides better protection at the node
adjacent to the failure than related work can by backtracking
to earlier nodes or all the way to the source (see Section
IV-D). Lastly, LFID does have a slightly higher time and space
complexity than related work (Section III-E), but we show it
to be scalable for networks with at least multiple hundreds of
routers (Section IV-B).

LFID can be implemented as an extension of current link-
state routing; all required topology information is already
signaled in a link-state protocol like OSPF. The only changes
made are to the route calculation part.

II. INCREASING THE NEXTHOP CHOICE

We first discuss related work that meets at least the first two
requirements: being loop-free when routers arbitrarily choose
nexthops, without using per-packet state. Later in Section V, we
discuss work in the area of IP Fast Rerouting (IPFRR) which
either requires per-packet state, or restricts nexthop choice,
for example, to only use backup nexthops once all primary
nexthops are down.

The earliest and simplest of the related work is Equal Cost
Multi-Path (ECMP) routing [3], in which a router uses all
nexthops that share the exact shortest path cost towards the
destination1. ECMP paths are always loop-free and as short
as possible. However, the constraint of equal cost matching
creates a dilemma: the more fine-grained the link cost metric,
the less nexthops will be available. For example, using the
inferred link weights of the Rocketfuel topologies (ranging
from 1 to 22.5, in steps of 0.5), only 9.7% to 16.8% of nodes
can protect against the failure of an adjacent link (see Figure
9 in Section IV). If the link metric is set to the hop count
these numbers rise to 29.4% to 59.4%, but this ignores the
real cost of paths (e.g., determined by physical distance), and
still provides less protection than the work discussed below.
Lastly, some work [12], [11], [15] suggests to further increase
the number of equal-cost paths by carefully tuning the link
weights to that goal. This does increase the nexthop choice,
but also violates requirement 5 (preserving the real path cost),
with undesirable results: Now, the forwarding plane treats some
paths of different length as equal, which leads to inefficient use
of network resources and higher end-to-end delay. Consider
the example in Figure 2 for traffic from Seattle to Kansas City.
If the link metric is set to the hop count (i.e., every link has a
weight of 1), ECMP will only provide one path: SE→DV→KC

1We use the terms “path cost” and “path length” interchangeably. Similarly,
we use the terms “link cost”, “link weight”, and “link metric” interchangeably.



(a) (b)

Node NH Cost Split

SE DV 4 33%
SV 4 66%

SV DV 3 50%
LA 3 50%

(c)

Figure 2: Example of ECMP + Link weight tuning. a) Base
topology that allows only one equal-cost path. b) Topology
with changed link weights to create three equal-cost paths. c)
FIB for changed topology with destination KC.

(Figure 2a). Now, one can adjust the link weights to add a path
SE→SV→DV→KC, or even SE→SV→LA→HOU→KC, as
done in Figure 2b. However, the only way ECMP can use these
paths is to split traffic on them equally, i.e., every path receives
about 33% of traffic (Figure 2c). As long as link utilization is
below capacity, this is wasteful: some traffic that could have
used the shortest path (SE→DV→KC) is needlessly sent over
a longer path. A better approach would be to keep traffic on
the shortest path until demand exceeds its capacity, and only
then switch to the longer path. However, ECMP + link weight
tuning cannot achieve this, as it doesn’t preserve the real cost
of the path.

A higher path choice and a more accurate cost representation
can be reached by non-equal cost multipath algorithms, the
most prominent of which is the Downward Path Criterion
(DW) [14]. Downward paths relax the equal cost constraint by
including the shortest path nexthop plus any nexthop ni that
is closer to the destination (has a lower cost) than the current
node x: cost(ni) < cost(x). Downward nexthops are simple
to compute, requiring only one shortest path computation for
each neighboring node, and achieve a higher path choice than
ECMP. Thus, they are used frequently in the literature, known
under the names of Loop-Free Invariant (LFI) [35], “viable”
nexthops [25], Rule 1 (One Hop Down) Deflection Set [39],
and Relaxed Best Path Criterion [32].

One extension of Downward Paths (which we’ll call down-
ward+equal – DWE) is to also consider nexthops with the
same cost: cost(ni) ≤ cost(x). However, to prevent packets
from forming loops, one needs to add a tiebreaker which
assures that traffic only crosses one direction of the equal-cost
link. This tiebreaker could be based on the node degree [17]
or simply the node id: cost(ni) < cost(x) ∨ (cost(ni) =
cost(x) ∧ id(ni) < id(x)). This approach is still guaranteed
to be loop-free and, compared to downward paths, provides at
least as many nexthops, and often more.

A further improvement of nexthop choice is achieved by
the three algorithms from the work “Maximum Alternative
Routing Algorithm” (MARA) [26], which create a “Maximum
Adjacency Ordering”, that is equivalent to turning the network
into Directed Acyclic Graphs (DAGs). Most relevant for our
purposes are the variants MARA-MC, which “maximizes the
minimum node connectivity”, and MARA-SPE which does the
same but with the constraint to always include the shortest

(a) DAG (b) LFID

Figure 3: Triangle and Ring topologies

path tree (see Section IV).
The algorithms above all turn the network into a DAG,

with both DWE and MARA achieving the highest nexthop
choice theoretically possible in a DAG, since both use one
direction for every link for every destination (in contrast, in
ECMP and DW, some links are not used for some destinations
– see Figure 4). However, DAGs face a theoretical limit in the
failure protection they can offer: for every topology and every
destination there is at least one link that is not protected against
failure (or congestion). This is called the “last-hop problem”
[16]. Consider the simple triangle and ring topologies in Figure
3a. In a DAG, only node X will be protected against failure
of its primary nexthop.

III. MOVING BEYOND DAGS

To increase nexthop choice beyond the limits of a DAG, we
(per destination) use certain links in both directions. This leads
to many more paths, which can be used to handle both failure
and congestion: Parts of the topology that form a ring can
be traversed in both directions, leaving every node with two
paths towards the destination (see Figure 3b). And resilience to
single link failure in the Abilene topology (Figure 4) increases
from around 30% to almost 100% (see Figure 9 in Section
IV). However, when using links in both directions, one needs
to be careful to avoid loops. We do so with two mechanisms:

First, we exclude 1-hop loops at the data plane. Every
router will always exclude the incoming port of a packet from
the viable nexthop set – hence the name Loop-Free Inport-
Dependent routing. For example, if node Atlanta (ATL) in
Figure 4 receives a packet from Houston (HOU), it will only
consider Indianapolis (IN) and Washington (WA) as nexthops,
but never send the packet back to Houston.

Second, one needs to avoid loops longer than one hop.
Preferably, while also maximizing link & node protection and
minimizing path stretch. Unfortunately, there is no simple rule
like the downward criterion to do this.

Thus, we approach the problem as follows. For each
destination: First, we add all nexthops, distinguishing between
ones going closer to the destination (downward) and ones
moving further away (upward) – see Section III-A. Second,
we iterate through all upward nexthops and remove the ones
that would cause a loop (Section III-B). Here, the ordering
in which nexthops are checked is crucial. We discuss the one
that produces the best results in Section III-C. Lastly, this loop
removal process can leave certain nodes as a dead end, where
incoming packets can only return to the previous node. We
prune these dead ends in the final step (Section III-D).



(a) Downward Paths (b) DAG (c) LFID

Figure 4: Routing entries in the Abilene topology for destination Indianapolis (IN). Comparing strictly Downward Paths, a
Directed Acyclic Graph (DAG) using all edges, and Loop-Free Inport-Dependent (LFID) routing.

(a) (b) (c) (d)

Figure 5: Avoiding obvious loops. a) base topology; b-d)
candidate nexthops 1, 0, and 3.

A. Adding Nexthops & Deciding Their Cost

We assume that each link is given a cost/weight, for example,
based on its propagation delay. Given this link cost, what
cost metric should be assigned to each nexthop in the FIB?
Intuitively, it should be the cost of the shortest path a packet
can take by using this nexthop. This cost can be computed
efficiently by adding the link weight between current node x
and nexthop ni to the shortest path cost from the nexthop to
the destination: cost(x to dst via ni) = w(x, ni) + sp(ni, dst).

However, this approach has one drawback: Sometimes a
nexthop can only reach the destination by going back through
the current node, causing a loop. Consider Figure 5, where
current node X sends packets to destination D. All three
nexthops (0, 1, and 3) have the same shortest path cost of
2 hops, but only nexthop 1 can be used without looping back
to X. This flaw can be fixed by calculating the shortest path
cost of neighbors in a graph where the current node X (or
all of its links) was removed. Now, nexthops that would loop
back through X will receive a cost of infinity, thus will not be
added to the FIB (see Figures 5c and 5d).

The pseudocode for adding neighbors, while avoiding
obvious loops, is shown in Algorithm 1. For every node in the
network, we compute the shortest path (towards all destinations)
once for the node x itself and once for all of its neighbors
ni with node x removed from the graph. We then add the
nexthops to the FIB, distinguishing between downward (ni is
closer to the destination than x), upward (ni is further away),
and disabled (ni can only reach the destination through x, and
this is omitted from the FIB).

The complexity of the first half of this algorithm is as follows
(m = number of links; n = number of nodes; k = number of
neighbors per node): n (for all nodes) * k (for all neighbors) *
m+ n log n (for dijkstra’s algorithm) = O(kmn+ kn2 log n).

Algorithm 1: Filling the FIB for all nodes
Function fillFib (Graph g)

AllNodeFib fib;
forall x in allNodes do

map〈DstId, Cost〉 shortestPathCosts ← runDijkstra(g,x);
map〈nbId, map〈DstId, Cost〉〉 neighborCosts;
Remove node x from graph g;
forall ni in neighbors do

neighborCost[ni] ← runDijkstra(g,ni);

Add node x back to graph g;
forall dstId in destinations do

spCost ← shortestPathCosts.at(dstId);
forall ni in neighborCosts.at(dstId) do

totalNCost ← ni.cost + linkWeight(nodeId, ni.id);
if neighborCost < spCost then

fib[x][dstId].add(ni.id, totalNCost, DW);
else if neighborCost <∞ then

fib[x][dstId].add(ni.id, totalNCost, UW);

return fib;

The complexity of the second half is n (for all nodes) * n (for
all destinations) * k (for all neighbors) = O(kn2). Thus, the
total complexity remains O(kmn+ kn2 log n).

B. Removing Loops

After determining the cost and type of each nexthop, we
check for each one whether it will cause a loop, and remove
the ones that do. We only need to check upward nexthops, i.e.,
ones that lead further away from the destination., since each
loop contains at least one upward step. Thus, after removing
all loop-causing upward nexthops, the network is loop-free.

As shown in Algorithm 2, we simulate the network graph
for each destination (both downward and upward nexthops are
arcs in the graph). We iterate through all upward nexthops,
ordered by using a priority queue (see next subsection), and
perform the loop-check as follows: For each of the upward
nexthops (x → ni), we temporarily remove the opposite of
the upward link (ni → x), and then check whether there is a
path from ni to x. If a path exists, it means that the upward
nexthop may cause a loop and thus we remove the nexthop
(x→ ni) from the graph and from the FIB. If there is no path,
it means the nexthop cannot cause a loop, so we move on to
the next one in the list.

We give an example in Figure 6. We select upward nexthop
(3→1) for the check (b). After removing the reverse nexthop,



Algorithm 2: Removing Loops
Structure NodePrio

nodeId, remainingNh, set〈upwardNh〉;
Function removeLoops (allNodeFib)

forall dstId in destinations do
DiGraph dg ← getDigraphFromFib(allNodeFib.at(dstId));
// Queue ordered by max. remainingNh, then cost
priorityQueue〈NodePrio〉 pq;
pq.push(allNodeFib.getAllUwNexthops(dstId));
while !pq.empty() do

node ← pq.pop();
nh ← node.getHighestCostUwNh();
// Remove opposite of upward NH from graph:
dg.erase(nh.id, node.id);
// Check if Node is still reachable from uwNh:
bool willLoop ← dg.isConnected(nh.id, node.id);
if willLoop then

node.remainingNh−−;
allNodeFib[nodeId][dstId].remove(nh);
dg.erase(node.id, nh.id);

dg.add(nh.id(), node.id()); // Add opposite link back
if node.hasRemainingUwNHs() then

pq.push(node);

(a) (b) (c) (d)

Figure 6: Avoiding non-obvious loops. a) base topology; b)
candidate upward nexthop (3→1); c) BFS loop check; d)
topology afterwards.

(1→3), there still exists a path from 1 to 3 (c), thus we remove
upward nexthop (3→1) from the graph (d).

Since 1) all remaining upward nexthops will not cause loops
longer than 1 hop, 2) a sequence of downward nexthops cannot
loop, and 3) 1-hop loops are avoided by excluding the incoming
port at each step, it follows that every possible path in the
network is guaranteed to be loop-free.

C. Ordering of Nexthops

For the loop-removal step, the order of nexthops is crucial:
the resulting network is always loop-free, but some orders
require more nexthops to be removed and/or lead to longer
paths. We obtained the best results with the following order:

1) Sort all nodes by their number of remaining total
nexthops (upward + downard), starting with the node
with the most remaining nexthops.

2) If multiple nodes have the same number of remaining
nexthops, sort those by the cost of their most costly
upward nexthop (starting with the highest).

Both of these steps can be implemented efficiently by using
a priority queue filled with an ordered data structure, which we
call NodePrio (see Alg. 2). The algorithm will pick the first
node from the priority queue (which has the most remaining
nexthops, and on a tie the most costly upward nexthop), and

Algorithm 3: Removing Dead Ends
Function removeDeadEnds (allNodeFIB)

forall dstId in destinations do
set〈pair〈NodeId, FibNextHop〉〉 uwNhSet;
uwNhSet ← allNodeFIB.getUwNhs();
while !uwNhSet.empty() do

pair〈nodeId, nh〉 ← uwNhSet.pop();
// Get reverse FIB entries:
reverseEntries ← allNodeFIB.at(nh.id).countNh(dstId);

// If there is just one reverse entry: found dead end!
if reverseEntries == 1 then

allNodeFIB.at(nodeId).erase(dstId, nh);
// Push into Set: All NhEntries that lead to nodeId!
uwNhSet.push(allNodeFIB.at(dstId).getNhsTo(nodeId));

then pick its most costly upward nexthop for the loop check. If
the algorithm removes this nexthop, it will reduce the number
of remaining total nexthops for the current node, thus changing
its position in the queue. Lastly, each upward nexthop is only
checked once, so nodes without any remaining upward (not
just total) nexthops will drop out of the queue.

Nexthops that are checked for loops earlier in this process
have a higher chance of being removed, since the graph contains
more upward nexthops that can contribute to a loop. Thus,
ordering nodes by their number of remaining nexthops helps
to equalize the number of remaining nexthops after the loop
removal is complete. For example, a node with 4 nexthops
(3DW, 1UW) will be checked earlier than another one with
only 2 nexthops (1DW, 1UW), leaving the latter one a higher
chance of keeping its upward nexthop. Moreover, checking
higher cost upward nexthops before lower cost ones helps
to prune longer paths rather than shorter paths, leaving the
remaining paths shorter than otherwise.

The complexity of the loop removal is n (for all destinations)
* m (upper bound for all upward nexthops) * m+ n (for the
connectivity check) = O(mn ∗ (m + n)) = O(m2n), since
m > n. This is the most time-consuming step in our algorithm.

However, the actual runtime (Section IV-B) is much faster
than this (worst-case) complexity implies. The connectivity
check is most efficiently implemented with a bidirectional
(BFS) search, which on average runs much faster than m+n.
For example, in the Sprint topology, only an average of 32
(out of 315) nodes and 46 (out of 972) links need to be visited.

D. Removing Dead Ends

This exhaustive search through all upward nexthops avoids
all forwarding loops, but can lead to a small number of dead
ends, cases where a router receives a packet (via an upward
nexthop) but its only forwarding option is to directly return the
packet to the previous node. Fortunately, compared to loops,
dead ends are easy to detect and remove (see Algorithm 3): We
iterate through all remaining upward nexthop entries and check
which of them lead to a node with a FIB size of 1 (meaning
that the only nexthop of the neighbor is the downward nexthop
leading back to the original node). We then remove these
upward nexthops, effectively eliminating all dead ends.



Table I: Worst Case Time Complexity

Algorithm At each node Network Total

ECMP O(m+ n logn) O(mn+ n2 logn)
DW, DWE O(km+ kn logn) O(mn+ n2 logn)
MARA-MC O(mn+ n2) O(mn+ n2)
MARA-SPE O(mn+ n2 logn) O(mn+ n2 logn)
LFID O(m2n+ kn2 logn) O(m2n+ kn2 logn)

An example of a dead end is shown in Figure 6d. Nexthop
(4→3) leads to a node (3) which can only directly return the
packet (FIB size=1), thus this nexthop should be removed.

The time complexity of this step (O(mn)) is smaller than
the one of adding nexthops or removing loops.

E. Complexity Analysis

Combining the time complexity (m=links; n=nodes;
k=neighbors) of the earlier steps, we get O(kmn+ kn2 log n)
for adding FIB nexthops + O(m2n) for the loop removal +
O(mn) for the deadend removal = O(m2n+ kn2 log n).

A comparison with the related work is shown in Table I.
Similar to MARA [26], LFID has the same complexity whether
it’s run for a single node or for the whole network. Thus, it is
possible (but not necessary) to compute the routing table once
and push it to all routers. The worst-case time complexity of
LFID is higher than MARA by up to a factor of m, the number
of links in the network. However, as discussed in Sections
III-C and IV-B, the average-case runtime is much closer.

A quick note on space complexity. In LFID the router
computing its nexthops needs to store the neighbor cost and
type (DW, UW) of all nodes, not just its own. Thus, the space
complexity increases from O(nk) for computing downward
paths to O(n2k). If the node id is stored as 2 Bytes (allowing
up to 65536 nodes), the cost is stored as 4 Bytes (up to 4.3
billion), and type is stored as 1 Bit, our largest tested topology
(n=315, k=6.17) needs around 3.8 Megabytes of memory. This
should be feasible, given that current routers have memory in
the order of tens of Gigabytes.

IV. EVALUATION

In this section, we compare LFID against related work.
To emulate the multipath forwarding behavior, we implement
a custom C++ simulator, using the Boost graph library for
Dijkstra’s algorithm and BFS.

We compare 8 topologies (Table II) of different size, node
degree (Deg), and link metrics: 1) The Abilene and GEANT
topology with link weights set to the geographical distance
in miles, rounded to 10 miles (values range from 11 to 224)
and 2) the six measured ISP topologies from the Rocketfuel
[31] dataset with their inferred link weights (ranging from 1
to 22.5, in steps of 0.5) [21].

A. Algorithms & Scenarios

We compare LFID with the multipath routing algorithms
discussed in Section II, all of which differ in how they choose
the set of nexthops at each router:

Table II: Evaluation Topologies

Name N L Deg

Abilene 11 14 2.55
Geant 27 38 2.82
Exodus 79 147 3.72
Ebone 87 161 3.70

Name N L Deg

Telstra 108 153 2.83
Abovenet 141 374 5.31
Tiscali 161 328 4.07
Sprint 315 972 6.17
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Figure 7: Runtime for computing the FIB for all nodes towards
all destinations.

• ECMP: Equal Cost Multi-Path [3] uses the nexthop of
the shortest path nsp, plus any nexthop ni with the same
cost: cost(ni, dst) = cost(nsp, dst).

• DW: Downward paths [14] include the shortest path
nexthop plus any nexthop that is closer to the destination
than the current node x: cost(ni, dst) < cost(x, dst).

• DWE: Downward + Equal Cost Nexthops include all
nexthops from DW and, in addition, all nexthops with
both an equal cost to the destination and a lower node id.

• MARA-MC [26] creates a Directed Acyclic Graph (DAG)
with the specific goal of maximizing the minimum
connectivity among all nodes.

• MARA-SPE [26] has a similar goal, except that it always
includes the shortest path tree in the graph.

• LFID: Our algorithm, as described in this paper.
• OPT: The optimal result based on the network topology

constraint. This optimum is usually not achievable via
loop-free hop-by-hop routing, and serves to show the
theoretical limit of the other schemes.

Below, we evaluate the presented routing algorithms in 4
different scenarios: measured runtime (IV-B), resulting path
length & number of paths (IV-C), resilience to single link
& node failures (IV-D), and lastly resilience to multiple
simultaneous link failures and congestion events (IV-E).

B. Measured Runtime

In addition to the complexity analysis in Section III-E, we
measure the actual runtime of the presented algorithms. We
ran these measurements on consumer-grade hardware (Intel i7-
6600U CPU), single-threaded, calculating the FIB for all nodes
towards all destinations. As seen in Figure 7, even though
the worst-case complexity implies a much larger difference
(roughly 917x higher for the Sprint topology), LFID is only
25% to 91% slower than MARA-SPE. This is mainly because
the loop-removal step (the performance bottleneck) has a much



better runtime in the average case than in the worst case (see
Section III-B). For larger topologies, there are further options
to reduce runtime:

First, in contrast to MARA or ECMP, LFID can easily be
parallelized. The time-critical removeLoops() function (Alg.
2) is run once per destination. Since the outcome for each
destination does not depend on another, it can be run in parallel,
speeding up runtime by a factor of available CPU cores.

Second, the higher nexthop choice allows instant re-routing
through an alternative path, which avoids the need for fast
route recomputation during most link failures. For example, in
88.9% to 98.2% of single link failures LFID can still reach the
destination by rerouting at an adjacent node (Section IV-D).
Thus, route computation in LFID is only time-criticial in 1.8%
to 11.1% of link failures, i.e., 9x–55x less frequent.

C. Number & Length of Resulting Paths

Next, we look at the number of possible paths, and their
length (= sum of link costs) provided between each source-
destination pair. We do this by running Yen’s K-shortest
(simple) path algorithm (from [1]) for K=10 paths. For the
optimal result (OPT), we run Yen’s algorithm on the undirected
graph of the base topology. For every other scheme, we run
Yen’s algorithm once for each destination on a directed graph
that represents the possible nexthops in the FIB.

Figure 8 shows the percentage of src-dst pairs that have
at least K paths connecting them (top) and their path stretch
(bottom), i.e., the average ratio of the K-shortest path in the
directed vs. undirected topology. For K=1 it shows the path
stretch of the shortest path, for K=2 the stretch of the second
shortest path (if it exists), and so on. We removed any path
stretch values (bottom plot) where the percentage of paths (top
plot) was less than 5%, since those are likely to be outliers
caused by a small sample size.

Of all the hop-by-hop routing schemes, ECMP, predictably
performs the worst. In all tested topologies, more than half
of source-destination pairs are connected only through a
single path. Moreover, ECMP is missing many short paths,
thus the average length (stretch) of the K-shortest paths
is high. Downward paths (DW, DWE) are always better
than ECMP, and MARA (MC and SPE) is mostly better
than downward paths. Thus, the ranking according to num-
ber of paths is roughly: OPT>LFID>MARA-MC>MARA-
SPE>DWE>DW>ECMP.

In almost all topologies, LFID has a higher path choice
than all related work. The exception is the Abovenet topology,
where MARA-MC has a higher path choice. However, MARA-
MC buys this higher number of paths with a much higher
average path length (Figure 8 bottom). Ignoring some outliers
of ECMP and DW, MARA-MC’s K-shortest paths are the
longest of all tested schemes – up to 50% longer on average
than optimal. The main reason is that, in contrast to all other
schemes, MARA-MC does not always use the shortest path
(K=1). In comparison, MARA-SPE shows a lower path stretch
(up to +21%), but also a significantly lower number of paths.

LFID shows that one does not have to make the trade-off
between high path choice and short potential paths. In most
topologies, it has the highest number of paths and also the
lowest path stretch (less than +9%).

However, looking at the K-shortest paths only gives an indi-
rect idea of how many of these paths can be used to circumvent
failures and congested links. Hence, next we look more directly
at the resilience towards single failures/congestions (Section
IV-D), and at the stretch of the actual paths used by HBH
multipath routing (Section IV-E).

D. Resilience to Single Link/Node Failures

Next, we investigate how this path choice can be used to
circumvent a single link failure, link congestion, or node failure.
Note that for the remaining two experiments, we can treat link
failure and congestion interchangeably: The question is whether
there exists another path that avoids a certain link (or multiple
links). The result is the same for failure and congestion, thus
we use the term link/node “problem” to denote both cases; we
use the term link/node “protection” for the ability to circumvent
both types of problem.

We consider two different ways of link/node protection:
1) Rerouting adjacent to the problem and 2) rerouting either
adjacent or via backtracking to earlier nodes.

First, we check for an alternative path at the router adjacent
to the failure (or congestion). This adjacent recovery is easy to
implement in practice: After the primary nexthop goes down,
a router simply chooses another nexthop from its set. For
all tested algorithms, the resulting path is guaranteed to be
loop-free and, in case of a single link failure/congestion, is
guaranteed to reach the destination. It doesn’t require signaling
between routers, nor backtracking of packets.

Next, we consider the possibility of backtracking on a failure:
If the node adjacent to the link/node problem does not have
an alternative path/nexthop towards the destination, the packet
can be returned to the previous node, which then checks for
an alternative path. If none is found, the packet will be further
backtracked, if necessary, all the way to the source. For now,
we only investigate the potential link or node protection of such
backtracking, and put aside its implementation complexities,
such as path stretch, search cost to find a working path, or
additional router state.

More specifically, for the experiment, we look at each
link/node on the shortest path between each src-dst pair. We
remove this link/node and record the percentage of available
alternative paths either 1) from the node directly adjacent to the
failure, or 2) from the source node (backtracking). Sometimes,
the topology does not contain any possible paths, i.e., when
source and destination are disconnected by removing a link
or node. Thus, we plot the results relative to the maximum
protection possible in each topology (OPT), defined as 100%.

Figure 9 shows the result for link (top) and node (bottom)
protection, where solid lines show adjacent protection and
dotted lines protection via backtracking. For both link & node
failure, and in all tested topologies, LFID outperforms the
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Figure 8: Top: Perc. of src-dst pairs that have at least K paths between them; Bottom: Avg. stretch of the K-shortest path.

other tested algorithms2. If it seems like other schemes perform
better, this is because the plot shows both the adjacent and
backtracking case.

LFID can handle 88.9% to 98.2% of all recoverable link
failures by rerouting at the adjacent node. Moreover, most
of the time3, LFID provides better link protection without
backtracking than the other schemes to with backtracking.
Given the complexities of implementing a backtracking scheme
(path stretch, search/probing and state overhead), this is an
important result.

E. Resilience to Multiple Link Failures & Congestions

Lastly, we evaluate the ability to handle an arbitrary number
of link problems (failures or congestions). Here we focus on
adjacent protection of failed/congested links. We look at the
shortest path between each src-dst pair. We remove a randomly
selected link from the shortest path, then check if there exists
another path towards the destination from node adjacent to the
removed link (K=1). Then, on this second path, we remove

2With a single exception (1 out of 96 data points): For node protection,
in the Abovenet topology, and without backtracking, MARA-MC performs
slightly better (92.8%) than LFID (91.2%).

3Except 5 out of 48 data points: Both MARA schemes in the Abovenet
topology for both link & node protection, and MARA-MC in the Ebone
topology for node protection.

another randomly selected link, and check if there exists a third
path that avoids both removed links from the new adjacent
node to dst (K=2). And so on, for K = number of avoided
links, and K +1 = number of simultaneously used paths if all
avoided links are due to congestion. Note that removed links
are specifically chosen to affect a single src-dst pair. Removing
10 random links from a topology will have a much smaller
effect on connectivity than K=10, since most of them will not
be on the path between a given src-dst pair.

Moreover, we measure the average stretch of the resulting
path, relative to the optimal shortest path that avoids the K
removed links. We plot the average over 100 runs.

As shown in Figure 10, again LFID is closer to the optimum
resilience than other work (except in the Sprint topology, where
it is tied with MARA) providing, compared to the optimal,
69.7% to 92.5% resilience against 2 simultaneous failures, and
40.2% to 86.7% resilience against 3 simultaneous failures.

Regarding the path stretch, LFID (and also DW/DWE)
performs much better than MARA (MC and SPE): The paths
created by adjacent rerouting are on average only 1% longer
than optimal!

V. RELATED WORK

In addition to the multipath routing schemes discussed in
Section II, another class of related work is IP Fast Rerouting



0

25

50

75

100

Abilene Geant Exodus Ebone TelstraAbovenet Tiscali Sprint
Topology

%
 R

es
ilie

nc
e 

to
 li

nk
 fa

ilu
re

Adjacent

Backtrack

OPT

LFID

MARA-MC

MARA-SPE

DWE

DW

ECMP

0

25

50

75

100

Abilene Geant Exodus Ebone TelstraAbovenet Tiscali Sprint
Topology

%
 R

es
ilie

nc
e 

to
 n

od
e 

fa
ilu

re

Adjacent

Backtrack

OPT

LFID

MARA-MC

MARA-SPE

DWE

DW

ECMP

Figure 9: Percentage of link/node failures between each src-dst
pair that can be recovered at the adjacent node (solid line) or
via backtracking (dotted line).

(IPFRR) [30], which provides alternative nexthops for local
failure protection on the data plane. The main difference
between IPFRR and the work discussed earlier (ECMP, DW,
etc.) is that IPFRR nexthops cannot be used arbitrarily by
multiple routers on a path, risking loops when doing so.

A common restriction is that after taking a backup nexthop,
packets must follow the shortest path. Consider the example
of Loop-Free Alternates (LFA) [6], [28] in Figure 11b. The
alternate nexthops (marked in red) provide protection against
any possible link failure, which a DAG cannot [16] achieve
(here: link 2 → D is unprotected). However, routers cannot
freely use LFA nexthops. If they did, packets could form
a loop, e.g. 0→1→2→0 or 2→3→0→ 2, and those loops
cannot be avoided by excluding the incoming port at each
step. The restrictions for packets to stay on the shortest path
(more generally: use only primary nexthops) severely limits
the number of possible paths and thus LFA’s ability to deal
with multiple simultaneous failures or congestions. The same
reasoning applies to U-turn alternates [5] and IPFRR Tunnels
[7], since those include an even larger set of alternate nexthops.

Another example of IPFRR is permutation routing with joker
links [34], which shares following ideas with LFID: It extends
DAGs by using certain links in both directions (there called
“joker links”), and also excludes the incoming link at each hop.
The main difference is, again, that 1) joker links can only be
used when all primary nexthops are down and 2) packets from
a joker link can only be sent to a primary nexthop, otherwise
risking loops. In constrast, in LFID all routers can use all

nexthops simultaneously, even if no links have failed.
Other IPFRR schemes require more sophisticated changes

to the IP protocol, such as per-packet state [4], [9], [29],
[20], [19] or multi-topology routing [23], [18], [8]. In one
example of multi-topology routing, Chiesa et al. [8] decompose
the routing graph into k arc-disjoint spanning trees. When
incurring a link failure on its current path, a packet can switch
to a different tree, which substantially increases the resilience
towards failures. However, tree switching incurs a path stretch
which, while acceptable for circumventing link failures, is
likely unacceptable when splitting up traffic for load balancing,
as this would involve many more tree switches. In contrast,
LFID ensures that packets rerouted at multiple points stay close
to the shortest possible path (see Section IV-E).

Some IPFRR schemes do, however, provide an important
benefit: they maintain optimal connectivity for an arbitrary
number of failures [20], [40]. LFID often comes close to the
optimal (see Figure 10), but does not reach it. We leave for
future work the question, whether LFID can be combined with
such a data plane mechanism (i.e., dynamic manipulation of
FIB state) to ensure optimal connectivity.

VI. CONCLUSIONS

We presented LFID, a simple extension to link-state route
calculation, which allows more and shorter loop-free paths
than related work. These paths can be used for either failure
protection or congestion reduction (traffic engineering). We
hope that this provides a valuable first step to enable Hop-by-
Hop Multipath Routing, where forwarding decisions are made
at individual routers inside the network, rather than determined
by routers at the edge.
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