
NDN, Technical Report NDN-0057. http://named-data.net/techreports.html
Revision 3: June 12, 2018

1

An Overview of Security Support in Named Data
Networking

Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mastorakis, Yanbiao Li, Alexander Afanasyev,
Lixia Zhang

Abstract—This paper presents an overview of the security
mechanisms in the Named Data Networking (NDN) architecture
that have been developed over the past several years. NDN
changes the network communication model from the delivery
of packets between hosts identified by IP addresses to the
retrieval of named and secured data packets. Consequently, NDN
also fundamentally changes the approaches to network security.
Making named data the centerpiece of the architecture leads to
a new security framework that: (i) secures data directly, and
(ii) uses name semantics to enable applications to reason about
security, and to automate the use of cryptographic keys. In this
paper, we introduce NDN’s approach to security bootstrapping,
data authenticity, integrity, confidentiality, and availability.

Index Terms—Named Data Networking, Security

I. INTRODUCTION

Named Data Networking (NDN), a proposed Internet ar-
chitecture, changes the basic network communication model;
instead of delivering packets to receivers identified by IP
addresses, NDN lets consumers request desired data using
application-layer names. Naming data enables NDN to secure
data directly at network layer. This is done by making every
Data packet verifiable and, optionally, confidential.

In this paper, we provide an overview of NDN’s security
framework and illustrate the developed mechanisms with ex-
ample prototype realizations, showing how all the components
in the framework function together. We assume that readers
have some basic knowledge of cryptography, but is not nec-
essarily familiar with the NDN architecture.

The paper is organized as follows. Section II provides a
brief description of the NDN architecture and introduces an
example application, which will be used throughout the paper
to illustrate the use of various security mechanisms. Section III
states the goals of the NDN security design, identifies the
major challenges, and introduces the basic supporting compo-
nents of the solutions. Section IV describes the NDN security
bootstrapping process, and Sections V, VI, and VII explain
NDN’s current solutions to data authenticity, integrity, confi-
dentiality, and availability. Throughout this paper, we aim to
explain how NDN enables data to remain secure independent
of any underlying communication channel, and how it enables
applications to validate received data packets independent

Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Spyridon Mastorakis, Yanbiao Li,
and Lixia Zhang are with the Department of Computer Science, UCLA -
e-mail: zhiyi, yingdi, haitao, mastorakis, lybmath, lixia@cs.ucla.edu.

Eric Newberry was with the Department of Computer Science, the Univer-
sity of Arizona at the time of submission. He is now with the Department of
Electrical Engineering and Computer Science at the University of Michigan
- e-mail: emnewber@umich.edu

Alexander Afanasyev is with the Department of Computer Science, Florida
International University - e-mail: aa@cs.fiu.edu

of from where they were fetched. Moreover, we illustrate
how applications can utilize name semantics to augment the
reasoning about which cryptographic keys to use, instead of
blindly relying on the “yes-or-no” model provided by third-
party certificate services. Section VIII discusses the basic
differences between network security solutions in TCP/IP and
NDN that result from the two different network architectures;
it also identifies remaining issues in NDN’s security solutions.
Section IX concludes the paper.

We hope that this paper can serve as a guide to NDN
security efforts for readers interested in NDN research, as
well as a useful demonstration of new approaches to network
security that differ from today’s common practices.

II. BACKGROUND

A. Named Data Networking
From 10,000 feet, one could view the basic idea of

NDN as shifting HTTP’s request (for a named data object)-
and-response (containing the object) semantics to the net-
work layer [1]. Being a network-layer protocol, NDN’s re-
quests/responses work at a network packet granularity – each
request, carried in an NDN Interest packet containing the name
of the requested data, fetches one NDN Data packet (Figure 1);
neither type of packets contains an address. Applications that
produce data are called producers, while those requesting data
are called consumers.

Data
Consumer

NDN
network

Interest Packet Content Name
Other Optional

Parameters

Data Packet

Content Name

Content

Signature

Fig. 1. Interest and Data packet in NDN

In addition to being network layer packets, NDN Data
packets also differ from HTTP data objects in two other im-
portant ways: (i) all NDN Data packets are immutable; when
producers change the content of a Data packet, they generate
new a packet with a new name to distinguish the different
version of the content; and (ii) every NDN Data packet carries
a signature generated using its producer’s cryptographic key
at the time of data creation, binding its name to its content.
Named, secured data packets provide a basic building block
for securing NDN communications.

Regarding the routing and forwarding of NDN, generally
speaking, an NDN network runs routing protocol(s) to propa-
gate the reachability of data name prefixes, similar to how IP

2

networks use routing protocols to propagate IP address pre-
fixes. Each NDN router forwards Interest packets according to
their names, recording both the interfaces from which Interests
are received and the interfaces to which they are forwarded,
in a “Pending Interest Table” (PIT). Once an Interest packet
reaches a Data packet with a matching name, the Data packet
will follow the reverse path of the corresponding Interest to
reach the consumer, satisfying the corresponding PIT entry on
each router along the way. Data packets can also be cached at
routers to serve future requests for the same data. This stateful
forwarding [2] plane creates a closed feedback loop, enabling
routers to make informed Interest forwarding decisions based
on observed performance.

B. An Example Application: NDNFit

To aid the reader’s comprehension, we use NDNFit [3], a
prototype NDN application for tracking and sharing personal
fitness activity, as an illustrative example to explain NDN’s
security mechanisms. 1 Because NDNFit handles sensitive
personal information, it requires strong data authenticity and
confidentiality.

As a typical use case, assume that a data owner “Alice”
wants to use NDNFit to record her daily fitness information.
Alice runs an app “Sensor” on her mobile phone and an app
“Analyzer” on her laptop. “Sensor” collects Alice’s daily time-
location information, while “Analyzer” produces analytics and
visualizations from the data produced by “Sensor”. Alice also
runs an app “Owner” to control the whole system. Figure 2
shows the data and control flow in NDNFit.

1. Authorize publishing
2. Define encryption rules Grant access

Sensor Analyzer
encrypted

data

Alice
Owner

encrypted
data

Alice’s Phone Alice’s Laptop
NDN

Network

Fig. 2. NDNFit application workflow

To support data authenticity and integrity, NDNFit requires
that all data produced by “Sensor” and “Analyzer” be au-
thenticatable, that any data alterations be detectable, and that
any fake data created by unauthorized entities be dropped.
Furthermore, to keep her data confidential, Alice only grants
“Analyzer” the privilege to access the fitness data produced
by “Sensor” – no one else should be able to read this data.
We illustrate in Sections IV ∼ VII how these objectives can
be achieved via NDN’s security mechanisms.

III. AN OVERVIEW OF THE NDN SECURITY DESIGN

The NDN security framework is built on public-key cryptog-
raphy. As described in Section II, NDN secures data directly,

1The NDNFit use case described in this paper is a simplified version of
the actual implementation.

enabling applications to achieve data authenticity, integrity,
confidentiality, and availability independent of the underlying
communication channel and regardless of whether the data
is in-transit or at rest (e.g. being cached in the network
or stored at end nodes). At the same time, NDN aims to
provide highly usable security: to the greatest extent possible,
all cryptographic key management and operations should be
automated, as well as automatically enforced by the system
itself, minimizing the reliance on manual configuration.

In the rest of this paper, we call applications and all other
communication participants in an NDN network entities.2

Each entity possesses one or more names and one or more
cryptographic public-private key pairs. An NDN certificate for
an entity binds its name and key(s) together by certifying
the entity’s ownership of the name and its key(s) – we
call each certified name an identity. Each entity can also
issue certificates for the sub-namespaces it delegates to other
entities.

A. Challenges and Solution Directions

Utilizing public-key cryptography to validate communica-
tions requires NDN to address the following three challenges:

Establishing trust anchor(s) All cryptographic verifica-
tions must terminate at a pre-established trust anchor. After
a trust anchor is installed, an entity can verify other entities’
signatures by verifying their certificates along the certificate
chain to the trust anchor. 3 Trust anchors are usually installed
via out-of-band mechanisms, and the development of these
supporting mechanisms depends on the trust anchor model
in use. In today’s practice, trust anchors are commonly es-
tablished via the following means: (i) purchasing certificates
from commercial certificate authorities (e.g., TLS certificates
used to secure communications with a website), (ii) installing a
single global trust anchor (e.g., DNSSEC), or (iii) establishing
trust in an ad-hoc manner (e.g., trust on first use, or “TOFU”).
NDN utilizes a different trust anchor model. NDN assumes
that the authority of each networked system (an organization,
a smart home, etc.) establishes its own trust anchor(s) and that
all the entities under that authority can discover these trust
anchors through local system settings. This trust model re-
sembles that of the Simple Distributed Security Infrastructure
(SDSI) [5] in trust anchor establishment.

Providing effective solutions for trust management Ef-
fective solutions must enable applications to express their
own trust policies and execute these policies automatically.
In NDN, entities are able to obtain NDN certificates and learn
trust policies from trustworthy parties. A certificate enables
an entity to generate verifiable signatures for its data and
build trust relationships with other entities. The trust policies
inform each entity which keys, for a given name/name prefix,
should be used for signature generation and verification. As
we will describe in Section V-A, NDN can express users

2An entity can be any administrative unit (such as a country, a university,
a company), a neighborhood, a home, a user, a node, or an app process. The
task of allocating names to entities is beyond the scope of the NDN design,
just like the task of assigning IP addresses is beyond the scope of the TCP/IP
design.

3An alternative is to establish trust via a web of trust as described in [4].

3

and applications’ trust policies by defining the relationships
between data names and signing key names.

Providing usable key management solutions Signing,
verification, encryption, and decryption involve the use of
cryptographic keys, requiring mechanisms to assign and de-
liver the correct keys or certificates in a secure, efficient,
and automatic manner. Taking advantage of its structured,
semantically meaningful data names, NDN enables application
developers to define naming conventions to systematically
construct the names of the cryptographic keys/certificates used
for signing, verification, encryption, and decryption. These
naming conventions in turn enable individual entities to au-
tomatically construct the names of the required cryptographic
keys for a given data name and to fetch said keys, as we
explain in Sections V and VI.

B. Basic Components of NDN Security

The NDN security framework makes use of the following
three basic components:

1) Digital Keys: NDN treats cryptographic keys in the same
way as any other named data, allowing them to be retrieved
using Interest-Data exchanges at the network layer.

2) Certificates: An NDN certificate signer either signs
NDN certificates under its own namespace or signs keys under
different namespaces as an endorsement (e.g. in a web of
trust [4]). A certificate is also a Data packet that carries
public key information and can be fetched like any other data.
Certificate names follow the naming convention “/<prefix>
/KEY/<key-id>/<issuer-info>/<version>”, where the “pre-
fix” component represents the owner of the certificate, and the
components after “KEY” are the key id, the certificate issuer
information, and the certificate version number. For example, a
certificate name “/ndnfit/alice/KEY/001/002/003” indicates
that (i) the certificate owner is “/ndnfit/alice”; (ii) the
certified key has the id “001”; (iii) the certificate signer set
the issuer information to “002”, which could be the signer
key’s id or some other information defined by the signer; and
(iv) the certificate version is “003”.

3) Trust Policies: Applications define trust policies which
specify which entities are trusted for performing what actions,
and which key should be used for which data namespace and
purpose.

The above three basic components are used in the security
mechanisms described in Sections V ∼ VII. The next section
shows how an entity can obtain these three components from
the security bootstrapping process.

IV. SECURITY BOOTSTRAPPING IN NDN

Security bootstrapping is the process through which an
entity obtains its trust anchor and certificate, and learns trust
policies. The NDNFit example described in Section II-B must
go through security bootstrapping to be properly initialized.
In this example, since Alice is the owner of her devices and
data, Alice’s certificate is set to be the trust anchor. In this
paper, we assume that Alice’s certificate has a name “/ndnfit
/alice/KEY/001/002/003”, whose meaning is explained in
Section III-B.

A. Obtaining Trust Anchors

An entity needs trust anchors to verify other entities’
authenticity. Trust anchors are expected to be either pre-
configured or securely obtained through some out-of-band
means. Following the SDSI model, the NDN security design
assumes that different systems can establish their own trust
anchors, and that nodes within those systems decide or develop
their own means to obtain trust anchors.

In our NDNFit example, we take the simple approach
of manually installing Alice’s certificate into “Sensor” and
“Analyzer”.

B. Obtaining Certificates

To generate Data packets with valid names and verifiable
signatures, a (producer) application must first obtain a name
and a certificate that certifies its ownership of that name. NDN
security offers flexibility to application developers in deciding
how to obtain trust anchors. Depending on the system design,
an application may obtain certificates from a centralized
certificate service (e.g., in cloud-based applications), while a
distributed application (e.g., in p2p applications) may obtain
the trust anchor certificates from its user.

Once the trust anchor is obtained, an entity can identify a
trustworthy certificate signer by checking its certificate (e.g., a
signer’s certificate is the trust anchor, or endorsed by the trust
anchor), then request a certificate for itself. We have developed
the NDN certificate management system (NDNCERT) [6] to
process such certificate requests automatically.

In our NDNFit use case, the trust anchor, Alice’s certificate,
resides in an NDNCERT daemon (called an “agent”) on her
laptop. This agent plays the role of the certificate signer. “Sen-
sor” and “Analyzer” use the NDNCERT protocol to request
certificates from this agent, and the agent can approve the two
apps using customized out-of-band challenges (e.g., Alice may
manually check the application’s PIN code and approve the
corresponding certificate request). Two certificates, “/ndnfit
/alice/sensor/KEY/...” and “/ndnfit/alice/analyzer/KEY
/...”, will be issued to the “Sensor” and “Analyzer” apps,
respectively.

C. Learning Trust Policies

To determine which cryptographic key should be used to
sign which Data packet, an application needs to obtain and
install trust policies after obtaining the trust anchor. In NDN,
one’s trust polices can be written as a piece of named data
that can be retrieved like any other NDN Data packet. After
obtaining the trust anchor, an application can fetch and verify
the trust polices from trusted sources (e.g., a cloud-based
application can learn policies from its central server). Note that
there must exist a preconfigured default trust policy, which can
be used to validate the Data packets carrying trust policies. A
simple default policy could direct that Data packets carrying
trust policies must be directly signed by a trust anchor with a
given name.

In our NDNFit example, Alice can configure the trust
policies through “Owner”’s user interfaces – “Owner” can

4

/ndnfit self-signed certificate

Signature

/ndnfit/KEY/…

/ndnfit/alice/KEY/…

Signature

Alice’s certificate

Other Entities

Sensor App

Digital Keys

Trust Policies

Anchors

Analyzer App

Digital Keys

Trust Policies

Anchors

/ndnfit

/ndnfit/alice

Fig. 3. The cryptographic relationship between the namespaces /ndnfit and
/ndnfit/alice, as well as between /ndnfit/alice and its sub-namespaces.

then generate trust policy Data packets. These policy data
packets will be signed by Alice’s private key. During security
bootstrapping, “Analyzer” and “Sensor” fetch the trust policy
Data packets and, after verifying the trust policies with the
trust anchor (Alice’s certificate), the applications can install the
policies. As shown in Figure 3, after security bootstrapping,
both “Sensor” and “Analyzer” will trust “Owner” and will each
have their own trust policies and certificate under “/ndnfit
/alice”.

The security bootstrapping of Alice’s own certificate takes
place in a different network system where the trust anchor
is “/ndnfit/KEY/...”. Alice learns of this trust anchor and
obtains the certificate “/ndnfit/alice/KEY/...” from the
authority of the namespace “/ndnfit” (we omit the details
of this process here due to the paper length limit).

V. AUTHENTICITY AND INTEGRITY

In this section, we show how NDN security helps to ensure
data authenticity and integrity in an automatic manner. To
enable this supporting function, users must first define their
data acceptance policies.

After obtaining their certificates, the apps “Sensor” and
“Analyzer” can produce Data packets under their correspond-
ing namespaces and sign them using their corresponding
private keys, enabling consumers to check data authenticity
and integrity by verifying the signatures of received Data
packets. More importantly, NDN’s rich name semantics enable
applications to use names to reason about trust and define
trust policies. Trust policies help consumers validate a received
packet by checking whether the piece of data is signed by the
right key according to the policies. In this way, trust policies
limit the power of each signing key to data with specific
names, supporting data authenticity at a fine granularity. For
instance, in NDNFit, the key certified in certificate “/ndnfit
/alice/sensor/KEY/...” is only allowed to sign packets
under the prefix “/ndnfit/alice/sensor”.

The authenticity and integrity of received Data packets
(some of them may be certificates) are determined by a
combination of the following two factors:

1) Validation by Trust Polices: Structured data names and
key names provide explicit and meaningful contexts for appli-
cations, enabling NDN applications to define rules that only
accept packets signed by the keys with specific names. More

specifically, (i) the data name, (ii) the signing key name,
(iii) the relationship between the key name and data name,
and (iv) the trust anchor name must follow application-defined
rules. We have developed a solution, called trust schema [7], to
let users and applications express their trust policies in a form
that can be directly executed by applications (see Section V-A).

2) Signature Verification: To verify the signature in a
Data packet, consumers retrieve the certificate of its producer
(identified by the key name in a dedicated section of the Data
packet). This certificate recursively points to its signer’s certifi-
cate and finally arrives at a known trust anchor. The received
data packet is considered valid only if all the certificates in the
above chain have valid signatures and satisfy the trust policies
of the consumer.

A. Using Trust Schemas to Define Trust Policies

Trust schemas make use of NDN’s naming conventions
to enable systematic descriptions of trust policies, namely:
(i) how Data packet names should be structured, (ii) how
packet signing key names should be structured, (iii) how
the components in a Data packet name should be related to
those in its signing key name, and (iv) which trust anchor is
acceptable.

Data Name:
 Prefix /ndnfit/alice
Key Name:
 Prefix /ndnfit/alice
Anchor:
 /ndnfit/alice/KEY/key001

Rule 1:

Data Name:
 Prefix /ndnfit
Key Name:
 Format /ndnfit/…/KEY/…
Anchor:
 /ndnfit/KEY/key2007

Rule 2:

Accept

Accept

Signed by:
/ndnfit/alice/sensor/KEY/1

/ndnfit/alice/sensor/example

Content

Signed by:
/ndnfit/bob/sensor/KEY/1

/ndnfit/bob/sensor/example

Content

Fig. 4. An example of Trust Schema

Upon receiving a Data packet, a consumer application first
uses its trust schemas to assess the packet’s trustworthiness
by examining its certificate chain to the trust anchor – this
takes place before any cryptographic signature verification is
performed. For instance, as shown in Figure 4, in addition
to “Alice” (“/ndnfit/alice”), a user named “Bob” (“/ndnfit
/bob”) is also running an NDNFit system. We assume that
both Alice’s certificates and Bob’s certificates are signed by
the same trust anchor in the “/ndnfit” namespace. Alice’s
devices and Bob’s devices produce data packets under their
own prefixes, namely “/ndnfit/alice/sensor/example” and
“/ndnfit/bob/sensor/example”. Figure 4 shows that there
are two trust schemas. Schema “rule 1” accepts Data packets
whose (i) name prefix is “/ndnfit/alice”, (ii) signing key
name prefix is “/ndnfit/alice/KEY”, and (iii) certificate chain
ends with the trust anchor “/ndnfit/alice”. Accordingly, only
packets signed by Alice and strictly under Alice’s prefix are
accepted. However, “rule 2” has a looser requirement: all data
packets with the name and key name prefix “/ndnfit”, and
a certificate chain eventually tracing to the anchor “/ndnfit”,

5

can be accepted. As a consequence, “rule 2” accepts packets
produced by either Alice’s devices or Bob’s devices.

B. Signed Interests

Although Interest packets are not signed by default, an
Interest can be signed when its use case requires authenticity.
For example, in an IoT scenario, when receiving an Interest
packet containing a command, a smart home device may need
to authenticate the sender of the Interest before executing the
command. Thus, signed Interests enable a controller to actuate
IoT devices. The NDN Interest signature validation process is
the same as the one used to validate Data packets.

VI. DATA CONFIDENTIALITY

NDNFit requires data confidentiality and access control
support to protect sensitive user information. NDN’s basic
approach to data confidentiality is encryption, which requires
an automated key management system to enable involved
entities to securely fetch the needed encryption and decryption
keys.

For point-to-point sessions, key exchange protocols like
Diffie-Hellman [8] can derive encryption keys for the session.
However, Diffie-Hellman does not apply to constructing en-
cryption keys for multi-party communications, as is the case
for NDNFit. By taking advantage of structured names that
can convey rich semantics, we have developed Named-based
Access Control (NAC) and its enhancement with Attribute-
Based Encryption (NAC-ABE) [9], which can automate the
key distribution process for both point-to-point and multi-party
applications. A schematized access control solution [10] has
also been proposed to further systemize key management for
access control. Below, we use NAC to illustrate the use of
naming conventions to automate key management.

A. Name-based Access Control

NDNFit uses NAC to achieve data confidentiality and access
control. In our example, Alice is the owner of all Data packets
produced under the prefix “/ndnfit/alice” and determines
who can access her confidential data. NAC explicitly ap-
pends each encryption key name to the name of the corre-
sponding Data packet. For instance, a Data packet produced
by “Sensor” has the name “/ndnfit/alice/sensor/example
/ENCRYPTED-BY/ndnfit/alice/sensor/CK/001”, where the
components after “ENCRYPTED-BY” name the encryption key.
As mentioned previously, “Analyzer” is authorized by Alice
to access “Sensor”’s data under the prefix “/ndnfit/alice
/sensor”. The naming convention is shown in Figure 5 and a
simplified data production and encryption process is illustrated
below.

1) Key Generation: The “Owner” app will first generate
a key pair (KEK, KDK) for key encryption and decryption,
respectively. It then produces two Data packets: one carrying
KEK in plaintext and the other containing KDK and encrypted
using “Analyzer”’s public key. In our example, the KEK packet
has the name “/ndnfit/alice/NAC/sensor/KEK/002”, while
the KDK’ packet name follows the format “/ndnfit/alice
/KDK/002/ENCRYPTED-BY/ndnfit/alice/analyzer/...”.

2) Data Production: When producing data, “Sensor” first
generates a symmetric key called CK (content key) for content
encryption; we assume the key id is “001”. Then, it fetches
“KEK” and uses it to encrypt the CK. Next, it encrypts each
data packet it produces with the CK and packs the encrypted
content into Data packet with name “/ndnfit/alice/sensor
/example/ENCRYPTED-BY/ndnfit/alice/sensor/CK/001”, and
the encrypted symmetric key into another Data packet, which
is named “/ndnfit/alice/sensor/CK/001”.

3) Data Consumption: As shown in Figure 5, when “Ana-
lyzer” wants to consume data, it first fetches the Data packet
using the name “/ndnfit/alice/sensor/example”. The re-
turned Data packet name informs “Analyzer” that the content
was encrypted using the “CK”, and thus “Analyzer” then
fetches the corresponding “CK” using an Interest with the
name extracted from the content Data name. To decrypt “C-
KEY”, the consumer sends an Interest to further fetch “KDK”
Data packet “/ndnfit/alice/KDK/002/ENCRYPTED-BY/ndnfit
/alice/analyzer/...”. As indicated by the KDK Data name,
the fetched “KDK” is encrypted using “Analyzer”’s key. By
decrypting the content in the fetched “KDK” Data packet, the
application obtains “KDK” and can decrypt the symmetric key
and use it to finally decrypt the sensor data.

/<content Name>/ENCRYPTED-BY/<CK-prefix>/CK/<key-id>Data
/<content Name>Interest

/<CK-prefix>/CK/<key-id>/ENCRYPTED-BY/<access-prefix>/KDK/<key-id>CK Data
/<CK-prefix>/CK/<key-id>Interest

/<access-prefix>/KDK/<key-id>/ENCRYPTED-BY/<consumer-name>/KEY/<key-id>KDK Data
/<access-prefix>/KDK/<key-id>Interest

Fig. 5. Naming Convention in Name-based Access Control

B. Fine Granularity Access Control

By defining naming conventions, NAC enables fine-grained
access control. For instance, an “KEK” name could be
“/ndnfit/alice/NAC/sensor/example/8AM/10AM/KEK/002”,
indicating that the key will only be used to protect the
example data produced by “Sensor” from 8 AM to 10 AM.

VII. DATA AND CERTIFICATE AVAILABILITY

A. Improving Data Availability via In-network Storage

Because NDN secures data directly, Data packets can be
retrieved from anywhere, including router caches or any other
storage system, regardless of whether these cache or storage
systems are trustworthy. All forwarders may cache passing
Data packets to satisfy future Interests.

B. Certificate Availability

NDN certificates are carried in Data packets, enabling them
to benefit from in-network storage. To further improve the
availability of certificates, we developed the NDN certificate
bundle [11] to allow each producer to collect all the certificates
in the certificate chain needed to verify its data and bundle
them together, making the whole certificate chain available to
consumers in a single package.

6

In the NDNFit example, the producer “Sensor” combines
the certificates needed to verify its data in a certificate bundle.
Specifically, the bundle will contain the application certificate
(“/ndnfit/alice/sensor/KEY/...”) and the trust anchor cer-
tificate (“/ndnfit/alice/KEY/...”). When a consumer appli-
cation needs to verify the retrieved data, it can fetch all the
needed certificates with a single Interest. 4

VIII. DISCUSSION

A. Comparison of NDN and TCP/IP Security

The differences between the NDN and TCP/IP security
solutions originate from the fact that NDN names data whereas
IP names locations.

1) Securing Data vs Securing Channels: In TCP/IP, the ba-
sic communication unit is a channel between two IP addresses.
Consequently, protocols like IPSec and TLS secure channels
(e.g., IP channels or TCP channels). However, (i) protected
network channels do not directly translate to data authenticity
– the data could have been altered before entering the channel;
(ii) data loses cryptographic protection as soon as it leaves the
channel; and (iii) when multiple parties communicate, securing
the channel between every pair of endpoints can quickly
cause scalability and manageability issues. By contrast, NDN
secures data directly, removing any reliance on the security of
intermediate communication channels, allowing applications
to protect what really matters to them – the data.

2) Establishing Trust using Name Semantics: Existing se-
curity solutions lack the means to effectively reason about
trust. For instance, current secure communication protocols
(e.g., HTTPS, or QUIC) follow a common practice of accept-
ing a signature if it was (in)directly signed by a trusted CA.
However, [12] shows that commercial certificate authorities
themselves may not be reliable and that signature verification
alone is not enough to establish trust. NDN takes a funda-
mentally different approach to trust establishment. In NDN,
(i) entities may utilize local authorities, instead of commercial
certificate authorities, as trust anchors; (ii) trust policies are
expressed explicitly by using name semantics in a systematic
way, allowing applications to reason about security rather than
blindly trusting signatures by external CAs; and (iii) naming
conventions can facilitate automated key management, thus
improving system usability.

B. Remaining Challenges

The development of the NDN architecture has guided the
creation of a new network security framework and, at the same
time, brought both new opportunities and new challenges [13].
Regarding user privacy [14], on one hand, Interest packets
carry data names only, without disclosing the consumer’s
information; on the other hand, Data packet names and sig-
natures may disclose a producer’s identity if they are not
properly protected. Additionally, both the Content Store and
Pending Interest Table in an NDN router have the potential to
increase the attack surface [15]. The NDN research community
is actively investigating ways to mitigate these challenges.

4If the bundle size is larger than the maximum packet size, it will be
fragmented. The first returned segment will contain the total number of pieces.

IX. CONCLUSION

In [16], we argued that, by naming and securing data di-
rectly, NDN offered intrinsic advantages for securing network
communications. Evidence from our efforts to develop NDN
security solutions suggests that this is indeed true. Named,
secured Data packets (including certificates and trust schemas)
can be easily fetched from anywhere and serve as a powerful
building block for security solution development. Furthermore,
we learned that one can establish well-defined naming con-
ventions to systematically define trust policies using schemas,
as well as design name-based access control via encryption.
We also learned, the hard way, the importance of automating
security operations instead of leaving the burden to application
developers (who would simply make applications work first by
leaving security out).

Consequently, NDN secures network communications in a
more resilient, intuitive, and less fragmented manner than the
existing solutions implemented in TCP/IP networks. The de-
velopment process of the NDN security model has convinced
us that, by building a network architecture based upon named
data, we can effectively develop exciting new network security
solutions.

ACKNOWLEDGMENT

This work is partially supported by the National Science
Foundation under awards CNS-1345142, CNS-1345318, CNS-
1629009, and CNS-1629922.

REFERENCES

[1] L. Zhang, A. Afanasyev et al., “Named Data Networking,” ACM
SIGCOMM Computer Communication Review, 2014.

[2] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A
case for stateful forwarding plane,” Computer Communications, vol. 36,
no. 7, pp. 779–791, 2013.

[3] H. Zhang, Z. Wang et al., “Sharing mHealth Data via Named Data
Networking,” in ICN, 2016, pp. 142–147.

[4] Y. Yu, A. Afanasyev, Z. Zhu, and L. Zhang, “An endorsement-based
key management system for decentralized NDN chat application,”
NDN, Technical Report NDN-0023, Jul. 2014. [Online]. Available:
http://named-data.net/publications/techreports/

[5] R. L. Rivest and B. Lampson, “SDSI–a simple distributed security
infrastructure.” Crypto, 1996.

[6] Z. Zhang, A. Afanasyev, and L. Zhang, “NDNCERT: universal usable
trust management for ndn,” in Proceedings of the 4th ACM Conference
on Information-Centric Networking. ACM, 2017, pp. 178–179.

[7] Y. Yu, A. Afanasyev et al., “Schematizing Trust in Named Data
Networking,” in Proceedings of the 2nd International Conference on
Information-Centric Networking. ACM, 2015, pp. 177–186.

[8] M. Mosko, E. Uzun, and C. A. Wood, “Mobile sessions in content-
centric networks,” in IFIP Networking, 2017.

[9] Z. Zhang, Y. Yu, A. Afanasyev, J. Burke, and L. Zhang, “NAC: name-
based access control in named data networking,” in Proceedings of the
4th ACM Conference on Information-Centric Networking. ACM, 2017,
pp. 186–187.

[10] C. Marxer and C. Tschudin, “Schematized access control for data
cubes and trees,” in Proc. of ACM Conference on Information-Centric
Networking, 2017.

[11] M. Mittal, A. Afanasyev, and L. Zhang, “NDN certificate bundle,” NDN,
Technical Report NDN-0054, 2017.

[12] C. Cimpanu, “14,766 Let’s Encrypt SSL Certificates Is-
sued to PayPal Phishing Sites,” [Posted 24-March-2017].
[Online]. Available: https://www.bleepingcomputer.com/news/security/
14-766-lets-encrypt-ssl-certificates-issued-to-paypal-phishing-sites/

[13] R. Tourani, S. Misra, T. Mick, and G. Panwar, “Security, privacy,
and access control in information-centric networking: A survey,” IEEE
Communications Surveys & Tutorials, 2017.

7

[14] C. Ghali, G. Tsudik, and C. A. Wood, “When encryption is not enough:
privacy attacks in content-centric networking,” in Proceedings of the 4th
ACM Conference on Information-Centric Networking. ACM, 2017, pp.
1–10.

[15] C. Ghali, G. Tsudik, E. Uzun, and C. A. Wood, “Closing the floodgate
with stateless content-centric networking,” in Computer Communication
and Networks (ICCCN), 2017 26th International Conference on. IEEE,
2017, pp. 1–10.

[16] L. Zhang et al., “Named data networking (NDN) project,” NDN,
Technical Report NDN-0001, October 2010.

