
NDN, Technical Report NDN-0057. http://named-data.net/techreports.html
Revision 2: April 8, 2018

1

An Overview of Security Support in Named Data
Networking

Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Eric Newberry, Spyridon Mastorakis, Yanbiao Li, Alexander Afanasyev,
Lixia Zhang

Abstract—This paper presents an overview of the security
mechanisms in the Named Data Networking (NDN) architecture
that have been developed over the past seven years. NDN
changes the communication model from the delivery of packets
between hosts identified by IP addresses, as seen in IP, to the
retrieval of named and secured data packets. Consequently,
NDN fundamentally changes the approach to network security.
Making named data the centerpiece of the architecture leads
to a new security framework that: (i) secures data directly and
(ii) uses name semantics to allow applications to reason about
security. In this paper, we introduce NDN’s approach to security
bootstrapping, data authenticity, integrity, confidentiality, and
availability.

Index Terms—Named Data Networking, Security

I. INTRODUCTION

Named Data Networking (NDN), a proposed Internet ar-
chitecture, changes the basic network communication model.
Instead of delivering IP packets to receivers identified by IP
addresses, NDN lets consumers request the desired data by
name. Naming data enables NDN to secure data directly at
the network layer by making every data packet verifiable and,
optionally, confidential.

In this paper, we provide an overview of the security
framework in NDN, introducing the mechanisms with example
prototype realizations and showing how all the components of
the framework function together. We assume that the reader
has some basic knowledge of cryptographic security, but is not
necessarily familiar with the NDN architecture.

The paper is organized as follows: Section II provides
a background on the NDN architecture and introduces the
concepts upon which the security mechanisms are built. Sec-
tion III describes the building blocks of NDN security and
introduces an example application that will be used throughout
the paper to help illustrate the presented security mechanisms.
Section IV introduces the NDN security bootstrapping pro-
cess. In Sections V, VI, and VII, we explain how security
in NDN provides data authenticity, integrity, confidentiality,
and availability. Throughout this paper, we aim to explain
how NDN allows data to remain secure independent of a
communication channel, as well as how it allows applications
to validate received Data packets independent of how or

Zhiyi Zhang, Yingdi Yu, Haitao Zhang, Spyridon Mastorakis, Yanbiao Li,
and Lixia Zhang are with the Department of Computer Science, UCLA -
e-mail: zhiyi, yingdi, haitao, mastorakis, lybmath, lixia@cs.ucla.edu.

Eric Newberry is with the Department of Computer Science, The University
of Arizona - e-mail: enewberry@cs.arizona.edu

Alexander Afanasyev is with the Department of Computer Science, Florida
International University - e-mail: aa@cs.fiu.edu

from where the data was fetched. Moreover, we illustrate
how applications can utilize name semantics to reason about
the use of cryptographic keys based upon trust relations,
instead of blindly relying on third-party certificate services.
Section VIII discusses the basic differences between network
security solutions in TCP/IP and NDN, illustrating how differ-
ent network architectures lead to different security solutions;
it also identifies remaining NDN security challenges.

We hope that this paper can serve as a guide to NDN
security efforts for readers interested in NDN research, as
well as a useful demonstration of new approaches to network
security that differ from today’s common practices.

II. BACKGROUND

In this section, we give a brief description of the basic
concepts in an NDN network, followed by a high-level picture
of NDN’s security support framework, which will be further
discussed in Section III.

A. Named Data Networking (NDN)

From 10,000 feet, one could view the basic idea of NDN
as shifting HTTP’s request (for a named data object)-and-
response (with the object) semantics to the network layer [1].
Being a network-layer protocol, this request/response commu-
nication pattern works at a network packet granularity – each
request, carried in an NDN Interest packet containing the name
of the requested data, fetches one NDN Data packet (Figure 1);
neither type of packet contains addresses. Applications running
over NDN that produce data are known as producers, while
those requesting data are known as consumers.

Data
Consumer

NDN
network

Interest Packet
Content Name

Other Optional
Parameters

Data Packet

Content Name

Content

Signature

Fig. 1. Interest and Data packet in NDN

An NDN network runs routing protocol(s) to propagate the
reachability of data name prefixes, similar to how IP networks
use routing protocols to propagate IP address prefixes. Each
NDN router forwards Interests based on their names, recording

2

the interfaces from which Interests are received and to which
they are forwarded in a “Pending Interest Table” (PIT). Once
an Interest packet reaches a matching Data packet, the latter
will follow the reverse path of the corresponding Interest to
reach the consumer, satisfying the corresponding PIT entry on
each router along the path; the Data packet can also be catched
in routers to serve future requests for the same Data packet.
This stateful forwarding mechanism creates a closed feedback
loop, enabling routers to make informed Interest forwarding
decisions based on observed performance.

Following the earlier analogy, we do note that NDN Data
packets, beside being network layer packets, also differ from
HTTP data objects in two other important aspects: (i) all NDN
Data packets are immutable; if producers want to change Data
packet content, they must generate new packets with new
names; and (ii) every NDN Data packet carries a security
signature, generated by its producer’s key at the time of data
creation, cryptographically binding its name to its content;
the packet may also be encrypted as needed. Named, secured
data packets provide a basic building block for securing NDN
communications. This also requires that all (data producing)
applications possess cryptographic keys, which can be further
validated when a consumer verifies a received Data packet, as
explained below.

B. NDN Security: Basic Concepts

The NDN security framework is built on public-key cryp-
tography. We call applications, and all other network commu-
nication participants in an NDN network, entities. Each entity
possesses one or more names plus one or more cryptographic
public-private key pairs.1 An NDN certificate for a user named
“/ucla/cs/zhiyi” binds this name and its key(s) together; it
certifies the user’s ownership of the name, along with their
key. Each certified name is called an identity, and each entity
can issue certificates for the sub-namespaces that it delegates
to other entities.

Utilizing public-key cryptography to validate communica-
tions requires NDN to address the following three challenges:
Establishing trust anchor(s): In NDN, a trust anchor is the

certificate authority for a given namespace. When a trust
anchor is installed, users can verify other entities’ signatures
by backtracking and verifying the certificates along the
certificate chain to the trust anchor. Trust anchors are usually
installed on various entities via out-of-band mechanisms, and
the development of these supporting mechanisms directly
depends on the trust anchor model in use, as we discuss
in the next section.

Providing effective solutions for trust management: To
validate all received data, a participant must know which
key(s) can legitimately sign or encrypt which pieces of
data. Effective solutions must enable applications to express
their own trust policies, and to execute these policies
automatically.

1An entity can be a country, a university, a company, a neighborhood,
a home, a user, a node, or an app process. The task of allocating names to
entities is beyond the scope of the NDN design, just like the task of assigning
IP addresses is beyond the scope of the TCP/IP design.

Providing usable key management solutions: Signing, ver-
ification, encryption, and decryption all involve cryptographic
keys. Usable cryptographic solutions require mechanisms to
assign and deliver proper keys or certificates in a secure,
efficient, and automatic manner.

III. AN OVERVIEW OF SECURITY IN NDN

NDN utilizes a different trust anchor model than those
commonly in use today, namely: (i) utilizing hundreds of
commercial certificate authorities as trust anchors to authen-
ticate other parties one wishes to communicate with (e.g.,
TLS certificates), (ii) installing a single global trust anchor
(e.g., DNSSEC), and (iii) establishing trust in an ad-hoc way
(e.g. trust on first use, or “TOFU”). NDN assumes that the
authority of each networked system (an organization, a smart
home, etc.) should establish its own local trust anchor(s). The
entities under that authority can discover these trust anchors
through local system settings, and then obtain certificates and
learn trust policies from them. This trust model follows that
of the Simple Distributed Security Infrastructure (SDSI) [2]
in trust anchor establishment. With installed trust anchors,
certificates, and trust policies, an entity can utilize its digital
keys to ensure data authenticity, integrity, and confidentiality.
In addition, NDN’s in-network storage also helps improve data
availability.

A. Building Blocks of Security in NDN

NDN security utilizes public-key cryptography and relies on
the use of digital keys. In addition to keys, NDN also uses the
following building blocks: trust policies and NDN certificates.
Trust Policies: Applications define trust policies to determine

whether a given packet or identity is trustworthy or not. Given
that data producers name Data packets (including certificates)
in a structured and meaningful way, consumers can only
accept packets with proper name formatting. Trust policies in
NDN are based on name semantics; see more in Section V-A.

NDN Certificates: A certificate signer either signs NDN cer-
tificates under one’s own namespace, or signs other keys
(under different namespaces) as an endorsement (e.g. in a
web of trust). An NDN certificate is a Data packet that
carries public key information and can be fetched using
normal Interest packets. Certificate names follow the nam-
ing convention “/<prefix>/KEY/<key-id>/<issuer-info>
/<cert-version>”, where the “prefix” represents an identity
and the components after “KEY” are the key id, issuer
information, and certificate version.

B. NDNFit as an Example

To aid the reader’s comprehension, we use NDNFit [3], a
prototype application for tracking and sharing personal fitness
activity, as a specific example to illustrate NDN security mech-
anisms. NDNFit handles sensitive user information and thus
requires strong data authenticity, integrity, and confidentiality.

As an example of a typical use case, a data owner, “Alice”,
wants to use NDNFit to learn her everyday fitness information.
Alice has an app “Sensor” on her mobile phone and an app

3

“Analyzer” on her laptop. “Sensor” collects Alice’s everyday
time-location information while “Analyzer” generates inferred
insights and visualized results by analyzing information pro-
vided by “Sensor”. Figure 2 shows how this NDNFit system
works.

1. Authorize publishing
2. Define encryption rules Grant access

Sensor Analyzer
encrypted

data

Alice

encrypted
data

Alice’s Phone Alice’s Laptop
NDN

Network

Fig. 2. NDNFit application workflow

To provide authenticity and integrity, NDNFit, as a health
data application, requires that all data produced by “Sen-
sor” and “Analyzer” be authenticable and provide for easy
alteration detection, preventing unauthorized producers from
producing fake data. To provide confidentiality, Alice only
grants “Analyzer” the privilege to access the private fitness
data produced by “Sensor” – no one else should be able to
read this data. The rest of the paper will show how the security
mechanisms in NDN help NDNFit achieve these objectives.

IV. SECURITY BOOTSTRAPPING IN NDN

The NDNFit system needs to be initialized by security
bootstrapping before it can function. Security bootstrapping
in NDN is the process by which entities obtain trust anchors,
certificates, and learn trust policies. Here, Alice controls the
whole system, and thus the trust anchor is Alice’s certifi-
cate, which we assume to be “/ndnfit/alice/KEY/key001
/ndnfit-agent/version”.

A. Obtaining Trust Anchors

An entity needs trust anchors to identify authentic entities;
at the very least, it should trust the certificate signer that issues
certificates to these entities. Trust anchors are expected to
either be pre-configured or securely obtained through some
means, e.g., an out-of-band operation. Similar to SDSI, dif-
ferent system may have their own trust anchors and nodes
within these systems can have their own means to obtain trust
anchors. Thus, the process of obtaining trust anchors can be
localized or distributed in NDN.

In our case, a naïve approach to trust anchor establishment
would be to manually install Alice’s certificate to “Sensor”
and “Analyzer”.

B. Obtaining Certificates

To generate Data packets with legitimate names and veri-
fiable signatures, an application (producer) needs to obtain a
name and a certificate for that name. For instance, in order to
let other applications authenticate the NDN Data “/ndnfit
/alice/sensor/example” produced by “Sensor”, “Sensor”

needs a certificate for the name “/ndnfit/alice/sensor”.
With trust anchors, an entity could apply for a certificate
from a trusted certificate signer, which can be processed either
manually or through automated means, e.g., NDN certificate
management system (NDNCERT) [4]. NDN security grants
flexibility to application developers to decide their own trust
anchors. Depending on the system design, an application may
obtain certificate from its own centralized certificate service,
e.g., cloud-based applications, while a distributed application,
e.g., p2p applications, may obtain certificates from its user or
host node.

In NDNFit, the system trust anchor, Alice’s certificate,
resides in an NDNCERT daemon (called an agent) on her
laptop, with this agent playing the role of the certificate
signer. “Sensor” and “Analyzer” use the NDNCERT protocol
to apply for certificates from this agent, and Alice will use
the agent to verify the two apps using customized out-of-band
challenges. Two certificates, “/ndnfit/alice/sensor/KEY/1
/alice-agent/version” and “/ndnfit/alice/analyzer/KEY
/1/alice-agent/version”, will be issued to “Sensor” and
“Analyzer”, respectively. Note that it is Alice who controls
the namespace “/ndnfit/alice” and can determine the app
names.

C. Learning Trust Policies

To determine whether an incoming packet is trustworthy
or not, an application (consumer) needs to learn trust policies
through out-of-band operations or inline communications after
obtaining the trust anchor. In the first case, application devel-
opers can pre-configure trust policies in applications and may
allow users to update trust policies later via user interfaces.
The second case is preferable to the first: after obtaining the
trust anchor, the application can fetch, verify, and learn trust
polices (carried in Data packet(s)) from trusted sources, e.g.,
a cloud-based application can learn policies from its central
server. When validating Data packets that carry trust policies,
an application either simply verifies the signature value or uses
its default trust policy (e.g., the Data must be directly signed
by a trust anchor), if any.

In NDNFit, applications have pre-configured trust polices
and rely on Alice to update the configuration as needed.

Authority for /ndnfit

Signature

/ndnfit/KEY/… Self-
signed

Alice’s certificate as
local Trust Anchor for

/ndnfit/alice

/ndnfit/alice/
KEY/…

Signature

Alice

/ndnfit certificate as
local Trust Anchor for

/ndnfit

Other enities

Sensor App

Digital Keys

Trust Policies

Trust Anchors

Analyzer App

Digital Keys

Trust Policies

Trust Anchors

Fig. 3. Entities and Trust Anchors in NDN

4

After security bootstrapping, as shown in Figure 3, both
“Sensor” and “Analyzer” will trust Alice and each will have
their own trust policies and certificate under “/ndnfit/alice”.
The security bootstrapping of Alice’s certificate takes place in
a different network system where the trust anchor is “/ndnfit
/KEY/...”. Alice learns of this trust anchor and obtains the
certificate “/ndnfit/alice/KEY/...” from the authority of the
namespace “/ndnfit” (we will not go into the details of this
process).

V. AUTHENTICITY AND INTEGRITY

Possessing certificates issued by the certificate signer, “Sen-
sor” and “Analyzer” can produce Data packets within their
corresponding namespaces and sign them using their corre-
sponding private keys. In this section, we show how NDN
security helps NDNFit ensure data authenticity and integrity.

NDN requires producers to sign every Data packet, enabling
consumers to verify each incoming Data’s signature, hence
ensuring data authenticity and integrity. More importantly,
NDN’s rich name semantics enable consumers to use name-
based trust policies to reason about trust by checking which
piece of data is signed by which key. In this way, trust policies
limit the power of each signing key and ensure that each
trustworthy packet is signed by a legitimate key, providing
data authenticity at a fine granularity. For instance, in NDNFit,
the key certified in certificate “/ndnfit/alice/sensor/KEY/1
/alice-agent/version” is only allowed to sign packets under
prefix “/ndnfit/alice/sensor”.

The authenticity and integrity of incoming Data packets
(including certificates) is determined by a combination of two
main factors:
Validation by Trust Polices: The structured naming conven-

tions of Data packets and keys provide explicit and meaning-
ful contexts for applications, enabling NDN applications to
define rules that only accept packets with the desired name
format and relationship between the name of a packet and
the name of its signing key. To be more specific, the packet
name, the signing key name, the relationship between these
two names, and the trust anchor name must follow these
rules. NDN’s “Trust Schema” [5] is a realization of present
name-based trust policies. See more in Section V-A.

Signature Verification: To verify a data signature, consumers
retrieve the certificate of the corresponding producer, who is
identified by the key name in a dedicated section of the Data
packet. This certificate will recursively point to its signer’s
certificate and finally arrive at an anchor. The origin packet
is considered to be valid if all fetched certificates, including
the anchor, have valid signatures and can satisfy the trust
policies.

A. Presenting Trust Policies using Trust Schemas

Specifically, trust schema make use of NDN’s naming
conventions to enable systematic descriptions of trust poli-
cies, namely: (i) how Data packet names are expected to be
structured, (ii) how packet signing key names are expected to
be structured, (iii) how Data packet names are expected to be

related to signing key names, and (iv) which trust anchors are
acceptable.

Upon receiving a packet, a consumer application uses trust
schemas to assess the packet’s trustworthiness before any
cryptographic signature verification is performed. For instance,
as shown in Figure 4, in addition to “Alice” (“/ndnfit
/alice”), there is an entity “Bob” (“/ndnfit/bob”), who is
also running an NDNFit system. We assume that both Alice’s
and Bob’s certificates are signed by the same anchor certifi-
cate “/ndnfit/KEY/key2007/self/version”. Both Alice’s and
Bob’s devices produce data packets under their own prefixes,
namely “/ndnfit/alice/sensor/example” and “/ndnfit/bob
/sensor/example”. As shown, there are two trust schemas.
Schema “rule 1” accepts Data packets whose (i) name prefix
is “/ndnfit/alice”, (ii) signing key name prefix is “/ndnfit
/alice/KEY”, and (iii) certificate chain ends with the trust
anchor “/ndnfit/alice”. Accordingly, only packets signed
by Alice and strictly under Alice’s prefix are accepted. In
contrast, “rule 2” has a looser requirement: all packets with the
name and key name prefix “/ndnfit” and eventually signed
by “/ndnfit” are considered trustworthy. As a consequence,
“rule 2” accepts packets produced by both Alice’s and Bob’s
devices.

Data Name:
 Must with prefix /ndnfit/alice
Key Name:
 Must with prefix /ndnfit/alice
Anchor:
 /ndnfit/alice/KEY/key001

Trust Schema rule 1:

Data Name:
 Must with prefix /ndnfit
Key Name:
 Must in format /ndnfit/…/KEY/…
Anchor:
 /ndnfit/KEY/key2007

Trust Schema rule 2:

Signed by:
/ndnfit/bob/sensor/KEY/1

/ndnfit/bob/sensor/example
Content

Signed by:
/ndnfit/alice/sensor/KEY/1

/ndnfit/alice/sensor/example
Content

Accept

Accept

Fig. 4. An example of Trust Schema

B. Signed Interests

Interest packets can also be signed. For example, in an
IoT scenario, when receiving an Interest packet containing
a command, a smarthome device may need to authenticate
the sender of the Interest before executing the command. To
accomplish this, a controller can send a signed Interest to
control IoT devices. The NDN Interest signature validation
process is the same as the one used to validate Data packets.

VI. DATA CONFIDENTIALITY

NDNFit requires data confidentiality and access control
to protect sensitive user information. When confidentiality is
implemented via encryption, it is necessary to have a usable
key distribution system to ensure that the involved entities can
identify and fetch the relevant encryption and decryption keys.

For active point-to-point sessions, key exchange protocols
like Diffie-Hellman [6] can derive encryption keys for the
session, with both sides of the communication well-aware

5

of the key information. When sharing data with multiple
parties (as in NDNFit), Diffie-Hellman may not be feasible
or efficient. In these scenarios, the owner of the data needs to
deliver decryption keys to authorized entities. In NDN, since
Data names are structured and convey rich semantics, the
NDN team is exploring approaches that leverage systematic
naming conventions to inform consumers about how to fetch
the corresponding decryption keys. These approaches would
also automate the key distribution process and improve the
protocols’ usability.

For the second scenario, Named-based Access Control
(NAC) [7] and its variants (such as NAC-ABE), schematized
access control [8], and other protocols have been proposed.
The NDNFit system uses NAC to achieve confidentiality and
access control.

A. Name-based Access Control

In the NDNFit system, Alice is the data owner for all
Data packets under “/ndnfit/alice” and determines who
can access the confidential data and under what condi-
tions. In NAC, each encryption key name will be ex-
plicitly appended to the name of the corresponding Data
packet. For instance, a Data packet produced by “Sensor”
has the name “/ndnfit/alice/sensor/data/ENCRYPTED-BY
/ndnfit/alice/E-KEY/sensor”, where the components after
“ENCRYPTED-BY” are the encryption key name. As mentioned,
“Analyzer” is authorized by Alice to access “Sensor”’s data
under prefix “/ndnfit/alice/sensor”. A simplified data pro-
duction and encryption process is illustrated below.

Interest 2:
/ndnfit/alice/D-KEY/sensor
/ENCRYPTED-BY
/ndnfit/alice/analyzer

Encrypted Content

/ndnfit/alice/sensor/example
/ENCRYPTED-BY

/ndnfit/alice/E-KEY/sensor

Signature

Analyzer

/ndnfit/alice/sensor/example
Interest 1:

/ndnfit/alice/D-KEY/sensor
/ENCRYPTED-BY

/ndnfit/alice/analyzer

Signature
Encrypted Symmetric Key

Fig. 5. Name-based Access Control in NDNFit

Key Generation: Alice will first generate a key pair (“E-
KEY”, “D-KEY”) for encryption and decryption, respec-
tively. She then produces two Data packets carrying “E-
KEY” in plaintext and “D-KEY” encrypted by “Analyzer”’s
public key. The “E-KEY” packet name follows the format
“/ndnfit/alice/E-KEY/sensor”, while the “D-KEY” packet
name follows the format “/ndnfit/alice/D-KEY/analyzer
/ENCRYPTED-BY/ndnfit/alice/analyzer”.

Data Production: When producing data, “Sensor” first gen-
erates a symmetric key for content encryption. Then, it
fetches “E-KEY” and encrypts the symmetric key with it.
Finally, it packs the encrypted symmetric key into a Data
whose name is “/ndnfit/alice/sensor/data/ENCRYPTED-BY
/ndnfit/alice/E-KEY/sensor”.

Data Consumption: As shown in Figure 5, when “Analyzer”
wants to consume this Data, it first fetches the Data packet;
the Data name conveys that the content is encrypted by the
“E-KEY”. To decrypt the content, “Analyzer” then fetches the
corresponding “D-KEY”. Notice that the fetched “D-KEY” is
actually encrypted by “Analyzer”’s own key. By decrypting
the content in the fetched “D-KEY” Data, the application
obtains “D-KEY” and can decrypt the symmetric key and
use the symmetric key to finally decrypt the content.

B. Fine Granularity through Key Naming
By defining naming conventions, NAC enables fine-grained

access control. For instance, a “D-KEY” name could be
“/ndnfit/alice/D-KEY/sensor/example/monday”, indicating
that the key will only be used to protect the data produced
by “Sensor” on Mondays.

VII. DATA AND CERTIFICATE AVAILABILITY

A. Data Availability by In-network Storage
The NDN architecture provides applications with high data

availability because it is centered on content distribution. In
NDN, named data is secured regardless of its location; that
is, Data packets can be retrieved from in-network caches or
any other storage system, no matter whether these cache ser-
vices and storage systems are trustworthy or not. All capable
forwarders can cache Data packets and popular Data packets
are often cached in the network. Moreover, it is simple for
producers to utilize long-term storage services (e.g., managed
data repositories). In the NDNFit example (Figure 2), the in-
network storage services in NDN network will help to improve
the availability of Data produced by “Sensor”.

B. Certificate Availability
The fact that certificates are a building block of NDN

security makes certificate availability of vital importance. We
claim that NDN certificates, as Data packets, also benefit
from in-network caching and storage as discussed above.
In order to further improve certificate availability, the NDN
certificate bundle [9] has been designed. Certificate bundles
enable producers to aggressively collect all the certificates
in the certificate chain and pack them together as a bundle,
allowing them make the whole chain of certificates available
to consumers and avoiding any signature verification failures
due to unreachable certificates. In NDNFit, “Sensor” pro-
duces Data packets and can prepare all needed certificates
as a certificate bundle. Specifically, the bundle will contain
the application certificate (“/ndnfit/alice/sensor/KEY/...”)
and the trust anchor certificate (“/ndnfit/alice/KEY/...”).
Assuming that the consumer application has a pre-configured
trust anchor but has no other cached certificates, when it
needs to verify the retrieved data, it can fetch all the needed
certificates with a single Interest.

VIII. DISCUSSION

A. Comparison of NDN and TCP/IP Security
The differences between NDN security and TCP/IP security

originate from the fact that NDN names data whereas IP names
locations.

6

1) Security Properties are Associated with Data: In
TCP/IP, the network layer defines the basic communication
unit to be the channel between two IP addresses; thus, proto-
cols like IPSec and TLS secure channels (e.g., IP channels
or TCP channels). However, (i) when multiple parties are
involved, securing channels between every two of them will
dramatically increase the communication overheads; (ii) more
importantly, even with a protected network channel, a receiver
cannot ensure that the transfered data itself is authentic and
unaltered – an application cares about the security of its data
instead of the security of underlying channels.

By contrast, NDN security allows applications to protect
what really needs to be protected – data. NDN’s security
properties are carried directly with packets, and are thus
independent of how the data was retrieved or where it came
from.

2) Establishing Trust using Name Semantics: Security tech-
nology lacks the tools for effectively reasoning about trust. For
instance, in current network security protocols (e.g., HTTPS
or QUIC), a common practice is to accept a signature if it has
been (in)directly signed by a trusted CA. However, this shows
that signature verification alone is not enough to establish
trust [10].

In NDN, trust policies are expressed explicitly by using
name semantics in a systematic way, allowing applications to
reason about security rather than blindly verifying signatures.
Moreover, naming conventions can facilitate key distribution,
thus improving system usability.

B. Remaining Challenges and Ongoing Work

The development of the NDN architecture has guided the
creation of a new network security framework and, at the
same time, brought new challenges [11]. For example, stateful
forwarding introduces the PIT, which may increase the attack
surface [12]. In regard to privacy [13], on the one hand, normal
Interest packets 2 fetch Data packets by name only, without
disclosing the consumer’s information; on the other hand, data
names and signatures may disclose a producer’s identity if they
are not properly protected.

The NDN community is actively working on these chal-
lenges. Some ongoing work includes: (i) investigating NDN’s
DDoS resistance, (ii) supporting multiple certificate chains in
Data verification, and (iii) mitigating privacy issues caused by
Data names and Data signatures.

IX. CONCLUSION

In [14], we argued that, by naming data and securing
it directly, NDN offered intrinsic advantages for securing
network communications. Evidence from our seven-year ef-
fort to develop NDN security solutions suggests that this is
indeed true. NDN enables data signing at a fine granularity in
support of the least-privilege principle; secured Data packets
(including certificates and trust schemas) can be easily fetched
from anywhere. Furthermore, we learned that one can establish
well-defined naming conventions to systematically define trust

2not including signed Interest packets

policies using schemas and design name-based access control
via encryption. We also learned, the hard way, the importance
of automating security operations instead of leaving the burden
to application developers (who would simply aim to make the
application work first by leaving security out).

Consequently, NDN secures network communications in a
more resilient, intuitive, and less fragmented manner than the
existing solutions implemented in TCP/IP networks. The de-
velopment process of the NDN security model has convinced
us that the right building block of the network architecture—
named data, offers the key enabler to developing effective
network security solutions.

ACKNOWLEDGMENT

This work is partially supported by the National Science
Foundation under awards CNS-1345142, CNS-1345318, CNS-
1629009, and CNS-1629922.

REFERENCES

[1] L. Zhang, A. Afanasyev et al., “Named Data Networking,” ACM
SIGCOMM Computer Communication Review, 2014.

[2] R. L. Rivest and B. Lampson, “Sdsi-a simple distributed security
infrastructure.” Crypto, 1996.

[3] H. Zhang, Z. Wang et al., “Sharing mhealth data via named data
networking.” in ICN, 2016, pp. 142–147.

[4] Z. Zhang, A. Afanasyev, and L. Zhang, “Ndncert: universal usable trust
management for ndn,” in Proceedings of the 4th ACM Conference on
Information-Centric Networking. ACM, 2017, pp. 178–179.

[5] Y. Yu, A. Afanasyev et al., “Schematizing trust in named data network-
ing,” in Proceedings of the 2nd International Conference on Information-
Centric Networking. ACM, 2015, pp. 177–186.

[6] M. Mosko, E. Uzun, and C. A. Wood, “Mobile sessions in content-
centric networks,” in IFIP Networking, 2017.

[7] Z. Zhang, Y. Yu, A. Afanasyev, J. Burke, and L. Zhang, “Nac: name-
based access control in named data networking,” in Proceedings of the
4th ACM Conference on Information-Centric Networking. ACM, 2017,
pp. 186–187.

[8] C. Marxer and C. Tschudin, “Schematized access control for data
cubes and trees,” in Proc. of ACM Conference on Information-Centric
Networking, 2017.

[9] M. Mittal, A. Afanasyev, and L. Zhang, “NDN certificate bundle,” NDN,
Technical Report NDN-0054, 2017.

[10] C. Cimpanu. (2017) 14766 let’s encrypt ssl cer-
tificates issued to paypal phishing sites. [On-
line]. Available: https://www.bleepingcomputer.com/news/security/
14-766-lets-encrypt-ssl-certificates-issued-to-paypal-phishing-sites/

[11] R. Tourani, S. Misra, T. Mick, and G. Panwar, “Security, privacy,
and access control in information-centric networking: A survey,” IEEE
Communications Surveys & Tutorials, 2017.

[12] C. Ghali, G. Tsudik, E. Uzun, and C. A. Wood, “Closing the floodgate
with stateless content-centric networking,” in Computer Communication
and Networks (ICCCN), 2017 26th International Conference on. IEEE,
2017, pp. 1–10.

[13] C. Ghali, G. Tsudik, and C. A. Wood, “When encryption is not enough:
privacy attacks in content-centric networking,” in Proceedings of the 4th
ACM Conference on Information-Centric Networking. ACM, 2017, pp.
1–10.

[14] L. Zhang et al., “Named data networking (NDN) project,” NDN Project,
Tech. Rep. NDN-0001, October 2010.

