
O
U

T
D

AT
ED

An Overview of Security Support in

Named Data Networking

This version of the overview of Security Support in
Named Data Networking is outdated.

The most recent version of the overview of Security
Support in Named Data Networking is available at:
http://named-data.net/publications/techreports/

The below described version is only present for historical
purposes

1

http://named-data.net/publications/techreports/

NDN, Technical Report NDN-0057. http://named-data.net/techreports.html
Revision 1: March 18, 2018

1

Security Support in Named Data Networking
Zhiyi Zhang, Haitao Zhang, Eric Newberry, Spyridon Mastorakis, Yanbiao Li, Alexander Afanasyev, Lixia Zhang

Abstract—This technical report presents an overview of the
security support in the Named Data Networking (NDN) architec-
ture that has been developed over the recent years. NDN changes
the communication model from IP’s delivery of packets between
hosts identified by IP addresses to the retrieval of named and
secured data packets. Consequently NDN fundamentally changes
the approach to securing communications. Making named data
the centerpiece of the architecture leads to a new security
framework which: (i) secures the data directly, and (ii) uses name
semantics for applications to reason about security. In this paper
we introduce NDN’s approach to security bootstrapping, data
authentication, integrity, confidentiality, and availability.

Note that this report is still in preliminary stage. We welcome
all comments, and we plan to post an updated version in the
near future.

Index Terms—Named Data Networking, Security

I. INTRODUCTION

Named Data Networking (NDN), a proposed Internet ar-
chitecture, changes the basic network communication model;
instead of delivering IP packets to receivers identified by IP
addresses, NDN lets consumers request the desired data by
names. Naming enables NDN to secure data directly at the
network layer by making every data packet verifiable and, if
necessary, confidential.

In this report, we give an overview of the security supporting
mechanisms in NDN, introducing security approaches used in
NDN with example prototype realizations and showing how all
the components of the framework work together. We assume
that the readers have some basic knowledge of cryptographic
security, but may not be familiar with the NDN architecture.
Therefore, we organize this report in the following way:

• Section II introduces the basic notions of NDN, and
an example application that will be used throughout the
report to help illustrate the NDN security mechanisms.

• Section III provides an overview of the NDN security
supporting mechanisms and building blocks.

• Section IV introduces the security bootstrapping process
in NDN.

• In Sections V, VI, and VII, we explain how security in
NDN provides data authentication, integrity, confidential-
ity, and availability, respectively.

Throughout this report, we aim to illustrate how NDN en-
ables data to stay secured independent of the communication
channel, and how it allows applications to validate received
Data packets independent of how or from where the data is

Zhiyi Zhang, Haitao Zhang, Spyridon Mastorakis, Yanbiao Li, and Lixia
Zhang are with the Department of Computer Science, UCLA - e-mail: zhiyi,
haitao, mastorakis, lybmath, lixia@cs.ucla.edu.

Alexander Afanasyev is with the Department of Computer Science, Florida
International University - e-mail: aa@cs.fiu.edu

Eric Newberry is with the Department of Computer Science, The University
of Arizona - e-mail: enewberry@cs.arizona.edu

fetched. Moreover, we illustrate how applications can utilize
name semantics to reason about trust and security, instead of
blindly relying on third-party certificate services.

In Section VIII, we discuss the basic differences between
network security solutions in TCP/IP and NDN, explaining
how different network architectures lead to different security
solutions. We also identify remaining NDN security challenges
(Section IX). We hope that this report can serve as a roadmap
to the NDN security efforts for readers interested in NDN
research, as well as a useful demonstration of new approaches
to network security that differ from today’s practices.

II. BACKGROUND

NDN security is based on the public key cryptography,
which has been widely used to provide solutions for informa-
tion authentication, integrity, and confidentiality. In public key
cryptography, a user generates digital signatures and encrypts
content 1 using its public and private key pair, and the key pair
is bound with the its identity through a certificate issued by
a certificate authority (CA). Utilizing public key cryptography
requires NDN to address three challenges.
Establishing trust anchor(s) Only with proper trust anchors,

participants can authenticate CAs and verify other en-
tities’ signatures by backtracking and verifying all the
certificates along the certificate chain. Thus, how to
install trust anchors in a secure way during security
bootstrapping is of vital importance.

Providing effective solutions for trust management Trust
policies are needed to validate all received data; a
participant must know which key(s) is legitimate to sign
or encrypt which piece of data. Effective solutions must
enable applications to express their trust policies, and to
execute the policies automatically.

Providing usable key management solutions Signing, veri-
fication, encryption, and decryption all involve crypto-
graphic keys. Usable cryptographic solutions requires
mechanisms to assign and deliver proper keys or certifi-
cates in a secure, efficient, and automatic way.

In the next subsection, we establish the basic NDN termi-
nology. The rest of the paper will show how trust anchors are
installed and how key/trust management is handled in NDN.

A. Named Data Networking (NDN)

The proposed Named Data Networking (NDN) architec-
ture [1] makes application data the narrow waist of the net-
working stack. Applications create Data packets, name them
using structured names, while NDN forwarders directly use
these names for forwarding at the network layer. Consumers

1usually used together with symmetric-key algorithms

O
U

TD
A

TE
D

 (f
or

 h
is

to
ric

al
 p

ur
po

se
s

on
ly

)

2

request Data packets by sending Interest packets that carry
names of the desired content. Importantly, data producers se-
cure generated content at the creation time— cryptographically
signing Data packets and, when needed, encrypting them.

Network communication participants (called entities in this
paper) in NDN are supposed to possess both names and
cryptographic keys, and NDN certificate serves to glue them
together; an NDN certificate certifies an entity’s ownership of a
name along with its key. We call an certified name an identity
of an entity. All entities in NDN network (e.g., a user, a node,
or an application) should have at least one identity and they can
have many identities and corresponding cryptographic keys.
Figure 1 shows an example of two entities in NDN. Both Alice
and Bob their digital keys, trust policies, and pre-configured
trust anchors. Two CAs directly or indirectly issue certificates
to two entities respectively.

NDN
Network

UCLA Anchor

Signature

Self-
signed

UCLA CA (U)

Signature

Arizona CA (A)

Arizona Anchor

Alice From UCLA Bob From Arizona

Directly or Indirectly Issue
Certificate to Alice

Directly or Indirectly Issue
 Certificate to Bob

Digital Keys

Trust Policies

Trust Anchors

U A

Digital Keys

Trust Policies

Trust Anchors

U A

Self-
signed

Fig. 1. Entities and Trust Anchors in NDN

NDN utilizes a stateful packet forwarding mechanism [2],
where neither Interest nor Data packets carry “source” or
“destination” addresses. Each router forwards Interests based
on their names, recording the interfaces from which Interests
were received and to which they were forwarded in Pending
Interest Tables (PIT). Based on that, each matched Data packet
will follow the reverse path of the corresponding Interest
back to the consumer by satisfying the corresponding PIT
entry. This stateful forwarding creates a closed feedback loop,
enabling intelligent forwarding decisions for Interests based
on the observed performance. Routers, if capable, will also
cache the retrieved Data packets to serve future requests with
the same name.

B. NDNFit as an Example

To aid the reader’s comprehension, we use NDNFit [3],
a prototype application for tracking and sharing personal
fitness activity, as a specific example to illustrate mechanisms
provided by NDN security. In a specific use case of NDNFit,
a data owner, “Alice”, has a laptop and a mobile phone that
run two application instances. Specifically, Alice uses

Untrusted
Storage

1. Authorize publishing
2. Define encryption rules

Grant access

Fitness
Sensor App

 Fitness
Analyzing App

encrypted
data

Data
Owner

encrypted
data

Alice’s Phone Alice’s Laptop

Fig. 2. NDNFit application workflow

• a sensor app (producer) running on her mobile phone to
collect her everyday time-location data;

• a public in-network storage unit to store her data; the unit
could be a router or a device providing storage service;
and

• an analyzing app (consumer) running on her laptop to
provide inferred insights and visualized results.

Figure 2 illustrates the NDNFit application workflow. In our
example, Alice has identity “/ndnfit/alice”, and she dele-
gate sub-namespaces “/ndnfit/alice/sensor1” and “/ndnfit
/alice/analyzer1” as identities for sensor application and
analyzing application respectively.

The security objective of NDNFit is to allow Alice to
directly control applications’ access to her data. In our case,
Alice grants privilege to the analyzing app to access her private
fitness data produced by the sensor app. At the same time,
the system should ensure the authentication, integrity, and
confidentiality of Alice’s private data. The rest of the paper
will show how mechanisms in NDN helps NDNFit achieve
these objectives.

III. AN OVERVIEW OF SECURITY IN NDN
NDN takes a different approach to trust anchor establish-

ment from today’s practice. Instead of starting from several
commercial CAs (e.g., TLS certificates) or single trust anchor
(e.g., DNSSEC), NDN takes the strategy of Simple Distributed
Security Infrastructure (SDSI) [4] to establish trust anchors;
that is, each network system (network of an organization,
a smarthome, etc.) has their local trust anchors. Moreover,
NDN utilizes semantics of namespace for trust management
(Section V-A) and key management (Section VI-A).

A. Building Blocks of Security in NDN

NDN security utilizes public key cryptography and relies
on the use of digital keys. Besides keys, NDN also uses
the following building blocks, namely, trust policy and NDN
certificate.
Trust Policy Trust policies are defined by applications to

determine whether a packet or an identity is trustworthy
or not. Given the fact that applications name Data packets
(including certificates) in a structured and meaningful
way, consumers can restrict the name format of a valid
packet and trustworthy name relationships between a
packet and its signing key. These name-based rules are
trust policies in NDN. See more in Section V-A.

O
U

TD
A

TE
D

 (f
or

 h
is

to
ric

al
 p

ur
po

se
s

on
ly

)

3

NDN Certificate In NDN, every entity that produces data
needs to obtain an NDN certificate to prove the
ownership of its namespace and cryptographic mate-
rials (e.g., public key). Importantly, as the root of
trust, trust anchors are also represented by certifi-
cates. Regarding the format, NDN certificate is a Data
packet that carries public key information and can be
fetched by normal Interest packets. Certificate name
follows naming convention “/<prefix>/KEY/<key-id>
/<issuer-info>/<cert-version>”, where the “prefix”
represents an identity and the components after “KEY”
are key id, issuer information, and certificate version.

B. Design Considerations of NDN Security

Security in NDN is based on named data, leading to
different design considerations of security framework.

• NDN security should be able to support different trust
models for different systems.

• Name and naming convention explicitly conveys desired
information and can facilitate trust and key management
in NDN.

• To work with NDN’s content-centric nature, security
properties (data authentication, integrity, and confidential-
ity) should stay with the data regardless of its location.

IV. SECURITY BOOTSTRAPPING IN NDN

Security bootstrapping in NDN is the process for entities to
learn trust anchors and obtain certificates.

• From an application’s perspective, to generate Data pack-
ets with legitimate names and verifiable signatures, an
application (producer) needs to obtain a name and a cer-
tificate for the name. Furthermore, to obtain a certificate
from a CA, an entity needs to trust the CA first.

• Not only application, a user or a node is also expected
to get a certificate, serving as a CA for local devices and
applications. To be more specific, after a user obtains an
NDN certificate, the user can issue delegated certificates
to authorised devices or applications. Similarly, after a
node obtains a certificate, the node is able to delegate
certificates to authorised applications.

NDN security grants flexibility to application developers to
decide their own trust anchors. Depending on the system
design, an application may obtain certificate from its own cen-
tralized CA, e.g., cloud-based applications, while a distributed
application, e.g., p2p applications, may obtain certificates from
its user or host node.

The prerequisite of security bootstrapping in NDN is name
assignment; that is, a node or an application instance has
been assigned a name already or has means to get a name.
How to obain a name from a namepace should be determined
by the owner of the namespace. For instance, a user “Alice”
with identity “/alice” can name her phone to be “/alice
/my-phone” and Google may name an application running on a
device to be “/google/user-id/device-id/application-id”.

A. General Steps for Security Bootstrapping

An entity needs trust anchors to distinguish authentic en-
tities; at least, it should trust the CA which will issue a
certificate to this entity later. The trust anchors are expected
to either be pre-configured or securely obtained by other
means, e.g., out-of-band process. Following SDSI, different
system may have their own trust anchors and nodes in these
systems can have their own ways to obtain trust anchors. Thus,
the process of obtaining trust anchors can be localized or
distributed in NDN.

With trust anchors, an entity could apply for a certificate
from a trusted CA, which can be done either manually or
through automated processes, e.g., NDN certificate manage-
ment system (NDNCERT) [5]. NDNCERT provides tools
and library interfaces for entities to automatically apply for
certificates. Also, a CA can perform certificate renewal and
revocation processes via NDNCERT without manual opera-
tions.

B. Security Bootstrapping for NDNFit

Cert issuance
via NDNCERT

Alice’s
Laptop

/ndnfit/alice/sensor1/KEY/
app-k002/ndncert/version

NDNFit
Trust

Anchor
/ndnfit/KEY/key2017/
self/version

NDNCERT Agent

/ndnfit/alice/KEY/
key001/ndncert/version

NDNCERT Agent

/ndnfit/alice/analyzer1/KEY/
app-k001/ndncert/version

Alice’s
Phone

Fig. 3. NDNCERT automate certificate issuance in NDN

NDNFit uses NDNCERT for certificate issuance. In a con-
crete example of NDNFit bootstrapping, we assume a user
“Alice” is the legit owner of name “/ndnfit/alice” and owns
a certificate “/ndnfit/alice/KEY/key001/ndncert/version”.
Figure 3 shows how NDNCERT helps analyzing app and
sensor app to obtain certificates automatically.

• Alice’s certificate resides in NDNCERT daemon (called
an agent) running in a laptop; an agent plays thes role of
CA.

• In application security bootstrapping phase, since NDNFit
is a localized system and there is no centralized CA, both
sensor and analyzing apps do not have pre-installed trust
anchors. By NDNFit’s design, two applications will apply
certificates from a user, e.g., “/ndnfit/alice”, through
sending requests to the laptop’s NDNCERT agent.

• Alice will make use of the agent to verify two apps, by
using customized out-of-band challenges, and then issue
two certificates “/ndnfit/alice/sensor1/KEY/app-k002
/ndncert/version” and “/ndnfit/alice/analyzer1/KEY
/app-k001/ndncert/version”.

O
U

TD
A

TE
D

 (f
or

 h
is

to
ric

al
 p

ur
po

se
s

on
ly

)

4

V. AUTHENTICATION AND INTEGRITY

NDN requires producers to sign every individual Data
packet, enabling consumers to verify each incoming Data’s
signature, hence ensuring data authentication and integrity.
More importantly, NDN’s rich name semantics enables con-
sumers to use name-based trust policies to reason about trust
by checking which piece of data is signed by which key. In
this way, trust policies limits the power of each signing key
and ensures each trustworthy packet is signed by a legitimate
key, providing data authentication in a fine granularity.

Moreover, an entity is able to sign Interest packets when
Interests should be authentic. In IoT scenario, for example,
when receiving an Interest packet containing a command, a
smarthome device needs to authenticate the sender of the
Interest before executing the command. For this purpose, a
controller can send a signed Interest to command IoT devices.
In NDN, Interest signature validation process is the same as
that of Data packets.

The authentication and integrity of the incoming Data pack-
ets (including certificates) are determined by a combination of
two main factors– validation by name-based trust policies and
signature verification.
Validation by Name-based Trust Polices Structured nam-

ing convention of Data packets and keys provides explicit
and meaningful contexts for applications, enabling NDN
applications to define rules that only accept packets with
desired format of names and name relationships between
packet and its signing key. To be more specific, the packet
name, the signing key name, the relationship between
these two names, and the trust anchor name must follow
the rules.

Signature Verification To verify data signatures, consumers
retrieve certificates of the corresponding producers, which
are identified by the key names in the dedicated section of
the Data packets. The certificate will recursively point to
its CA and finally arrives an anchor. The origin packet is
considered to be valid if all fetched certificates including
the anchor have valid signatures and can satisfy the trust
policies.

A. Presenting Name-based Trust Policies by Trust Schemas

NDN’s “Trust Schema” [6] is used for an application to
present its name-based trust policies. Specifically, trust schema
makes use of NDN’s naming conventions to enable systematic
descriptions of the trust policies: (1) how Data packet name is
expected to be structured (2) how the packet signing key name
is expected to be structured and (3) how Data packet name is
expected to be related to the signing key name (4) which trust
anchors are accepted

Upon receiving a packet, a consumer application uses
trust schemas to assess the packet’s trustworthiness before
any cryptographic signature verification is performed. For
instance shown in Figure 4, in NDNFit, two users “Alice”
(“/ndnfit/alice”) and “Bob” (“/ndnfit/bob”) are signed
by the same anchor certificate “/ndnfit/KEY/key2007/...”.
Both Alice and Bob produce data packets under their own
prefix, namely Data “/ndnfit/alice/data” and “/ndnfit/bob

Data Name:
 Must with prefix /ndnfit/alice
Key Name:
 Must with prefix /ndnfit/alice/KEY
Anchor:
 /ndnfit/alice/KEY/key001

Trust Schema rule 1:

Data Name:
 Must with prefix /ndnfit
Key Name:
 Must in format /ndnfit/…/KEY/…
Anchor:
 /ndnfit/KEY/key2007

Trust Schema rule 2:

Signed by:
/ndnfit/bob/KEY/key001

/ndnfit/bob/data
Content

Signed by:
/ndnfit/alice/KEY/key001

/ndnfit/alice/data
Content

Accept

Accept

Fig. 4. An example of Trust Schema

/data”. As shown, there are two trust schemas. Schema “rule
1” accepts Data packets whose (1) name prefix is “/ndnfit
/alice” (2) signing key name prefix is “/ndnfit/alice/KEY”
(3) certificate chain ends with trust anchor “/ndnfit/alice”.
Accordingly, only packets signed by Alice and strictly under
Alice’s prefix are accepted. In contrast, “rule 2” has a loose
requirement; all packets with name and key name prefix
“/ndnfit” and eventually signed by “/ndnfit” are consid-
ered trustworthy. As a consequence, “rule 2” accepts packets
produced by both Alice and Bob.

VI. DATA CONFIDENTIALITY

When data confidentiality and access control are imple-
mented via encryption, it is necessary to have a usable key
distribution system to ensure that the involved entity can figure
out and fetch the relevant encryption and decryption keys.
In NDN, encryption-based approaches to confidentiality are
designed and implemented for different scenarios.

• For active point-to-point sessions, key exchange protocols
such as Diffie-Hellman [7] can derive encryption keys
for the session and both sides are well aware of the key
information.

• For ad hoc and intermittent environments, and when
sharing data with multiple parties, Diffie-Hellman may
not be feasible or efficient. The owner of the data needs
to deliver decryption keys to authorized entities. In NDN,
since Data names are structured and convey rich seman-
tics, NDN team is exploring approaches that leverage
systematic naming conventions to notice consumers how
to fetch corresponding decryption keys, hence automating
the key distribution process and improving the protocols’
usability.

A. Name-based Access Control

Named-based Access Control (NAC) [8] with its varia-
tions such as NAC-ABE, schematized access control [9],
and other protocols are being designed and implemented.
We take NDNFit which uses NAC to achieve access con-
trol as an example; in such systems, a “data owner” (e.g.,
Alice is the data owner for all Data packets under “/ndnfit
/alice”) determines who under which conditions can access
the confidential data. In NDNFit, each encryption key name

O
U

TD
A

TE
D

 (f
or

 h
is

to
ric

al
 p

ur
po

se
s

on
ly

)

5

will be explicitly appended to the name of the corresponding
Data packet. For instance, a Data packet produced by sensor
app has name “/ndnfit/alice/sensor1/data/ENCRYPTED-BY
/ndnfit/alice/E-KEY/sensor1”, where the components after
“ENCRYPTED-BY” is the encryption key name.

In our NDNFit example, analyzing app “analyzer1”
“/ndnfit/alice/analyzer1” is authorized by Alice to access
sensor’s data under prefix “/ndnfit/alice/sensor1”. A sim-
plified data production and encryption process is illustrated as
follows and in Figure 5.

Key Generation Alice will first generate a pair of key “E-
KEY”, “D-KEY” for encryption and decryption. She
then produces two Data packets carrying “E-KEY”
in plaintext and “D-KEY” encrypted by “analyzer1”’s
public key. “E-KEY” packet name is in the for-
mat of “/ndnfit/alice/E-KEY/sensor1” while “D-KEY”
packet name follows the format “/ndnfit/alice/D-KEY
/analyzer/ENCRYPTED-BY/ndnfit/alice/analyzer1”.

Data Production When producing data, the sensor app “sen-
sor1” first generates a symmetric key for content en-
cryption. Then it fetches “E-KEY” and encrypt the sym-
metric key and packs the encrypted symmetric key into
a Data whose name is “/ndnfit/alice/sensor1/data
/ENCRYPTED-BY/ndnfit/alice/E-KEY/sensor1”.

Data Consumption When the analyzing app “analyzer1”
wants to consume this Data, it first fetches the Data
packet; the Data name conveys that the content is
encrypted by the “E-KEY”. To decrypt the content,
“analyzer1” then fetches the corresponding “D-KEY”.
Notice the fetched “D-KEY” is actually encrypted by
“analyzer1”’s own key. By decrypting the content in
fetched Data, the application gets “D-KEY” and can
finally decrypt the content.

Interest 1:
/ndnfit/alice/data1

Interest 2:
/ndnfit/alice/D-KEY/sensor1

/ENCRYPTED-BY
/ndnfit/alice/analyzer1

Content

/ndnfit/alice/sensor1/data
/ENCRYPTED-BY

/ndnfit/alice/E-KEY/sensor1

Signature

/ndnfit/alice/D-KEY/sensor1
/ENCRYPTED-BY

/ndnfit/alice/analyzer1

Signature

/ndnfit/alice/analyzer1

Fig. 5. Name-based Access Control in NDNFit

B. Fine Granularity by Key Naming

By designing the naming convention, NAC enables fine-
grained access control. For instance, a “D-KEY” name could
be “/ndnfit/alice/D-KEY/sensor1/position/monday”, hence
the key will only used to protect position data produced by
“sensor1” on Monday.

VII. DATA AVAILABILITY AND CERTIFICATE
AVAILABILITY

A. Data Availability by In-network Storage

NDN provides applications with easily-achieved high data
availability due to its content distribution nature. In NDN,
named data is secured regardless of its location; that is, Data
packets can be retrieved from in-network caches or any other
storage systems, no matter these cache services and storage
systems are trustworthy or not. All capable forwarders can
cache Data packets and popular Data packets are usually
cached in the network. Moreover, it’s easy for producers to
utilize long-term storage services (e.g., managed data reposito-
ries). In NDNFit example (Figure 2), the middle box provides
cache service and helps to improve the availability of Data
produced by “sensor1”.

B. Certificate Availability

The fact that certificate is a building block of NDN security
makes certificate availability of vital importance. NDN cer-
tificates as Data packets also benefits from in-network cache
and storage. For instance, in cases when a certificate authority
goes down, the cached certificates can still support the normal
signature verification for a period of time.

In order to further improve the certificate availability, the
NDN certificate bundle [10] has been designed to improve the
certificate availability. Certificate bundle enables producers to
aggressively collect all certificates in the certificate chain and
pack them together as a bundle, hence providing the whole
chain of certificates for consumers and avoiding signature
verification failures due to unreachable certificates. In our
NDNFit example, sensor application “sensor1” produces Data
packets and it can prepare all needed certificates as a certificate
bundle. Specifically, the bundle will contain application cer-
tificate “/ndnfit/alice/sensor1/KEY/...”, data owner cer-
tificate “/ndnfit/alice/KEY/...”, and NDNFit trust anchor
“/ndnfit/KEY/...”. Assuming the consumer application has
pre-configured trust anchor but has no any other cached
certificates, when it needs to verify the retrieved data, it can
fetch all the needed certificates with a single Interest.

VIII. DISCUSSION

Different architecture decisions lead to different security in
TCP/IP and in NDN. Current TCP/IP network names hosts
identified by locations, while NDN names data, leading to
the different security framework as we discussed in previous
sections.

A. Security in Today’s Internet

Addresses being the centerpiece, current Internet architec-
ture provides upper layers with no more than IP addresses.
Thus, most existing network security protocols, such as IPSec,
OpenVPN, TLS, QUIC [11], SSH, etc, secure network com-
munication by protecting the channel. However, Public Key
Cryptography binds a public key with a named identity (e.g.,
an organization, a DNS name, and etc.) instead of an address,
causing the incongruence and increasing the complexity when

O
U

TD
A

TE
D

 (f
or

 h
is

to
ric

al
 p

ur
po

se
s

on
ly

)

6

deploying security. Another fact is that underlying mechanisms
of establishing cyberspace trust vary among protocols. While
IPSec and OpenVPN rely on manually-configured certificates,
TLS, QUIC, and others put their trust in a set of globally-
trusted certificate authorities (CAs), and SSH has an option of
using “trust on the first use” (TOFU) model.

An exception is DNSSEC [12]; it secures DNS records
directly instead of channels. DNS provides naming service
(data-centric) and relies on caching, thus protecting channel is
not efficient. DNSSEC shows an example of building a unified
and global security system for DNS, and how trust is derived
within the hierarchy of the domain names. Nevertheless, its
security framework is restricted to hierarchical relations only
(root’s key signs “.com”, “.edu”, etc., “.edu”’s key signs
“ucla.edu”, etc.) and applies only to resource record of DNS
instead of general data.

B. NDN Security: Comparison with TCP/IP Security

1) Security Stays with Network Data: In TCP/IP network,
before a channel is protected by security mechanisms, a funda-
mental requirement is to ensure the authentication of two sides
(IP addresses at least), which is non-trivial. Moreover, when
multiple parties are involved, protecting one-to-one channels
becomes inefficient; applications usually need to cope with
security in application layer by themselves, e.g., web of trust.
Importantly, since network layer does not provide a unified
interface for security, approaches to network security vary
widely among existing protocols, leading to a fragmented
security ecosystem and additional configuration overhead for
each additional protocol used.

In NDN, security properties come directly with Data packets
and are independent from where those packets come or stay.
Furthermore, NDN provides a standard packet format for
security purpose and Data packets produced by applications
are directly used in network layer without extra headers. In this
way, all data packets can be verified in the same manner by
all applications, forming a unified authentication ecosystem.

2) Reason About Trust using Name Semantics: Security
technology lacks the tool for reasoning about trust effectively.
For instance, being widely used in current network security
protocols (e.g., HTTPS, QUIC), a common practice is to
accept a signature if it is eventually signed by a trusted CA.

In NDN, trust relationships are expressed explicitly by the
name-based trust policies in a systematic and semantic way.
Name semantics enable applications to define their own trust
policies.

3) Reduced Cost and Dependencies of Security: Applying
security as a patch to the network stack makes network secu-
rity expensive. (1) It usually leads to additional round trips. For
example, compared to pure the TCP connection setup, adding
TLS 1.2 session setup involves three more round trips. TLS 1.3
is trying to address the overhead by utilizing the pre-shared
key and zero-RTT Data and QUIC applies TLS over UDP
to reduce the setup round trips. (2) Current network security
cause duplicated workload for communication participants.
For instance, assuming the communication is protected by TLS
1.2, even when the requested content is the same, the server

needs to encrypt the same piece of content as many times
as the number of the clients. (3) Dependencies such as DNS
increase the potential attack surface.

In contrast, within NDN, all Data packets are self-describing
and protected when created, hence it requires no extra steps
for applications to cryptographically secure the channel. When
content is encrypted for confidentiality, the Data packet is not
bound with a specific consumer address and can be reused
by all authorized consumers. As a result, data producers do
not have to perform the same task multiple times, making
their workload lighter. Importantly, NDN shares the same data
chunks with applications, hence when Data packets are secured
at the network layer, upper layers are naturally protected
without extra dependencies.

4) Improved Privacy of Consumer: In NDN, since nor-
mal Interest packets fetch Data packets by name, they do
not disclose any information about consumers, while fetched
Data packets also contain nothing related to the consumers.
Therefore, NDN’s retrieval model does not expose consumers’
privacy. On the other hand, IP header carries the source
address, and malicious ones can dig even more information
from the traffic related to that address. Eavesdroppers and
Internet Service Providers (ISPs) can easily access sensitive
meta-information (e.g., IP addresses with round-trip time).

Notice that signed interest is for the purpose of authenti-
cation and will reveal consumer’s information if the signature
information components are not encrypted.

5) Mitigated Denial-of-Service: NDN’s communication
pattern naturally mitigates Denial-of-Service(DoS) attacks.
First, DDoS attacks through Data packets are not possible,
since an NDN endpoint will not receive unsolicited Data
packets unless it has sent out an Interest requesting this Data.
Second, Interest-based DDoS attacks can be mitigated, since
at routers/forwarders, Interests with the same name are aggre-
gated, reducing the number of Interests received by producers.
NDN potentially allows new types of attacks, such as Interest
flooding. However, these attacks can be mitigated using the
same core features of NDN forwarding: stateful forwarding.
For example, routers can evaluate Interest satisfaction statistics
to make decisions on whether to accept, rate-limit, or reject
an incoming Interest [13].

IX. REMAINING CHALLENGES AND ONGOING WORK

1) Name Confidentiality: Names contain rich information
and may degrade privacy on the network. For instance, the
name “/ndnfit/alice/sensor1/bloodsugar/...” reveals a
good deal of personal information, opening the door for
attackers to analyze and exploit private information. Data
signatures contain information about signing keys and produc-
ers, also disclosing valuable information to attackers. How to
prevent a Data name from hurting the confidentiality of a Data
packet is a challenge. To safeguard privacy, ongoing efforts
like ANDaNA [14] focus on exploring the name encryption
mechanisms.

2) Bootstrapping Trust: As mentioned in NDN’s security
bootstrapping, an entity should learn trust anchors before
utilizing tools like NDNCERT to obtain certificates. In today’s

O
U

TD
A

TE
D

 (f
or

 h
is

to
ric

al
 p

ur
po

se
s

on
ly

)

7

Public Part Private Part

Alice NDNFit app: /ndnfit/alice

Trust anchors

Public Digital Keys Private Digital Keys

Signed by /ndnfit/KEY/key2017
RSA Enc Key: /ndnfit/alice/sensor1/E-KEY/…

Cert: /ndnfit/KEY/key2017/<>/<>

Pri Key: /edu/ucla/cs/alice/KEY/key001
RSA Dec Key: /ndnfit/alice/data2/D-KEY/…

Pub Key: /ndnfit/alice/KEY/key001

Trust Schemas

Rules 1 Rules 2 Rules 3 …

NDNFit Trust Anchor: /ndnfit

Self-signs

Cert: /ndnfit/KEY/key2017/<>/<>

SignsPrv Key: /ndnfit/KEY/key2017

Be pre-installed by

Cert: /ndnfit/alice/KEY/001/<>/<>->

Alice’s app holds identity /ndnfit/alice and its cryptographic materials. The public part contains public keys (public keys of identities, NAC encryption keys),
trust anchors, and trust schemas. The Private part contains private keys (e.g., signing keys of identities, NAC decryption keys, Symmetric keys, Shared

Secrets). Specifically, the blue key pair belongs to NDNFit CA, serving as the trust anchor in NDNFit system; the red key pair is Alice’s identity key pair
which is bound with her name /ndnfit/alice; the green key pair is E-KEY and D-KEY which are used in NAC.

Fig. 6. A Snapshot

TCP/IP networks, a typical example is to establish initial trust
through pre-installed certificates in web browsers. However,
in NDN, not only an application but also a node or a user
needs security bootstrapping. NDN team is currently working
on security bootstrapping in different scenarios (e.g., IoT).

3) Multiple Authentication Chains: The same piece of
content may be signed with different keys and each digital key
may further be endorsed by multiple certificates of different
namespaces. In this way, a data producer offers consumers
multiple certificate chains for data authentication. However,
it is unclear as of yet how multiple separate chains can be
associated with one Data packet and how consumers choose
a proper chain. [15] has made initial exploration of multiple
signature scheme in NDN.

X. CONCLUSION

A snapshot of an entity’s insight of NDN security is shown
in Figure 6.

In [16] we argued that, by naming data and securing it
directly, NDN offers intrinsic advantages for securing network
communications. Evidence from our seven-year effort to de-
velop NDN security solutions suggests that this is indeed true.
NDN enables fine-granularity of data signing in support of the
least-privilege principle; secured data packets can be fetched
from anywhere; and certificates and trust schemas are also
simply named, secured data packets and can be easily fetched
from anywhere. Furthermore, we learned that one can establish
well-defined naming conventions to systematically define trust
rules using schemas, and design name-based access control via
encryption. We also learned, the hard way, the importance of
automating security operations instead of leaving the burden
to application developers (who would simply aim to make the
application work first by leaving security out).

Consequently, NDN secures network communications in
a more resilient, intuitive, and less fragmented manner than
existing solutions implemented in TCP/IP networks. The de-
velopment process of the NDN security model has convinced
us that the right building block of the network architecture
offers the key enabler to developing effective network security
solutions.

ACKNOWLEDGMENT

This work is partially supported by the National Science
Foundation under awards CNS-1345142, CNS-1345318, CNS-
1629009, and CNS-1629922.

REFERENCES

[1] L. Zhang, A. Afanasyev et al., “Named Data Networking,” ACM
SIGCOMM Computer Communication Review, 2014.

[2] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A
case for stateful forwarding plane,” Computer Communications, vol. 36,
no. 7, pp. 779–791, 2013.

[3] H. Zhang, Z. Wang et al., “Sharing mhealth data via named data
networking.” in ICN, 2016, pp. 142–147.

[4] R. L. Rivest and B. Lampson, “Sdsi-a simple distributed security
infrastructure.” Crypto, 1996.

[5] Z. Zhang, A. Afanasyev, and L. Zhang, “Ndncert: universal usable trust
management for ndn,” in Proceedings of the 4th ACM Conference on
Information-Centric Networking. ACM, 2017, pp. 178–179.

[6] Y. Yu, A. Afanasyev et al., “Schematizing trust in named data network-
ing,” in Proceedings of the 2nd International Conference on Information-
Centric Networking. ACM, 2015, pp. 177–186.

[7] M. Mosko, E. Uzun, and C. Wood, “Ccnx key exchange protocol version
1.0,” Working Draft, IETF Secretariat, Internet-Draft draft-wood-icnrg-
ccnxkeyexchange-02, July 2017, http://www.ietf.org/internet-drafts/
draft-wood-icnrg-ccnxkeyexchange-02.txt. [Online]. Available: http:
//www.ietf.org/internet-drafts/draft-wood-icnrg-ccnxkeyexchange-02.txt

[8] Z. Zhang, Y. Yu, A. Afanasyev, J. Burke, and L. Zhang, “Nac: name-
based access control in named data networking,” in Proceedings of the
4th ACM Conference on Information-Centric Networking. ACM, 2017,
pp. 186–187.

[9] C. Marxer and C. Tschudin, “Schematized access control for data
cubes and trees,” in Proc. of ACM Conference on Information-Centric
Networking, 2017.

[10] M. Mittal, A. Afanasyev, and L. Zhang, “NDN certificate bundle,” NDN,
Technical Report NDN-0054, 2017.

[11] A. Langley, A. Riddoch et al., “The quic transport protocol: Design
and internet-scale deployment,” in Proceedings of the Conference of the
ACM Special Interest Group on Data Communication. ACM, 2017,
pp. 183–196.

[12] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose,
“Dns security introduction and requirements,” Internet Requests for
Comments, RFC Editor, RFC 4033, March 2005. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc4033.txt

[13] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang, “In-
terest flooding attack and countermeasures in named data networking,”
in 2013 IFIP Networking Conference, May 2013, pp. 1–9.

[14] S. DiBenedetto, P. Gasti, G. Tsudik, and E. Uzun, “Andana: Anonymous
named data networking application,” arXiv preprint arXiv:1112.2205,
2011.

[15] Y. Yu, A. Afanasyev, Z. Zhu, and L. Zhang, “An endorsement-based
key management system for decentralized ndn chat application,” NDN,
Technical Report NDN-0023, 2014.

[16] L. Zhang et al., “Named data networking (NDN) project,” NDN Project,
Tech. Rep. NDN-0001, October 2010.

O
U

TD
A

TE
D

 (f
or

 h
is

to
ric

al
 p

ur
po

se
s

on
ly

)

