

Routing in NDN

Lan Wang

Outline

- What's new compared to IP routing?
- What has been done?
 - NLSR
 - Hyperbolic routing
 - Geohyperbolic routing

NDN has smart forwarding, so routing can be dumb.

- PIT state -> stop loops and enable measurements
- Forwarding strategy can choose next hop

- should produce multiple next hops
- can be more *relaxed*

THE UNIVERSIT

New Routing Semantics

Superset of IP semantics

- 1. Routing to names (address is a special case)
- 2. Multiple next hops (>= 1)
- 3. Not all the next hops lead to all the data.
 - Producer may not have all the data.
 - Links may fail.
 - Nodes may move.

New Design Pattern

Any routing scheme in IP can be used in NDN, but needs to adopt NDN's design pattern.

- Use Interest/Data to retrieve routing information.
- Naming: names facilitate network management and trust derivation.
- Security: routing data is signed by originator and verified by receivers.
- *Sync mechanism*: a new notion of transport to ensure multiple parties have the same information.
 - efficient way of set reconciliation

Named-data Link State Routing (NLSR)

- Naming: follow the hierarchy within a network
 - Router: /<network>/<site>/<router>: e.g., /ndn/memphis/rtr1
 - Data: /<network>/NLSR/LSA/<site>/<router>/<process>/<type>/
 <version>
 - Keys: derived from the associated entity's name
- Routing security and trust model

Entity	Name	sign verify
Root key	/ <network>/key</network>	> $>$
Site key	/ <network>/<site>/key</site></network>	55
Operator key	/ <network>/<site>/<operator>/key</operator></site></network>	55
Router key	/ <network>/<site>/<router>/key</router></site></network>	- イ イ
NLSR key	/ <network>/<site>/<router>/NLSR/key</router></site></network>	$\prec \prec$
Data	<pre>/<network>/NLSR/LSA/<site>/<router>/<type>/<ver></ver></type></router></site></network></pre>	

NLSR Development Status

- NLSR 0.1 was released on 8/25/14.
 - Supports both link state and hyperbolic routing
 - Uses ChronoSync to synchronize routing data
 - Uses a hierarchical trust model for routing within a single administrative domain (validation rules are configurable).
- Deployed on NDN testbed from 8/14 to 3/17.
- Code and doc:
 - http://named-data.net/doc/NLSR

Routing Scalability in NDN

- Already large number of content names in today's Internet
- We want to bound the size of routing state while supporting an unbounded namespace
 - Small FIB size
 - Low number of routing updates
 - Comparable performance to shortest path routing algorithms

Greedy Geometric Routing

Hyperbolic Embedding

Greedy Forwarding in HR

• Forward the packet to that neighbor

Why Hyperbolic Routing in NDN?

- In the ideal case, no FIB is needed
 - Each node only needs to know their neighbors' coordinates
- Low communication cost
 - Few routing updates, as coordinates rarely change
- Have been shown to have low stretch in a powerlaw topology.
- NDN's smart forwarding can adapt to short-term topological changes.

Sub-Optimal Paths in HR

To forward a packet:

- Find the neighbor closest to the destination
- Forward the packet to that neighbor

HR with Best-Route Strategy

- Best Route Strategy simply uses the next hop ranked highest by the routing protocol
- Delay stretch Packet delay ratio of RTT in HR over RTT in shortest path routing

Adaptive SRTT-Based Forwarding

- Consider Round Trip Time (RTT) when choosing next hop in HR
 - Use Smoothed RTT (SRTT) to allow variation
- Best SRTT-Based Forwarding
 - Choose next hop for each FIB entry based on SRTT
- Probabilistic SRTT-Based Probing
 - Periodically probe unused next hops to learn RTT
 - Next hops that performed well previously have higher probability

HR with ASF Strategy

Deployed on the NDN testbed since March 2017.

HR is not good enough.

- HR has less than ideal stretch for testbed topology
- Geographic routing (GEO) works well for small topologies, but degrades quickly for larger topologies.
- Geohyperbolic routing: hybrid of HR and GEO

Geohyperbolic (GH) Routing and Addressing

- 3-dimensional coordinates
 - Use latitude and longitude as angular coordinates
 - Add a radial coordinate to a node's address that captures how "central" a node is in the network
- Use geohyperbolic distance to establish network links.

GH is still not good enough.

- Success ratio of GH is almost 1 for any network size and under severe connectivity failures.
- However, suboptimal delay-wise performance is observed.

Bad delay performance example: packet forwarding from Berlin to New York via "super central" node in Shanghai.

Regionalized Geohyperbolic Routing (RGH)

 Small tweak of GH: place multiple "local hubs" within large geographic regions to "attract" packets from peripheral local nodes.

21 THE UNIVERSITY OF MEMPHIS

Validation – Path Stretch

References

- NDN Routing
 - NLSR: intra-domain routing (ACM ICN 2013 and NDN TR-0037)
 - Hyperbolic Routing: inter-domain routing (IEEE IWQoS 2016 and NDN TR-0042)
 - Geohyperbolic Routing: combining geolocation and hyperbolic information in routing (SIGCOMM CCR July 2017)
- Forwarding strategy
 - Adaptive SRTT-based Forwarding (ASF): supporting hyperbolic routing (NDN TR-0042)
- Mini-NDN: lightweight NDN emulator
 - github.com/named-data/mini-ndn

