
NDN, Technical Report NDN-0044. http://named-data.net/techreports.html
Revision 1: April 23, 2017

1

How to Establish Loop-Free Multipath Routes in
Named Data Networking

Klaus Schneider, Beichuan Zhang
The University of Arizona

Email: {klaus, bzhang}@cs.arizona.edu

Abstract—Both IP networks and Named Data Networking
(NDN) can be extended to support multipath forwarding. How-
ever, since the IP forwarding plane cannot detect loops, IP routing
protocols are strictly required to produce loop-free paths. In
contrast, NDN can choose between using a loop-free routing
protocol and handling loops at the forwarding layer. In this paper,
we explore the trade-offs that come with this choice.

It is often useful to split traffic for one destination among
multiple paths, for example, to balance the traffic load or to
reduce network congestion. This traffic splitting requires the
employed paths to be loop-free, lest they waste network resources,
and the involved routers to have a high path choice, that is, a
high number of potential nexthops to forward traffic to.

We show that we can achieve a higher loop-free path choice
than state-of-the-art loop-free routing protocols by combining
an almost loop-free routing protocol (ALR) with loop-removal at
the forwarding layer. ALR’s advantage comes from exploiting
the ability of NDN’s data plane to always exclude the incoming
interface from forwarding, which broadens the routing task
beyond the traditional goal of creating a Directed Acyclic
Graph (DAG). Assuming this incoming interface-exclusion, ALR
employs certain heuristics to minimize routing loops while, when
possible, giving each router along a path at least two potential
nexthops towards the destination. The quality of these nexthops
is signaled to the forwarding layer, which then detects and
permanently removes all remaining loops. Combined, these two
mechanisms result in higher path choice and path quality than
current alternatives, while being computationally efficient enough
for practical implementation.

I. INTRODUCTION

IP networks follow the paradigm of smart routing, dumb
forwarding: the routing protocol pre-establishes a single
shortest path and the forwarding plane has no choice other
than to use this path. This lack of choice prevents the IP
forwarding plane from handling problems such as link failures
or prefix-hijacking [32].

However, even if the IP architecture allowed multipath
forwarding, it would still suffer from a second fundamental
problem: its forwarding plane has no means to detect whether
an incoming packet has looped, that is, whether it has been
forwarded by the same router earlier. Since loops cannot be
detected, they are very expensive; packets circle around until
the TTL runs out, wasting network resources while doing so.
Thus, IP networks, even when extended to allow multipath
forwarding, require a strictly loop-free routing protocol.

For Named Data Networking (NDN), this requirement is
loosened: loops can be detected via a nonce in the packet
header and subsequently be handled by the forwarding layer.
Thus, NDN routing does not have to be loop-free; indeed,

the most common NDN routing protocols, NLSR [10] and
Hyperbolic Routing [13], do produce paths that potentially
result in loops.

These forwarding loops, although detectable, can still waste
network resources, especially in the case of traffic splitting.
NDN can split traffic to one destination at strategic points in
the network in order to balance the load among multiple paths,
gradually redirect traffic during congestion [5], [25], or exploit
differences in costs and performance of paths (e.g. between
WiFi and LTE [24]). When splitting traffic in this way, looping
paths waste network resources and increase consumer delay,
hence they need to be avoided at the forwarding layer. In other
words, while NDN does not require loop-free routing, it still
requires loop-free forwarding.

Thus, the research question becomes: “How do we best
establish loop-free paths at the NDN forwarding layer?”

One option is to use a loop-free routing protocol, and it has
been studied extensively in the IP literature (see Section II).
NDN provides another option, one which might show to be
superior: accepting some routing loops and handling them at
the forwarding layer. Here we investigate this second option
and split the research question into: “1) Which non-loopfree
routing protocol should we use? 2) How should the forwarding
layer turn paths that contain a loop into loop-free paths? 3)
And is the result better (in terms of path choice, path quality,
and computational complexity) than using the best available
loop-free routing protocol?”

For the case of multipath traffic splitting (i.e. forwarding on
more than a single nexthop), current work does not answer
these questions. Instead, current forwarding strategies avoid
the looping problem in one of three ways: 1) they restrict
themselves to forwarding on a single best path (as done in the
NCC, BestRouteStrategy, and AccessStrategy implemented in
NFD, the Green/Yellow/Red-Strategy [32], and ASF [13]), 2)
they split up traffic, but implicitly rely on loop-free routing
[5], [30], [23], [33], [20], [34], [14], [25], 3) they completely
ignore the problem and thus restrict their scalability (like the
Multicast/Broadcast-Strategy in NFD).

In this work, we give a detailed answer to the first two
questions, and answer the third one with a clear Yes: A
combination of non-loopfree routing and loop-removal at the
forwarding layer gives better performance than any reasonably
complex loop-free routing protocol. Moreover, we show that the
best trade-off between routing effort and forwarding effort is
achieved by using an Almost Loop-free Routing (ALR) protocol
(Section III) combined with intelligent loop removal at the

http://named-data.net/techreports.html


2

forwarding layer (Section IV).
ALR exploits the forwarding layer’s ability to always exclude

the incoming interface of a packet: when multiple nexthops
are available, a router will never send the packet back to the
previous hop. This incoming interface exclusion avoids one-hop
loops, which broadens the routing problem from creating a
Directed Acyclic Graph (DAG) to creating a directed graph
without cycles longer than one hop. This broader routing
problem then allows each node to have a higher nexthop choice,
while still preventing loops. ALR’s specific goal is to give
each router at least two nexthops towards each destination,
unless doing so would result in a loop. To achieve that, ALR
determines “downhill nexthops” [8], nexthops that go closer
to the destination and thus are guaranteed to avoid loops if all
routers restrict their forwarding to downhill nexthops;1 for non-
downhill nexthops, ALR applies certain heuristics to estimate
the likeliness of a loop, and thus to determine whether the
nexthop should be used for forwarding. This information is
passed to the forwarding layer by giving each FIB nexthop a
type from the set { Downward, Upward, Disabled }.

At the forwarding layer, we exploit the knowledge of the
nexthop type and, after detecting a loop, our scheme only
disables upward nexthops; hence we call it Uphill Nexthop
Removal (UNR). Our evaluation (Section V) shows that, given
enough time, UNR results in a network that is completely and
permanently loop-free, while retaining a higher path choice
than state-of-the-art loop-free routing schemes.

The computational complexity of ALR’s loop check heuris-
tics is comparable or only slightly higher than ALR’s most
efficient competitors (see Section III-B). The complexity of the
forwarding loop removal is also low: depending on the topology,
only 0% to 1.1% of FIB entries need to be disabled (see Section
V). Moreover, loop removal is seamless for endpoints: looped
packets may see a higher latency, but they are never dropped.

II. LOOP-FREE ROUTING

Both IP and NDN employ Destination-based Hop-by-Hop
routing: Each router independently decides how to forward a
given packet based on its destination address or name (this
differs from source-based explicit routing like MPLS [3], where
the source host decides which path its packets will take and in-
network routers blindly follow that decision). When extended
for multipath forwarding [8], independent hop-by-hop routing
allows in-network routers to solve certain problems like link
failure and congestion on their own. Moreover, independent
multipath routing moves the routing task from finding the k
best paths to finding the k best nexthops at each node, resulting
in a potentially much larger path choice.

However, when routers make independent forwarding choices
based solely on the packet’s destination, the forwarded packets
might run into loops. To avoid these loops, routers must employ
certain heuristics to decide which nexthops they will forward

1Throughout this paper, we use the terms “uphill” and “upward” (“downhill”
and “downward”) interchangeably to indicate whether, compared to the current
node, a given neighbor is closer to the destination or further away. These
terms should not be confused with the terms “upstream” and “downstream”,
which indicate the position of a router in the flow of a certain packet (packets
flow from upstream routers to downstream routers).

to. These heuristics depend on the goal of multipath forwarding
and on how many routers along the path are using them. For
example, handling a single link failure allows to use broader
heuristics (like “Loop-Free Alternates” [2]), since only one
router on the path (the one that is upstream of the failing
link) applies the heuristic and all other routers are restricted
to forward on the single shortest path. For traffic splitting,
however, narrower heuristics are required, since all routers
on the path are using them: all of them may send packets to
nexthops other than the shortest path. Below, we restrict the
discussion to designs that support this independent splitting
of traffic. This restriction excludes all approaches based on
Multi-Topology Routing, such as Path Splicing [18]. For a
broader survey that includes these schemes, see [22].

Arguably the simplest loop-freeness heuristic is Equal Cost
Multi-Path (ECMP) routing [1], in which a router uses the
nexthop of the shortest path nsp, plus any nexthop ni with the
exact same cost: cost(ni, dst) = cost(nsp, dst). The shortest
path and equal cost paths are always guaranteed to be loop-
free. However, forwarding only on equal cost paths limits the
achievable nexthop choice, since path costs need to match
exactly; the more fine-grained the link cost metric, the less
path choice ECMP can achieve (see Section V).

A higher path choice can be reached by non-equal cost
multipath algorithms, the most prominent of which is the
Downward Path Criterion [8]. Downward paths include the
shortest path nexthop plus any nexthop ni that is closer to
the destination (has a lower cost) than the current node (x):
cost(ni, dst) < cost(x, dst). Downward Nexthops are simple
to compute, achieve a higher path choice than ECMP, and are
still guaranteed to be loop-free. Thus, they are very commonly
used in the literature, known under the names of Loop-Free
Invariant (LFI) [28], Rule 1 (One Hop Down) Deflection Set
[31], and Relaxed Best Path Criterion [27].

One extension of Downward Paths is to also consider
nexthops with the same cost: cost(ni, dst) ≤ cost(x, dst).
However, to avoid the packet from directly looping back, one
needs to add a tiebreaker which assures that traffic only crosses
one direction of the equal-cost link. This tiebreaker could be
based on the node id (shown below) or the node degree [11]:

cost(ni, dst) < cost(x, dst) ∨
(cost(ni, dst) = cost(x, dst) ∧ id(ni) < id(x))

This heuristic is guaranteed to be loop-free and achieves at
least as much nexthop choice as the Downward Criterion (and
often more). It is quite common in the literature, and has been
used in the context of ICN [9].

Yang et al. [31] provide two more heuristics, called “Rule
2 (Two Hops Down)” and “Rule 3 (Two Hops Forward)”.
However, these rules are more complex to compute and only
prevent packets from revisiting the same link (link level loop),
but not from revisiting the same node (node level loop). Since
this approach wastes network resources, we require stricter
guarantees for loop-freeness: in this work, we define “loop-free”
to mean that loops are avoided at both link and node level.

Another approach for loop-free multipath routing is used
by the three algorithms from the work “Maximum Alternative
Routing Algorithm” (MARA) [21]. They are based on con-



3

Fig. 1. Abilene Topology [4]

structing an Directed Acyclic Graph (DAG) of the network and
finding an optimal solution to the problems of 1) maximizing
the minimum connectivity, 2) maximizing the minimum max-
flow, and 3) maximizing the minimum max-flow as an extension
of shortest path routing. These algorithms often result in a
higher path choice than the Downward Criterion, but are also
significantly more complex to compute (see Section V-A).

III. ALMOST LOOP-FREE ROUTING

In this Section, we present a routing algorithm that produces
a higher nexthop choice than loop-free routing, while keeping
the chance of loops low. This higher path choice is possible
because of one change in NDN’s forwarding logic: forwarding
decisions are based not only on the destination prefix, but also
on the incoming interface; when considering its forwarding
choices, a router can always exclude the interface on which
the packet arrived.2 This incoming interface-exclusion prevents
one-hop loops at the forwarding layer, which changes the
fundamental problem that a routing algorithm solves. All loop-
free routing algorithms can be seen as solving a graph problem:
turning a given undirected network graph into a Directed
Acyclic Graph (DAG) [29]. With incoming interface-exclusion,
the problem becomes wider: turning an undirected graph into
a directed graph without cycles longer than one hop. This
widening of the routing problem is the main cause for the
higher path choice of our algorithm; it allows the use of many
paths that would otherwise have looped.

Consider the example in the Abilene topology (Figure 1),
when Washington (WA) wants to send packets to the destination
Atlanta (ATL). Without excluding the incoming interface,
Washington could never use New York (NY) as the nexthop,
since New York may send a packet with destination Atlanta
right back to Washington. With incoming interface-exclusion,
however, Washington has at least two loop-free paths to Atlanta:
WA→ATL and WA→NY→CH→IN→ATL.

Prior work has shown that raising the forwarding choice
from one option to two is much more important than raising it

2In contrast to other work on incoming-interface dependent forwarding [12],
[19], [16], we do not require to use a different forwarding table for each
incoming interface; it is sufficient to maintain one forwarding table and simply
remove the incoming interface from the set of outgoing interfaces.

from two to higher values, more succinctly called the power of
two choices [17]. One way to give each router two nexthops
is to simply choose the two with the lowest routing cost; but
this naive solution leads to frequent loops and omits many
nexthops that could be added without risking additional loops
(see Section V). Thus, the specific goal of our Almost Loop-
free Routing algorithm (ALR) is to give each router at least
two possible nexthops for packet forwarding, unless adding
the second nexthop would result in a loop. In addition, ALR
provides the forwarding layer with a hint about which nexthops
are most likely to result in a loop, hence which should be
disabled after a loop has occurred.

Thus, the design of ALR is as follows: Each FIB nexthop
is assigned a type { Downward, Upward, Disabled },
depending on whether it is closer to the destination than
the current node (Downward) or further away (Upward).
Certain upward nexthops are likely to cause a loop, and thus
should be excluded from forwarding; they are assigned the
type Disabled. While skipping them for traffic splitting,
the forwarding layer may still use disabled nexthops for
probing or as backup during failure of all other links.

Algorithm 1 Overview: Loop Check Heuristics
nexthops ← getDownwardNexthops();
disabledNexthops ← getUpwardNexthops();
if nexthops.size == 1 then

forall ni in disabledNexthops do
if passesLoopcheckHeuristics(ni) then

Add ni to nexthops;
break;

end
end

end

A high-level overview of ALR is shown in Algorithm 1. For
each destination prefix, ALR starts out by adding all Downward
nexthops, together with equal-cost neighbors using the node
degree as a tiebreaker (nodes with lower degree route towards
ones with higher degree; for same-degree nodes the node id
breaks the tie). If, after adding these downward nodes, the
current node still only has one nexthop, ALR iterates through
all disabled nexthops (in the order of routing cost) and applies
a heuristic loop check to determine whether the nexthop should
be added.

A. Heuristic Loop Checks
ALR uses certain heuristics to exclude nexthops that are

guaranteed or very likely to result in a loop. These heuristics
are best understood when focusing on routes towards a
single destination prefix. In the next section we show how to
implement them efficiently, using Dijkstra’s algorithm, which
takes one run to compute the distance to all destination prefixes.

In each round of Algorithm 1, we have a fixed current node
x, a fixed destination d, and a changing candidate nexthop ni.
We use three heuristics to check whether adding ni is likely
to cause a loop or not; they are all based on a manipulation of
the topology combined with an adjacency check or a shortest
path calculation:

Heuristic 1: We remove node x from the topology. Now,
if neighbor ni doesn’t have a path to destination d, we don’t



4

Fig. 2. Loop Check Heuristic 2

Fig. 3. Loop Check Heuristic 3

add ni and move on to the next neighbor. If ni can’t reach
the destination other than going back through x, it is clear
that all packets sent from x to ni would result in a loop. This
heuristic is simple, straight-forward to implement, and also
used by NLSR3.

Heuristic 2: We remove link (x, ni) from the topology and
run Dijkstra’s algorithm for ni. If the shortest path of ni to d
still goes through x, we don’t add ni and move on to the next
neighbor.

An example can be seen in Figure 2, where the current node
X is show in blue, the destination D is shown in green, and
the candidate nexthop (starting with node 1) is shown in red.
All link weights are set to 1, except the link between node 1
and 2, which has the weight of 5. Heuristic 1 doesn’t apply
to the example, since after removing X, neighbor 1 still has a
path (although more costly) to the destination. For Heuristic 2,
we remove link (X, 1), and notice that the shortest path of 1
still goes through X, meaning that adding 1 would cause the
loop X → 1 → 0 → X . Thus, we don’t add neighbor 1 to
the FIB of X and move on to the next neighbor. For candidate
nexthops 0 and 3 the same will happen: their shortest path
would go through X and thus they are skipped. As a result,
X will not use any nexthop to destination D other than the
directly connected link X → D.

Heuristic 3: For all Upward/Disabled neighbors nj 6= ni of
x: If ni is adjacent to and upward of nj , we don’t add ni and
move on to the next neighbor. Our reasoning is that if ni is
upward of nj , and nj is upward of x, sending packets to ni

could result in the loop: x→ ni → nj → x.
An example can be seen in Figure 3. For candidate nexthop

1, Heuristics 1 & 2 don’t apply: after removing node X, Node 1
is not disconnected from D, and after removing link (X, 1), the
shortest path from 1 to D (1 → 3 → D) does not go through
X. However, there is still the chance for a loop: Node 3 is
uphill of X (equal cost to D, but 3 has a lower node degree),
so 3 is allowed to send to X. Since Node 1 is uphill of 3, it
will forward to 3, causing the loop X → 1→ 3→ X . Thus,
nexthop 1 needs to be excluded and Heuristic 3 does exactly
that. For candidate nexthop 0 the same will happen: 0 is uphill

3The NLSR paper [10] uses a different phrasing (“removing all immediately
adjacent links except one”), but the results are identical.

18

18

3

84

25

13 86

64150

36

13

136
2

48

14

1 5

1
3

33

14

1
8

1
3

5

26

15

1
7

9

16

3

5

13

1
5

2
1

5
4

70

21

21

16

115

25

17

2
1

69

75

23

8

63

1
2

1

3
0

13

1
3

1
4
5

9

21

13

21

4

21

33

1

21

3
8

1
6

15

21

235
155

80

93

16

3
0

9

38

13

25

1
2
0

10

9

13

98

64

2
4

3
8

38

23

62

BUPT

MINHO

MSU

BASEL

NTNU

WU

MICH NEU

CAIDA

UIUC

COPELABS

PADUA

LIP6

UFPA

ANYANG

UCI

BYU
CSU

TNO

SYSTEMX

URJC

REMAP
WASEDA

SRRU

OSAKA

TONGJI

UCLA

UM

KISTI

UI

NIST

GOETTINGEN

UA

Fig. 4. NDN Testbed Topology

of 1, which is uphill of X, so nexthop 0 is also skipped. Finally,
for candidate nexthop 3 none of the heuristics apply; node 3 is
added to the nexthop set. Thus, node X will have two nexthops
to destination D: X → D and X → 3.

Applying these heuristics avoids many potential loops, but
can lead to a small number of dead ends, cases where a
router receives a packet but its only forwarding option is to
directly return the packet to the previous node (see Table IV in
Section V-A). Fortunately, compared to loops, dead ends are
less costly and easier to handle at the forwarding layer. The
router detecting the dead end simply sends back a NACK and
the router receiving the NACK disables this nexthop entry and
forwards the Interest to a different nexthop.

To illustrate the effect of the three heuristics, we end this
Section with two examples. First, we compare our heuristics
(ALR) with NLSR and loop-free routing for the destination
Indianapolis (IN) of the Abilene topology (Figure 5). Since
NLSR only uses Heuristic 1, all nodes can choose any of their
neighbors for packet forwarding, but this high path choice
also leads to many potential forwarding loops (like KC →
DV → SV → LA→ HOU → KC). Loop-free routing with
the downward criterion avoids these loops, but also restricts
the path choice: only 4 out of 10 routers have more than
one nexthop to forward on. In contrast, ALR is still loopfree
(when excluding the incoming interface), but gives routers
a higher path choice: 10 out of 10 nodes have at least two
nexthops towards the destination. Thus, in this example, ALR
can provide every node with at least two nexthops; in some
larger topologies, ALR needs to limit certain nodes to one
nexthop in order to prevent loops (see Section V).

Second, we show the result of running ALR in the NDN
Testbed topology (Figure 4) for a sample of destination prefixes
of the node CAIDA (Table I). We see that the ordering of
nexthops by type (Downward > Upward > Disabled) can
differ from the ordering by cost; some Disabled nexthops have
a lower routing cost than other Upward or Downward nexthops.
This discrepancy shows a trade-off between choosing shorter
paths and choosing paths that are guaranteed to be loop-free;
it also shows that the nexthop type is necessary: it can’t be
inferred by the routing cost.



5

(a) NLSR (b) Loop-free Routing (c) ALR

Fig. 5. Routing Entries in the Abilene Topology for Destination Indianapolis (IN)

TABLE I
EXAMPLE FIB ENTRIES OF NODE CAIDA

Destination Prefix Nexthop Cost Type

/NEU UCLA 48 Downward
UCI 49 Downward
UA 63 Downward
TONGJI 236 Disabled
UFPA 291 Disabled

/WASEDA UA 100 Downward
UCI 104 Disabled
UCLA 104 Disabled
TONGJI 135 Downward
UFPA 354 Disabled

/TONGJI TONGJI 93 Downward
UCLA 137 Disabled
UCI 138 Disabled
UA 142 Upward
UFPA 367 Disabled

B. Implementation & Computational Complexity

We implement the loop check heuristics in two steps: First,
we perform multiple runs of Dijkstra’s algorithm and store the
result in hash tables, indexed by the destination prefix. Second,
we iterate through each destination and perform the heuristics,
benefiting from the efficient hash table lookup.

For the first step, we modify Dijkstra’s algorithm to return
not only the nexthop and shortest path cost, but also a
hash set of the shortest path; the hash set allows us to
check whether a node is part of the shortest path in an
average time complexity of O(1). We combine this information
into a structure FibNexthop = (Cost, NexthopId,
hash_set<NodeId> path). We then create hash tables
for the shortest path of the current node and for each of its
neighbors, applying the following graph modifications (see
Algorithm 2):
• shortestPathMap: The shortest path costs of the current

node x.
• nbSpSrcNodeRemoved: The shortest path costs for all

neighbors in a graph where node x has been removed.
Without x, some of the neighbors may be disconnected
from the destination, a result that is used in Heuristic 1.

• nbSpSrcLinkRemoved: The shortest path costs for all
neighbors in a graph where the link between neighbor ni

and node x has been removed, as used in Heuristic 2.
• nbSpMap: The shortest path costs for all neighbors in an

unmodified graph, used to compare the cost of the two
neighbors in Heuristic 3.

Algorithm 2 Fill Hash Tables of Node x
map〈DstId, FibNextHop〉 shortestPathMap ← runDijkstra(x);
map〈nId, map〈DstId, FibNextHop〉〉 nbSpMap;
map〈nId, map〈DstId, FibNextHop〉〉 nbSpSrcNodeRemoved;
map〈nId, map〈DstId, FibNextHop〉〉 nbSpSrcLinkRemoved;
forall ni in neighbors do

nbSpMap[ni] ← runDijkstra(g,ni);

Remove node x from graph g;
nbSpSrcNodeRemoved[ni] ← runDijkstra(g,ni);
Add node x back;

Remove link (x,ni) from graph g;
nbSpSrcLinkRemoved[ni] ← runDijkstra(g,ni);
Add link (x,ni) back;

end

Dijkstra’s algorithm can be implemented with a computa-
tional complexity of O(m + n log n), where m denotes the
number of edges in the network, n the number of nodes in the
network, and k the number of neighbors per node (used below).
We need to run Dijkstra’s algorithm once for the shortest path
and three times for each neighbor. Thus, the total complexity
for this step is (the O notation omits constant factors):

(1 + 3k) ∗O(m+ n log n) = O(km+ kn log n)

Next, we use these tables to fill the FIB, as described earlier
and shown in Algorithm 3. The complexity of this algorithm is
O(n) for one iteration over all destinations times O(k) for each
iteration over all neighbors containing the heuristic checks.
The heuristics perform the following operations:
• H1–H3: Looking up the cost or type of a neighbor: O(1)
• H2: Checking if the shortest path contains a certain neighbor:

O(1) with our hash set data structure.
• H3: Checking if two neighbors are adjacent in the graph:

O(1) for graphs implemented by an adjacency matrix.
Thus the complexity of each heuristic is:
• H1,H2: O(n) ∗O(k) ∗O(1) = O(kn)
• H3: O(n) ∗O(k2) ∗O(1) = O(k2n)

And the total complexity of this step is:

2 ∗O(kn) +O(k2n) = O(k2n)

Combined with the step of filling the tables, the total
complexity of our algorithm is:

O(km+ kn log n+ k2n).

Skipping H3 reduces the total complexity to O(km +
kn log n) and also removes the requirement to implement the
graph as an adjacency matrix; but it will also increase the



6

number of loops that need to be handled by the forwarding
layer. We explore this trade-off in Section V.

Even when keeping H3, ALR’s complexity is the same or
just slightly higher than the Downward Criterion or NLSR (both
of them require O(km+kn log n)), depending on whether k is
smaller or larger than log n. Fortunately, since the node degree
follows a power-law distribution [7] the number k is small for
most nodes; for example, even in the 315 node Sprint topology
68% of nodes have 5 or less links and 85% of nodes have 8
or less links. Moreover, after computing the shortest path, a
router can already begin forwarding and finish the computation
for the other paths as a lower-priority background task.

Algorithm 3 Apply Heuristics & Add Nexthops to FIB
forall singleDstEntry in shortestPathMap do

dstId ← singleDstEntry.first;
FibNextHop spNexthop ← singleDstEntry.second;
Add spNexthop to FIB with type DOWNWARD;
forall neighborEntry in nbSpSrcNodeRemoved do

FibNextHop ni ← neighborEntry.second[dstId];
// nbSpSrcNodeRemoved includes Heuristic 1
if ni is downward of spNexthop then

Add ni to FIB with type DOWNWARD;
else

Add ni to FIB with type DISABLED;
end

end
numFibEntries ← count(FIB, type != DISABLED);
if numFibEntries == 1 then

bool mighLoop ← false;
forall ni in disabledFibEntries do

// Perform Heuristic 2:
neighborSp ← nbSpSrcLinkRemoved[ni.id][dstId];
mightLoop ← neighborSp.contains(x.id);
forall nj 6= ni in disabledFibEntries do

// Perform Heuristic 3:
if isConnected(ni,nj ) && ni.isUpwardOf(nj ) &&
nj .type == UPWARD then

mightLoop ← mightLoop ‖ true;
end

end
if mightLoop == false then

Add ni to FIB with type UPWARD;
break;

end
end

end
end

Note that the only change necessary to a link-state routing
protocol (like NLSR) is the route calculation part. ALR neither
requires further message exchange, nor any other modification
to the link-state semantics; all required topology information
is already signaled by the link state advertisements.

IV. FORWARDING LOOP REMOVAL

Since ALR may produce some looping paths, we need a
way to handle loops at the forwarding layer. After detecting a
loop via the Interest nonce, a router can try different nexthops
or backtrack to the previous router, so each Interest packet is
guaranteed to eventually reach the destination. However, since
this path exploration can be immensely costly (see Section V),
we need a way to permanently remove loops at the forwarding
layer; one of the routers involved in the loop needs to disable
the nexthop it used to forward the packet on, not only for
the current packet, but for all future packets (until the next

(a) Before (b) After

Fig. 6. Example of Forwarding Loop Removal

routing change). The question arises: which nexthop should be
disabled?

Current loop handling schemes either disable the nexthop
at the router that detected the loop or at the router directly
downstream to it (which is informed of the loop via a NACK)
[32]. This mechanism mixes the two problems to be solved
during a loop: 1) retrieving the Data for the current looped
packet; 2) changing FIB entries to prevent loops of future
packets. By disabling directly adjacent nexthops independent
of their qualitative type (downward or upward), current schemes
will often disable nexthops that go closer to the destination,
leading to a higher number of removed nexthops and to longer
remaining paths (see Section V).

We show that a better result can be achieved by splitting these
two problems: For (1) we use the traditional method of trying
different outgoing interfaces and sending back a NACK to the
downstream once all outgoing faces are exhausted [32]. This
recursive backtracking guarantees that every looped Interest
packet will eventually retrieve the Data, making the process
seamless for the data consumer.

For (2) we use our new mechanism of Uphill Nexthop
Removal (UNR): we only remove FIB nexthops that lead further
away from the destination; these nexthop entries may or may
not be directly adjacent to the router detecting the loop. The
looping path may contain multiple uphill nexthops, but to avoid
future loops it is often sufficient to remove only one of them;
thus the question becomes: which uphill nexthop should be
disabled?

Through empirical tests, we found that we can preserve a
higher path choice, while achieving complete loop-freeness, by
removing the first uphill nexthop on the path that the looped
Interest took; removing a random uphill nexthop or the last
uphill nexthop on the Interest path (i.e. the first in the direction
a NACK would take) leads to worse results. Thus, instead
of signaling the Uphill Nexthop Removal via a NACK, we
use a loop signaling Interest, a special Interest packet that
is not expected to return any data, but follows the path of
the original Interest to indicate that a loop has occurred. A
router that receives the signaling Interest checks the type of the
nexthop it used to forward the original Interest to. If the type is
Downward, it forwards the signaling Interest to this nexthop.
If the type is Upward, the router drops the signaling Interest
and changes the type to Disabled. To prevent certain DoS
attacks, signaling Interests should be signed by the sender and
receiving routers should only consider signaling Interests from
a trusted source.

An example of the UNR algorithm is shown in Figure 6.



7

TABLE II
EVALUATION TOPOLOGIES

Name Nodes Links Degree

Abilene 11 14 2.55
Geant 27 38 2.82
Testbed 33 87 5.27
Exodus 79 147 3.72
Ebone 87 161 3.70
Telstra 108 153 2.83
Abovenet 141 374 5.31
Tiscali 161 328 4.07
Sprint 315 972 6.17

The original Interest takes the path S → X → 0→ 1→ 2→
3 → X , at which point X detects the loop by observing the
duplicate nonce. A traditional loop-removal scheme would now
disable either the nexthop X → 0 or 3→ X , both of which
are poor choices, as they lead closer to the destination. Instead,
UNR sends the loop signaling Interest packet along the loop
and router 0 will remove the uphill nexthop 0→ 1. Afterwards,
this loop is avoided as node 0 will choose a different nexthop
towards destination D. In Section V-B, we show that our scheme
of removing only upward nexthops (UNR) converges to a loop-
free network after disabling much fewer nexthops than schemes
that simply disable nexthops adjacent to the router detecting
the loop.

V. EVALUATION

In this section, we evaluate our proposed routing algorithm
and forwarding scheme. To emulate NDN’s forwarding behav-
ior, we use a custom C++ simulator based on the LEMON
graph library [6].

We compare 9 topologies (Table II) of different size, node
degrees, and link metrics: 1) The real Abilene and GEANT
topologies with randomly generated link weights in the range
between 1 and 100, 2) the NDN Testbed (Figure 4) in its
current size with the currently assigned link weights, 3)
the six measured ISP topologies from the Rocketfuel [26]
dataset together with their inferred link weights [15]: Exodus
(AS3967), Ebone (AS1755), Telstra (AS1221), Abovenet
(AS6461), Tiscali (AS3257), and Sprint (AS1239).

A. Almost Loop-free Routing

First, we compare Almost Loop-free Routing (ALR) to the
loop-free routing algorithms discussed in Section II and to
non-loopfree variants of NLSR, all of which differ in how they
determine the set of nexthops at each router:
• ECMP: Equal Cost Multi-Path [1] uses the nexthop of the

shortest path nsp, plus any nexthop ni with the same cost:
cost(ni, dst) = cost(nsp, dst).

• DW: Downward paths [8] include the shortest path nexthop
plus any nexthop that is closer to the destination than the
current node x: cost(ni, dst) < cost(x, dst).

• DWE: Downward Path + Equal Cost Nexthop. DWE includes
all nexthops from DW and, in addition, all nexthops with
an equal cost to the destination and a lower node id.

• ALR/ALR-H2: Our routing scheme, once using all three
heuristics (ALR) and once using only the first two (ALR-H2).

• MARA: The algorithms from the paper “Maximum Alter-
native Routing Algorithm” [21]. We report the data from
the original paper where it is available, namely for two of
their algorithms (MARA-SPE and MARA-MC) and in four
of the Rocketfuel topologies.4

• NLSR: NLSR [10] applies only the first of ALR’s heuristics
(see Section III); thus for node x, NLSR will include
all possible nexthops except the ones that can reach the
destination only by looping back through x.

• NLSR2/NLSR3: NLSR allows to specify the maximal
number of nexthops per name-prefix that are included in the
FIB. Thus, NLSR2 and NLSR3 restrict the FIB to the two,
or respectively three, best (= lowest cost) nexthops.
1) Metrics: We evaluate the presented routing algorithms in

terms of their computational complexity, resulting path choice,
and path quality.

The computational complexity of a routing algorithm de-
termines how scalable, and thus useful, it is for real-world
deployment; a routing algorithm that needs exponential time is
of little practical use, no matter how good the resulting paths.
We quantify this scalability with the well-known O-notation.

For path choice, we measure the average number of nexthops
in the FIB at each node, together with its standard deviation
(given in parenthesis). We also measure the percentage of
nodes that have two or more nexthops (NH>1) towards a
given destination.

For path quality, we run an experiment between all source-
destination pairs, that is, N = n∗ (n−1) times, where n is the
number of nodes in the network. At each hop, we randomly
pick a nexthop from the available ones, until we either reach
the destination, run into a loop (a node where the packet has
previously been), or run into a dead end (a node with no
forwarding options other than directly returning the packet to
the previous node). Then we record the percentage of src-dst
pairs that ran into a loop (L) or dead end (D). Whenever the
packet runs into a loop, the node detecting the loop forwards
it on a different interface; when all interfaces are exhausted
or the packet runs into a dead end, it is backtracked to the
previous node which then tries a different interface (similar
Yi et al.’s NACK retry mechanism [32]). With this recursive
backtracking, each packet will ultimately reach the destination.
Once it did so, we record the full path length, including all
hops of the backtracking steps. For example, a packet with
destination D taking the path A → B → A → D will count
as a path length of three.

2) Results: The computational complexity is given in Table
III, where k denotes the number of neighbors per node, m the
number of edges in the network, and n the number of nodes
in the network. ECMP has the same complexity as running
Dijkstra’s algorithm, O(m + n log n), which is scalable and
commonly used in IP link-state routing algorithms like OSPF or
IS-IS. DW, DWE, NLSR, and ALR-H2 need to run Dijkstra’s
algorithm for each link of a router, leading to a complexity

4The authors measure the path length in number of involved nodes, rather
than our measurement of the number of hops between those nodes. Thus we
have to subtract 1 from their numbers (see Table VII).



8

TABLE III
ROUTING COMPLEXITY

Algorithm Comp. Complexity

ECMP O(m+ n logn)
DW, DWE O(km+ kn logn)
NLSR (2/3) O(km+ kn logn)
ALR-H2 O(km+ kn logn)
ALR O(km+ kn logn+ k2n)
MARA-MC O(mn+ n2)
MARA-SPE O(mn+ n2 logn)

that is k times higher: O(km + kn log n). The two MARA
algorithms perform more complex graph calculations, which
need O(mn) or even O(n2 log n). ALR falls in the middle
of these options: it is slightly more complex than DWE and
NLSR, but significantly less complex than the two MARA
algorithms.

The results on path choice and path quality are presented in
Table IV. The first three routing algorithms (ECMP, DW, DWE)
are guaranteed to be loop-free, but result in a limited choice of
nexthops: the average number of nexthops and the percentage of
nodes with more than one nexthop are both significantly lower
than in the non loop-free algorithms. ECMP requires to match
routing costs exactly, which in most cases restricts forwarding
to only one nexthop; thus ECMP performs especially poor in
topologies with fine-grained link costs like Abilene or GEANT.
DW performs better than ECMP as it doesn’t depend on exact
cost matching. However, DWE is strictly superior to both
schemes, as it has the same computational complexity and
returns a path choice that is at least as high, and often higher.
Thus, we consider DWE as reference point for loop-free routing
algorithms.

The three NLSR variants provide a much higher nexthop
choice than DWE. For example, NLSR always allows two or
more nexthops, unless some routers have only one link, in
which case none of the routing algorithms achieves a NH>1 of
100%. However, NLSR also results in frequent loops and a high
total path length. With random forwarding, NLSR causes loops
in over 90% of all src-dst pairs and the resulting average path
length often surpasses the number of nodes in the network.
NLSR3 and NLSR2 lead to slightly fewer loops, but their
average path length is still many times higher than the optimum.
As a result, all NLSR variants strictly require an intelligent
forwarding strategy. In contrast, the loop-free routing schemes
work quite well even with random forwarding or round robin.

ALR creates a higher path choice than the loop-free routing
schemes, while leading to much fewer loops than NLSR (2/3).
In most cases, ALR achieves its goal of providing at least
2 nexthops for each node: except in the Abilene topology, it
is never more than 2.6% away from the maximal number of
nodes with at least 2 nexthops (achieved by NLSR), and in the
largest three topologies it is withing 0.2% of the maximum.
Moreover, in all tested topologies, ALR’s looping chance is
at least an order of magnitude smaller than NLSR’s and its
average full path length is much closer to the one of DWE.
In particular, ALR seems strictly superior (i.e. creating higher
nexthop choice while leading to fewer loops) to all cases of

TABLE IV
ROUTING ALGORITHMS + RANDOM FORWARDING

Topo Routing NextHops (#) NH>1 FullPathLen (Hops) L(%) D(%)

Abilene

ECMP 1.00 (±0.00) 0.0 2.80 (±1.47) 0.0 0.0
DW 1.40 (±0.49) 40.0 2.85 (±1.52) 0.0 0.0
DWE 1.40 (±0.49) 40.0 2.85 (±1.52) 0.0 0.0
ALR 1.92 (±0.28) 91.8 3.67 (±1.90) 0.0 0.0
ALR-H2 1.92 (±0.28) 91.8 3.66 (±1.89) 0.0 0.0
NLSR2 2.00 (±0.00) 100.0 4.64 (±2.87) 15.8 0.0
NLSR3 2.55 (±0.50) 100.0 8.32 (±7.20) 43.3 0.0
NLSR 2.55 (±0.50) 100.0 8.29 (±7.21) 43.1 0.0

Geant

ECMP 1.00 (±0.00) 0.0 3.18 (±1.29) 0.0 0.0
DW 1.46 (±0.71) 35.5 3.37 (±1.38) 0.0 0.0
DWE 1.46 (±0.71) 35.9 3.38 (±1.38) 0.0 0.0
ALR 1.75 (±0.66) 64.7 4.26 (±1.93) 0.8 0.0
ALR-H2 1.75 (±0.66) 64.7 4.27 (±1.93) 0.8 0.0
NLSR2 1.65 (±0.48) 65.4 7.45 (±6.19) 29.8 0.0
NLSR3 2.05 (±0.86) 65.4 12.74 (±13.18) 50.0 0.0
NLSR 2.46 (±1.67) 65.4 18.76 (±17.88) 63.0 0.0

Testbed

ECMP 1.06 (±0.24) 5.8 3.01 (±1.26) 0.0 0.0
DW 2.60 (±1.30) 73.9 3.61 (±1.74) 0.0 0.0
DWE 2.72 (±1.29) 77.7 3.77 (±1.84) 0.0 0.0
ALR 2.91 (±1.06) 97.3 4.59 (±2.59) 1.6 0.5
ALR-H2 2.92 (±1.04) 98.4 4.94 (±3.06) 7.0 0.5
NLSR2 2.00 (±0.00) 100.0 9.43 (±9.31) 40.4 0.0
NLSR3 3.00 (±0.00) 100.0 19.03 (±22.75) 60.6 0.0
NLSR 5.27 (±1.31) 100.0 40.31 (±43.06) 78.5 0.0

Exodus

ECMP 1.20 (±0.47) 16.5 4.87 (±2.19) 0.0 0.0
DW 1.80 (±1.05) 50.5 5.40 (±2.62) 0.0 0.0
DWE 1.89 (±1.10) 54.2 5.57 (±2.72) 0.0 0.0
ALR 2.21 (±0.86) 89.5 8.09 (±5.62) 6.8 0.9
ALR-H2 2.21 (±0.86) 89.6 8.16 (±5.62) 8.8 0.9
NLSR2 1.91 (±0.29) 91.0 13.50 (±10.80) 50.5 0.0
NLSR3 2.58 (±0.65) 91.0 47.18 (±54.60) 76.1 0.0
NLSR 3.63 (±2.06) 91.0 116.69 (±117.75) 88.9 0.0

Ebone

ECMP 1.20 (±0.45) 17.5 5.07 (±2.14) 0.0 0.0
DW 1.75 (±1.06) 45.4 5.35 (±2.21) 0.0 0.0
DWE 1.87 (±1.07) 53.2 5.45 (±2.27) 0.0 0.0
ALR 2.17 (±0.91) 83.6 7.38 (±3.63) 2.9 1.1
ALR-H2 2.18 (±0.90) 84.8 7.69 (±4.01) 6.9 1.0
NLSR2 1.86 (±0.35) 86.0 13.59 (±10.21) 50.7 0.0
NLSR3 2.50 (±0.73) 86.0 53.40 (±61.51) 76.7 0.0
NLSR 3.54 (±1.98) 86.0 125.87 (±125.07) 89.1 0.0

Telstra

ECMP 1.08 (±0.28) 7.8 4.79 (±1.80) 0.0 0.0
DW 1.32 (±0.75) 23.6 4.97 (±1.85) 0.0 0.0
DWE 1.47 (±0.94) 29.1 5.43 (±2.17) 0.0 0.0
ALR 1.62 (±0.89) 47.0 7.02 (±3.58) 3.1 0.0
ALR-H2 1.62 (±0.89) 47.4 7.18 (±3.70) 7.7 0.0
NLSR2 1.48 (±0.50) 47.6 12.36 (±9.65) 50.6 0.0
NLSR3 1.72 (±0.83) 47.6 36.48 (±36.62) 70.9 0.0
NLSR 2.37 (±2.17) 47.6 102.92 (±94.86) 85.1 0.0

Abovenet

ECMP 1.23 (±0.56) 17.8 4.64 (±2.09) 0.0 0.0
DW 2.57 (±1.60) 69.6 5.21 (±2.43) 0.0 0.0
DWE 2.72 (±1.68) 73.7 5.47 (±2.57) 0.0 0.0
ALR 2.90 (±1.44) 93.4 6.90 (±3.74) 4.2 0.0
ALR-H2 2.90 (±1.44) 93.4 7.08 (±3.98) 7.4 0.0
NLSR2 1.93 (±0.25) 93.4 13.90 (±12.88) 47.4 0.0
NLSR3 2.75 (±0.57) 93.4 64.48 (±88.84) 73.5 0.0
NLSR 5.32 (±3.33) 93.4 318.18 (±329.86) 92.8 0.0

Tiscali

ECMP 1.17 (±0.47) 13.7 5.80 (±2.80) 0.0 0.0
DW 2.00 (±1.81) 44.9 6.11 (±2.81) 0.0 0.0
DWE 2.05 (±1.85) 46.8 6.26 (±2.90) 0.0 0.0
ALR 2.29 (±1.73) 71.2 8.68 (±5.84) 7.6 0.0
ALR-H2 2.29 (±1.73) 71.2 9.08 (±8.96) 8.9 0.0
NLSR2 1.71 (±0.45) 71.3 18.77 (±19.61) 48.4 0.0
NLSR3 2.21 (±0.86) 71.3 54.15 (±74.18) 69.0 0.0
NLSR 3.77 (±3.61) 71.3 230.90 (±245.64) 90.3 0.0

Sprint

ECMP 1.39 (±0.86) 27.3 4.24 (±1.64) 0.0 0.0
DW 2.57 (±2.41) 65.8 4.99 (±2.03) 0.0 0.0
DWE 3.10 (±2.90) 75.3 5.91 (±2.47) 0.0 0.0
ALR 3.19 (±2.37) 89.9 6.76 (±3.42) 1.7 0.0
ALR-H2 3.19 (±2.37) 90.0 7.25 (±6.47) 6.8 0.0
NLSR2 1.90 (±0.30) 90.1 16.03 (±18.01) 48.6 0.0
NLSR3 2.61 (±0.66) 90.1 70.66 (±111.78) 74.4 0.0
NLSR 6.07 (±6.76) 90.1 962.24 (±953.75) 96.9 0.0

NLSR2 and some cases of NLSR3 (Abovenet, Tiscali, Sprint).
ALR with Heuristic 3 disabled (ALR-H2) performs worse

than the unmodified ALR (more loops and longer paths);
the poorer performance comes as a trade-off against a lower
computational complexity, one that matches NLSR. Still,
compared to any of the NLSR variants, ALR-H2 performs



9

significantly better, causing fewer loops and creating shorter
paths.

This evaluation was done assuming random nexthop selection
at each node, and similar results can be achieved by using
round-robin. We realize that this does not represent the behavior
of real forwarding strategies, which most likely will use some
sort of performance estimation of paths, so that the path length
and the number of loops will be lower in practice. Nevertheless,
this evaluation helps to quantify the effort the forwarding layer
has to take up in order to avoid loops and find shorter paths,
and the maximal possible nexthop choice it is given. As we
have seen, the NLSR variants burden the forwarding layer with
a much higher effort than their alternatives, and the loop-free
routing schemes overly restrict the possible nexthop choice.

For all tested topologies, ALR(-H2) gives a good trade-
off between increasing the nexthop choice, selecting shorter
paths, and avoiding loops. In the next section, we look at
the interaction between the presented routing algorithms and
different forwarding strategies.

B. Forwarding Loop Removal

We now evaluate different loop removal strategies at the
forwarding layer to show the benefit of knowing the nexthop
type (upward/downward), and more specifically, of removing
only upward nexthops (UNR). We compare UNR against the
Green/Yellow/Red coloring scheme (COL) from [32], a strategy
that is not aware of the nexthop type and disables nexthops
at the node where a loop is detected or as close to that node
as possible. Our earlier analysis (see Section IV) predicts that
this type-agnostic loop handling disables the wrong nexthops,
leading to less nexthop choice, longer remaining paths, and
higher total forwarding effort.

1) Coloring Scheme: Yi et al’s Green/Yellow/Red scheme
[32] specifies the exact single outgoing face to use: choose
the highest ranked Green face; if none is available, choose the
highest ranked Yellow face. To allow for traffic splitting (using
more than a single best face), we need to make two changes:
1) we initiate all interfaces to the state Green instead of
Yellow; 2) we allow to use any available Green face, instead
of just the highest ranked Green face. The detailed forwarding
behavior is as follows:
1) Routers initiate all faces in their FIB to Green.
2) A Router will forward an Interest too a randomly chosen

Green face, if one is available; if not, it will randomly
choose a Yellow face.

3) If a router receives a looped Interest (one that arrived from
a different face earlier), it forwards the packet on a yet
unused face (following the Green/Yellow order).

4) If a router has exhausted all forwarding options (after
a loop or in a dead end), it sends back a Negative
Acknowledgement (NACK) to the previous router. The
router receiving the NACK then switches the face to
Yellow, tries a different one for forwarding, and if all
faces are exhausted, returns a NACK itself.

5) If a router successfully receives a Data packet, it turns the
corresponding face Green.

TABLE V
ACCURACY OF PATH CHOICE ESTIMATE

Exodus Ebone Telstra Tiscali
ECMP / DW ECMP / DW ECMP / DW ECMP / DW

Exact[21] 1.89 75.98 2.07 16.59 1.37 3.37 2.14 607.56
Estimate 1.89 78.45 2.07 16.52 1.37 3.38 2.14 663.62
Err (%) 0.00 3.25 0.00 -0.42 0.00 0.30 0.00 9.23

With this recursive backtracking procedure, all packets will
eventually reach the destination. After many runs, the remaining
Green faces are very likely (above 99%) to be loop-free.

2) Scenario Description: In this experiment we run both
schemes for all source-destination pairs until all loops in the
network are removed. We then compare the results in terms of
path diversity, path quality, and forwarding complexity.

We evaluate all routing algorithms listed in the last section.
To allow NLSR to work with UNR, we extend its functionality
to contain our qualitative nexthop type: the lowest cost nexthop
(which is known to NLSR) is assigned the type Downward,
all other nexthops get the type Upward. We label these
extended NLSR schemes XNLSR, XNLSR2, and XNLSR3.
The extension allows us to distinguish the benefit gained by
UNR’s type-aware nexthop removal from the benefit gained
by ALR’s loop-freeness heuristics.

3) Metrics: For path choice, we compare the number of
remaining nexthops at each node together with their standard
deviation and the percentage of nodes with at least 2 nexthops
(NH>1). Moreover, we evaluate the number of possible
paths between each source-destination pair (listed as the
median, mean, and standard deviation). The exact number
of paths between a src-dst pair can be determined by a depth-
first search (DFS) with backtracking, which however has an
exponential complexity, making it infeasible for the larger
Rocketfuel topologies (compare [21]). Thus, we estimate the
number of paths by the product of available nexthops at
each node along a random path between each src-dst pair:
#Paths ≈ nh0 ∗ nh1 ∗ · · · ∗ nhd−1. When averaged over 100
runs, our estimate comes close to the exact numbers from Ohara
et al. [21] (see Table V), at least in the smaller topologies where
this comparison is feasible. Moreover, the conclusions drawn
from the number of paths are also supported by the numbers
of nexthops at each node, a much more stable measure.

For path quality, we consider the length of the remaining
paths together with their standard deviation. Since all remaining
paths are loop-free, this length does not include any backtrack-
ing steps like the path length in the last section. A higher
average path length is acceptable as long as it is the result of
higher path choice (if needed, the forwarding layer can still
restrict traffic to shorter paths). However, when two algorithms
provide similar path choice, a shorter path length is clearly
more desirable.

For the forwarding complexity, we compare the number of
FIB nexthop entries that need to be changed. For UNR, a
change is always a permanent disabling of the nexthop entry;
disabled nexthops will not be changed back unless there is a
change in the routing topology (e.g. link removal or changed
link cost). For COL, a change is when the FIB type switches



10

from Green to Yellow, or from Yellow to Green. These changes
are reversible (a face turned Yellow might be turned Green
again by returning Data); thus the percentage of changed FIB
nexthops may exceed 100%.

4) Results – Uphill Nexthop Removal vs. Coloring Scheme:
The results are shown in Tables VI and VII. The loop-free
routing algorithms (ECMP, DW, and DWE) leave no loops to
be removed, thus there is no difference between UNR and COL.
Similarly, ALR leaves very few loops to be removed, thus the
difference between forwarding schemes is small. Nevertheless,
for the small amount of remaining loops, UNR removes less
FIB nexthops and retains more and shorter paths than COL.

For NLSR (2/3), we see the same results at a larger scale:
UNR outperforms COL in all tested topologies and for all
tested metrics.

We can see another result when considering the change
from NLSR2 over NLSR3 to NLSR (increasing the initial path
choice but also loop potential). Both forwarding schemes need
to remove increasingly more nexthops to make the network
loop-free, but the resulting path choice and quality are in stark
contrast: UNR gets better, the higher the initial path choice;
COL gets worse. UNR always retains more path choice when
combined with NLSR than when combined with NLSR2/3;
COL often retains less path choice with NLSR than with
NLSR2/3. In addition, UNR keeps the paths similarly short in
all NLSR schemes; COL’s paths get increasingly longer.

How is that possible? The worsening results from NLSR2
to NLSR clearly show that COL removes the wrong nexthops:
it often removes nexthops that go closer to the destination,
leading to more nexthops needing to be removed and to longer
remaining paths. For a type-agnostic strategy like COL, NLSR2
provides better guidance than the full NLSR: it pre-selects the
two best nexthops, which are more likely to be loop-free already.
However, a more intelligent loop removal scheme like UNR
can take advantage of the full NLSR, retaining a higher path
choice than NLSR2, combined with any forwarding scheme,
could.

A final nail in the coffin of the Coloring scheme is that it
doesn’t always converge to a final state: sometimes nexthops
indefinitely switch between the state Green and Yellow
(indicated in the tables as ∞). This artifact comes from the
fundamental problem that a packet loop depends on the whole
path a given packet took and not only the current nexthop;
turning nexthops to Green on received data can re-enable a
nexthop that later will lead to a loop when used as part of
a longer path. This loop will then turn the nexthop Yellow
again, repeating this process indefinitely.

UNR does not suffer from this problem: since all of UNR’s
changes are permanent, a disabled nexthop will never be re-
enabled by the forwarding layer, avoiding indefinite oscillations.
Making changes permanent is only possible because UNR’s
changes consider the nexthop type, and thus are of much higher
quality than COL’s changes.

5) Further Results for Routing Algorithms: When using
UNR together with non loop-free routing algorithms, we gain
further results about their performance.

First, we compared UNR to the two MARA routing schemes
[21], with somewhat ambiguous results. MARA-MC leads to

higher path lengths and often doesn’t include the shortest path,
which increases the forwarding cost. In contrast, MARA-SPE
always includes the shortest path and leads to overall shorter
paths. Compared to ALR, MARA-SPE often produces a lower
average path choice, but also a lower variance, which means
that it could provide a higher number of paths for nodes that
have few paths. However, both MARA algorithms show a
significantly higher computational complexity than any other
tested routing algorithm (see Table III), potentially hindering
their deployment.

Second, we observe that the final loop-free path choice of
ALR + UNR is always higher than the best loop-free routing
algorithm (DWE). We conclude that the higher computational
effort of almost loop-free routing pays off, at least in this
regard.

Third, when compared with the nexthop type-extended
XNLSR, ALR requires a much lower forwarding layer effort:
depending on the topology, it only needs to remove 0% to
1.1% of all FIB entries (ALR-H2 removes 0% to 2.2%) rather
than XNLSR’s 22% to 42%. Moreover, even with this higher
overhead, XNLSR’s resulting path choice is not obviously
better: while XNLSR + UNR achieves a higher number of
average nexthops per node, ALR + UNR achieves a higher
percentage of nodes with at least 2 nexthops! In addition, ALR
+ UNR often achieves a higher median number of paths at
each node, implying that it achieves its goal of improving the
path choice for the nodes that most lack it.

VI. CONCLUDING REMARKS

Our heuristics leave room for improvements that achieve
better trade-offs between computational complexity, path
choice, and path quality (see the differences between ALR and
ALR-H2). Hence, rather than claiming that the two presented
schemes are the best of all possible choices, we make the larger
point that non loop-free routing combined with loop removal
at the forwarding layer leads to better path choice than the
best current loop-free routing schemes.

The fundamental reason for this performance improvement
is that loop-free multipath routing is too complex to find
an optimal solution. Instead, one has to use heuristics, the
current best of which is the downward criterion (always
sending packets closer to the destination). We have extended
these heuristics by exploiting two functions of the NDN
forwarding plane, loop detection and incoming interface-
exclusion, allowing us to increase path choice at a reasonable
complexity.

ACKNOWLEDGEMENTS

We want to thank Teng Liang and Eric Newberry for proof-
reading, John DeHart for his help in creating the NDN Testbed
topology map, and Lan Wang and Lixia Zhang for giving
invaluable feedback on our design.

REFERENCES

[1] Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992, Nov. 2000.
[2] A. K. Atlas and A. Zinin. Basic specification for ip fast-reroute: loop-free

alternates. 2008.



11

TABLE VI
ROUTING ALGORITHMS + FORWARDING LOOP REMOVAL

Topo Routing FW NextHops (#) NH>1 # Paths (Median,Mean,STD) PathLen (Hops) ChangedFibs (#) ChangedFibs (%)

Abilene

ECMP 1.00 (±0.00) 0.0 1 1.00 (±0.00) 2.80 (±1.47) 0 (±0) 0.00 (±0.00)
DW 1.40 (±0.49) 40.0 2 1.78 (±1.18) 2.85 (±1.51) 0 (±0) 0.00 (±0.00)
DWE 1.40 (±0.49) 40.0 2 1.78 (±1.18) 2.84 (±1.52) 0 (±0) 0.00 (±0.00)
ALR COL 1.92 (±0.27) 91.8 4 4.06 (±2.93) 3.65 (±1.89) 0 (±0) 0.00 (±0.00)
ALR UNR 1.92 (±0.27) 91.8 4 4.05 (±2.91) 3.65 (±1.89) 0 (±0) 0.00 (±0.00)
ALR-H2 COL 1.92 (±0.27) 91.8 4 4.07 (±2.95) 3.65 (±1.89) 0 (±0) 0.00 (±0.00)
ALR-H2 UNR 1.92 (±0.27) 91.8 4 4.05 (±2.90) 3.64 (±1.89) 0 (±0) 0.00 (±0.00)
NLSR2 COL 1.76 (±0.43) 76.2 2 2.52 (±1.52) 3.70 (±1.95) 26 (±2) 11.89 (±0.71)
XNLSR2 UNR 1.86 (±0.35) 86.1 2 3.06 (±1.63) 3.72 (±1.92) 15 (±2) 6.93 (±1.11)
NLSR3 COL 1.65 (±0.64) 55.5 2 3.21 (±1.88) 3.99 (±2.22) 173 (±22) 61.66 (±7.68)
XNLSR3 UNR 1.91 (±0.66) 73.4 2 3.84 (±3.30) 3.70 (±2.02) 70 (±4) 25.02 (±1.40)
NLSR COL 1.64 (±0.64) 54.7 2 2.73 (±1.32) 3.77 (±1.94) 174 (±20) 62.27 (±7.11)
XNLSR UNR 1.98 (±0.63) 79.1 3 4.29 (±3.46) 3.81 (±2.09) 62 (±2) 22.25 (±0.80)

Geant

ECMP 1.00 (±0.00) 0.0 1 1.00 (±0.00) 3.18 (±1.29) 0 (±0) 0.00 (±0.00)
DW 1.46 (±0.71) 35.5 2 2.82 (±3.09) 3.37 (±1.38) 0 (±0) 0.00 (±0.00)
DWE 1.46 (±0.71) 35.9 2 2.85 (±3.10) 3.38 (±1.38) 0 (±0) 0.00 (±0.00)
ALR COL 1.75 (±0.66) 64.6 4 8.25 (±11.42) 4.24 (±1.86) 2 (±2) 0.16 (±0.19)
ALR UNR 1.75 (±0.66) 64.5 4 8.16 (±11.53) 4.21 (±1.85) 1 (±0) 0.09 (±0.03)
ALR-H2 COL 1.75 (±0.66) 64.5 4 8.02 (±11.08) 4.22 (±1.85) 3 (±3) 0.25 (±0.21)
ALR-H2 UNR 1.75 (±0.66) 64.5 4 8.06 (±11.31) 4.20 (±1.85) 1 (±0) 0.10 (±0.04)
NLSR2 COL 1.50 (±0.50) 50.1 2 3.01 (±2.42) 4.20 (±2.03) ∞ (±∞) ∞ (±∞)
XNLSR2 UNR 1.59 (±0.49) 59.3 2 3.48 (±2.72) 4.27 (±2.05) 42 (±3) 3.65 (±0.29)
NLSR3 COL 1.51 (±0.69) 39.8 2 4.94 (±7.48) 4.66 (±2.56) ∞ (±∞) ∞ (±∞)
XNLSR3 UNR 1.78 (±0.81) 53.7 3 6.02 (±11.40) 4.21 (±2.05) 194 (±8) 13.46 (±0.52)
NLSR COL 1.42 (±0.88) 29.0 2 4.71 (±9.56) 4.98 (±2.76) 1,439 (±73) 83.48 (±4.23)
XNLSR UNR 1.89 (±0.90) 59.9 6 11.42 (±23.62) 4.29 (±2.00) 399 (±6) 23.16 (±0.37)

Testbed

ECMP 1.06 (±0.24) 5.8 1 1.10 (±0.31) 3.01 (±1.26) 0 (±0) 0.00 (±0.00)
DW 2.60 (±1.30) 73.9 5 42.53 (±484.05) 3.61 (±1.74) 0 (±0) 0.00 (±0.00)
DWE 2.72 (±1.29) 77.7 6 139.00 (±5.63e3) 3.76 (±1.84) 0 (±0) 0.00 (±0.00)
ALR COL 2.89 (±1.07) 96.2 16 265.56 (±3.79e3) 4.41 (±2.22) 27 (±7) 0.87 (±0.23)
ALR UNR 2.90 (±1.07) 96.2 16 287.89 (±4.56e3) 4.40 (±2.21) 11 (±1) 0.37 (±0.04)
ALR-H2 COL 2.83 (±1.09) 93.9 16 225.07 (±3.10e3) 4.47 (±2.29) 122 (±12) 3.97 (±0.39)
ALR-H2 UNR 2.86 (±1.12) 92.0 12 245.69 (±5.76e3) 4.27 (±2.15) 67 (±2) 2.19 (±0.06)
NLSR2 COL 1.68 (±0.47) 68.4 4 13.23 (±134.41) 4.41 (±2.60) 583 (±16) 27.60 (±0.78)
XNLSR2 UNR 1.80 (±0.40) 79.6 4 10.16 (±94.95) 3.93 (±1.99) 216 (±7) 10.21 (±0.33)
NLSR3 COL 1.86 (±0.81) 59.1 4 33.23 (±303.52) 5.24 (±3.14) 2,186 (±158) 69.02 (±5.00)
XNLSR3 UNR 2.37 (±0.77) 82.1 6 45.99 (±635.94) 4.23 (±2.18) 669 (±11) 21.13 (±0.35)
NLSR COL 2.00 (±1.18) 60.1 4 23.46 (±703.68) 5.37 (±3.44) 6,098 (±234) 109.52 (±4.21)
XNLSR UNR 3.20 (±1.46) 83.7 12 655.54 (±2.59e4) 4.23 (±2.12) 2,193 (±10) 39.39 (±0.19)

[3] D. O. Awduche and J. Agogbua. Requirements for Traffic Engineering
Over MPLS. RFC 2702, Sept. 1999.

[4] O. Bonaventure. Computer networking: Principles, protocols, and
practice. The Saylor Foundation, 2011.

[5] G. Carofiglio, M. Gallo, L. Muscariello, M. Papalini, and S. Wang.
Optimal multipath congestion control and request forwarding in ICN. In
ICNP, 2013.

[6] B. Dezső, A. Jüttner, and P. Kovács. Lemon–an open source c++ graph
template library. ENTCS, 2011.

[7] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships
of the internet topology. In ACM SIGCOMM CCR. ACM, 1999.

[8] J. He and J. Rexford. Toward internet-wide multipath routing. IEEE
Network, 2008.

[9] E. Hemmati and J. Garcia-Luna-Aceves. A new approach to name-based
link-state routing for ICN. In ACM ICN 2015.

[10] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang.
Nlsr: named-data link state routing protocol. In ACM SIGCOMM ICN
workshop, 2013.

[11] A. Kvalbein, C. Dovrolis, and C. Muthu. Multipath load-adaptive routing:
Putting the emphasis on robustness and simplicity. In ICNP 2009. IEEE.

[12] S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C.-N. Chuah. Proactive
vs reactive approaches to failure resilient routing. In INFOCOM 2004.

[13] V. Lehman, A. Gawande, B. Zhang, L. Zhang, R. Aldecoa, D. Krioukov,
and L. Wang. An experimental investigation of hyperbolic routing with
a smart forwarding plane in NDN. In IWQoS 2016. IEEE.

[14] C. Li, T. Huang, R. Xie, H. Zhang, J. Liu, and Y. Liu. A novel multi-path
traffic control mechanism in named data networking. In IEEE ICT, 2015.

[15] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. Inferring link
weights using end-to-end measurements. In IMW, 2002.

[16] P. Mérindol, J.-J. Pansiot, and S. Cateloin. Improving load balancing
with multipath routing. In ICCCN’08. IEEE, 2008.

[17] M. Mitzenmacher. The power of two choices in randomized load
balancing. IEEE TPDS, 2001.

[18] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala. Path splicing.
In ACM SIGCOMM CCR. ACM, 2008.

[19] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, and C.-N. Chuah. Fast local
rerouting for handling transient link failures. IEEE/ACM ToN, 2007.

[20] D. Nguyen, M. Fukushima, K. Sugiyama, and A. Tagami. Efficient
multipath forwarding and congestion control without route-labeling in
CCN. In IEEE ICCW, 2015.

[21] Y. Ohara, S. Imahori, and R. Van Meter. Mara: Maximum alternative
routing algorithm. In INFOCOM 2009. IEEE.

[22] J. Qadir, A. Ali, K.-L. A. Yau, A. Sathiaseelan, and J. Crowcroft.
Exploiting the power of multiplicity: a holistic survey of network-layer
multipath. IEEE Communications Surveys & Tutorials, 2015.

[23] H. Qian, R. Ravindran, G.-Q. Wang, and D. Medhi. Probability-based
adaptive forwarding strategy in NDN. In IM 2013 Symposium. IEEE,
2013.

[24] K. Schneider and U. R. Krieger. Beyond network selection: Exploiting
access network heterogeneity with NDN. In ACM ICN, 2015.

[25] K. Schneider, C. Yi, B. Zhang, and L. Zhang. A practical congestion
control scheme for named data networking. In ACM ICN 2016.

[26] N. Spring, R. Mahajan, and D. Wetherall. Measuring isp topologies with
rocketfuel. ACM SIGCOMM CCR, 2002.

[27] C. Villamizar. OSPF Optimized Multipath (OSPF-OMP). Internet-Draft
draft-ietf-ospf-omp-02, IETF, Feb. 1999. Work in Progress.

[28] S. Vutukury and J. Garcia-Luna-Aceves. A simple approximation to
minimum-delay routing. In ACM SIGCOMM CCR. ACM, 1999.

[29] S. Vutukury and J. J. Garcia-Luna-Aceves. Mdva: A distance-vector
multipath routing protocol. In INFOCOM 2001. IEEE, 2001.

[30] Y. Wang, N. Rozhnova, A. Narayanan, D. Oran, and I. Rhee. An
improved hop-by-hop interest shaper for congestion control in NDN.
ACM SIGCOMM CCR, 2013.

[31] X. Yang and D. Wetherall. Source selectable path diversity via routing
deflections. In ACM SIGCOMM CCR. ACM, 2006.

[32] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang.
A case for stateful forwarding plane. Elsevier, 2013.

[33] F. Zhang, Y. Zhang, A. Reznik, H. Liu, C. Qian, and C. Xu. A transport
protocol for content-centric networking with explicit congestion control.
In IEEE ICCCN, 2014.

[34] J. Zhou, Q. Wu, Z. Li, M. A. Kaafar, and G. Xie. A proactive transport
mechanism with explicit congestion notification for NDN. In IEEE ICC,
2015.



12

TABLE VII
ROUTING ALGORITHMS + FORWARDING LOOP REMOVAL (CONT.)

Topo Routing FW NextHops (#) NH>1 # Paths (Median,Mean,STD) PathLen (Hops) ChangedFibs (#) ChangedFibs (%)

Exodus

ECMP 1.20 (±0.47) 16.5 1 1.89 (±1.94) 4.87 (±2.19) 0 (±0) 0.00 (±0.00)
DW 1.80 (±1.05) 50.5 6 78.45 (±901.79) 5.40 (±2.63) 0 (±0) 0.00 (±0.00)
DWE 1.89 (±1.10) 54.2 6 152.17 (±2.23e3) 5.57 (±2.72) 0 (±0) 0.00 (±0.00)
MARA SPE (±) 32.52 (±76.92) 6.33 (±2.84) 0 (±0) 0.00 (±0.00)
MARA MC (±) 42.08 (±66.94) 7.62 (±3.31) 0 (±0) 0.00 (±0.00)
ALR COL 2.16 (±0.84) 86.6 32 2,439.05 (±5.75e4) 7.21 (±3.70) ∞ (±∞) ∞ (±∞)
ALR UNR 2.19 (±0.88) 87.4 32 2,451.54 (±5.69e4) 7.11 (±3.63) 133 (±4) 0.98 (±0.03)
ALR-H2 COL 2.16 (±0.85) 86.0 32 2,747.49 (±6.00e4) 7.15 (±3.67) ∞ (±∞) ∞ (±∞)
ALR-H2 UNR 2.18 (±0.88) 86.7 32 2,337.49 (±4.81e4) 7.06 (±3.63) 179 (±3) 1.32 (±0.03)
NLSR2 COL 1.70 (±0.46) 69.8 4 10.59 (±27.85) 6.62 (±3.68) ∞ (±∞) ∞ (±∞)
XNLSR2 UNR 1.75 (±0.43) 75.2 4 9.66 (±31.87) 6.37 (±3.24) 974 (±13) 8.27 (±0.11)
NLSR3 COL 1.68 (±0.74) 50.8 4 29.79 (±418.30) 8.27 (±4.74) ∞ (±∞) ∞ (±∞)
XNLSR3 UNR 2.16 (±0.76) 77.8 8 74.66 (±1.28e3) 6.93 (±3.66) 2,572 (±24) 16.18 (±0.15)
NLSR COL 1.34 (±0.81) 22.6 4 52.16 (±2.69e3) 10.34 (±6.69) 30,567 (±617) 136.72 (±2.76)
XNLSR UNR 2.41 (±1.20) 79.0 24 4,475.50 (±3.42e5) 6.81 (±3.52) 7,519 (±34) 33.63 (±0.15)

Ebone

ECMP 1.20 (±0.45) 17.5 2 2.07 (±2.04) 5.07 (±2.14) 0 (±0) 0.00 (±0.00)
DW 1.75 (±1.06) 45.4 4 16.52 (±110.54) 5.35 (±2.21) 0 (±0) 0.00 (±0.00)
DWE 1.87 (±1.07) 53.2 4 23.17 (±207.62) 5.44 (±2.27) 0 (±0) 0.00 (±0.00)
MARA SPE (±) 48.04 (±111.18) 6.56 (±2.85) 0 (±0) 0.00 (±0.00)
MARA MC (±) 872.53 (±2.34e3) 10.71 (±4.53) 0 (±0) 0.00 (±0.00)
ALR COL 2.14 (±0.92) 81.5 24 422.62 (±9.03e3) 7.14 (±3.24) 282 (±18) 1.73 (±0.11)
ALR UNR 2.15 (±0.93) 81.2 24 384.06 (±9.56e3) 7.00 (±3.13) 178 (±3) 1.10 (±0.02)
ALR-H2 COL 2.12 (±0.90) 81.2 24 386.46 (±7.32e3) 7.20 (±3.28) 665 (±41) 4.07 (±0.25)
ALR-H2 UNR 2.14 (±0.93) 80.7 24 317.87 (±7.63e3) 6.96 (±3.12) 300 (±5) 1.83 (±0.03)
NLSR2 COL 1.60 (±0.49) 60.3 4 18.02 (±93.78) 6.77 (±3.40) ∞ (±∞) ∞ (±∞)
XNLSR2 UNR 1.70 (±0.46) 70.0 4 16.73 (±96.90) 6.51 (±3.14) 1,203 (±19) 8.64 (±0.13)
NLSR3 COL 1.54 (±0.66) 44.7 4 154.04 (±9.25e3) 9.40 (±5.72) 17,516 (±793) 93.52 (±4.23)
XNLSR3 UNR 2.06 (±0.77) 73.2 8 84.58 (±3.41e3) 6.93 (±3.45) 3,295 (±33) 17.59 (±0.18)
NLSR COL 1.32 (±0.78) 22.1 4 36.64 (±3.55e3) 10.90 (±6.89) 38,063 (±1,731) 143.88 (±6.54)
XNLSR UNR 2.33 (±1.21) 72.8 18 1,096.18 (±7.96e4) 6.89 (±3.26) 9,011 (±19) 34.07 (±0.07)

Telstra

ECMP 1.08 (±0.28) 7.8 1 1.37 (±0.66) 4.79 (±1.80) 0 (±0) 0.00 (±0.00)
DW 1.32 (±0.75) 23.6 2 3.38 (±7.25) 4.97 (±1.85) 0 (±0) 0.00 (±0.00)
DWE 1.47 (±0.94) 29.1 4 18.36 (±88.84) 5.43 (±2.16) 0 (±0) 0.00 (±0.00)
MARA SPE (±) 16.18 (±22.63) 5.96 (±2.37) 0 (±0) 0.00 (±0.00)
MARA MC (±) 26.27 (±31.47) 7.24 (±2.99) 0 (±0) 0.00 (±0.00)
ALR COL 1.59 (±0.85) 45.5 16 64.99 (±299.27) 6.80 (±3.03) 275 (±41) 1.59 (±0.24)
ALR UNR 1.61 (±0.89) 46.2 16 64.26 (±282.67) 6.76 (±3.00) 86 (±2) 0.50 (±0.01)
ALR-H2 COL 1.58 (±0.85) 45.0 16 59.60 (±273.66) 6.73 (±2.97) 432 (±39) 2.49 (±0.23)
ALR-H2 UNR 1.60 (±0.89) 45.9 16 58.34 (±251.74) 6.69 (±2.96) 159 (±4) 0.92 (±0.02)
NLSR2 COL 1.36 (±0.48) 35.7 4 5.38 (±7.03) 6.19 (±2.87) 1,802 (±103) 11.40 (±0.65)
XNLSR2 UNR 1.42 (±0.49) 42.0 4 5.94 (±8.90) 6.20 (±2.87) 598 (±11) 3.78 (±0.07)
NLSR3 COL 1.28 (±0.53) 24.3 4 18.05 (±102.87) 7.10 (±3.58) 7,457 (±125) 40.60 (±0.68)
XNLSR3 UNR 1.53 (±0.69) 41.2 4 15.80 (±82.16) 6.28 (±2.88) 1,997 (±17) 10.87 (±0.09)
NLSR COL 1.14 (±0.65) 7.9 2 16.86 (±378.02) 8.16 (±4.43) 24,537 (±786) 96.50 (±3.09)
XNLSR UNR 1.71 (±1.18) 41.2 8 82.93 (±1.94e3) 6.31 (±2.77) 7,152 (±36) 28.13 (±0.14)

Tiscali

ECMP 1.17 (±0.47) 13.7 1 2.14 (±2.30) 5.80 (±2.80) 0 (±0) 0.00 (±0.00)
DW 2.00 (±1.81) 44.9 12 663.62 (±5.13e4) 6.11 (±2.81) 0 (±0) 0.00 (±0.00)
DWE 2.05 (±1.85) 46.8 16 1,153.51 (±4.39e4) 6.26 (±2.90) 0 (±0) 0.00 (±0.00)
MARA SPE (±) 3,742.34 (±1.46e4) 9.36 (±4.26) 0 (±0) 0.00 (±0.00)
MARA MC (±) 1.02e4 (±3.71e4) 11.40 (±4.54) 0 (±0) 0.00 (±0.00)
ALR COL 2.26 (±1.72) 70.0 112 6.22e4 (±7.95e6) 7.75 (±3.75) 974 (±66) 1.66 (±0.11)
ALR UNR 2.27 (±1.74) 69.2 104 5.55e4 (±7.91e6) 7.65 (±3.73) 509 (±8) 0.86 (±0.01)
ALR-H2 COL 2.26 (±1.72) 69.8 108 8.18e4 (±4.02e7) 7.75 (±3.75) 1,173 (±78) 1.99 (±0.13)
ALR-H2 UNR 2.26 (±1.74) 68.9 96 3.72e4 (±4.15e6) 7.61 (±3.69) 585 (±6) 0.99 (±0.01)
NLSR2 COL 1.59 (±0.50) 58.7 8 26.68 (±155.73) 7.38 (±3.93) ∞ (±∞) ∞ (±∞)
XNLSR2 UNR 1.63 (±0.48) 62.5 4 20.12 (±115.76) 6.78 (±3.36) 2,243 (±26) 5.08 (±0.06)
NLSR3 COL 1.62 (±0.73) 46.7 8 338.30 (±1.21e5) 8.48 (±4.87) 33,093 (±1,296) 58.19 (±2.28)
XNLSR3 UNR 1.98 (±0.83) 64.9 12 273.29 (±1.73e4) 6.92 (±3.39) 5,821 (±45) 10.24 (±0.08)
NLSR COL 1.33 (±1.30) 17.1 4 167.63 (±1.73e4) 12.20 (±8.23) 1.3e5 (±1,464) 135.77 (±1.51)
XNLSR UNR 2.45 (±2.00) 63.3 52 1.40e5 (±5.62e7) 7.08 (±3.35) 33,802 (±60) 34.85 (±0.06)

Abovenet

ECMP 1.23 (±0.56) 17.8 1 2.53 (±4.91) 4.64 (±2.09) 0 (±0) 0.00 (±0.00)
DW 2.57 (±1.60) 69.6 16 1,908.94 (±1.34e5) 5.21 (±2.43) 0 (±0) 0.00 (±0.00)
DWE 2.72 (±1.68) 73.7 30 9,360.51 (±1.18e6) 5.47 (±2.57) 0 (±0) 0.00 (±0.00)
ALR COL 2.87 (±1.45) 92.0 108 6.77e4 (±7.39e6) 6.51 (±3.02) 458 (±16) 0.84 (±0.03)
ALR UNR 2.88 (±1.46) 91.6 108 8.12e4 (±3.73e7) 6.41 (±2.94) 328 (±7) 0.60 (±0.01)
ALR-H2 COL 2.87 (±1.44) 91.9 120 1.79e5 (±1.21e8) 6.54 (±3.05) 646 (±16) 1.18 (±0.03)
ALR-H2 UNR 2.88 (±1.47) 91.2 96 4.90e4 (±4.57e6) 6.32 (±2.91) 413 (±4) 0.75 (±0.01)
NLSR2 COL 1.81 (±0.39) 81.1 8 28.97 (±144.83) 6.76 (±3.57) ∞ (±∞) ∞ (±∞)
XNLSR2 UNR 1.86 (±0.34) 86.2 8 21.89 (±90.23) 6.23 (±3.11) 1,359 (±13) 3.72 (±0.03)
NLSR3 COL 1.81 (±0.83) 54.2 8 644.21 (±6.10e4) 9.00 (±5.37) 36,420 (±781) 70.17 (±1.50)
XNLSR3 UNR 2.41 (±0.74) 85.0 12 180.13 (±1.15e4) 6.37 (±3.12) 6,364 (±26) 12.26 (±0.05)
NLSR COL 1.36 (±1.17) 18.2 6 566.37 (±1.80e5) 12.88 (±8.91) 1.5e5 (±1,397) 151.47 (±1.39)
XNLSR UNR 3.18 (±1.76) 85.0 72 4.39e5 (±1.61e8) 6.20 (±2.94) 40,474 (±56) 40.23 (±0.06)

Sprint

ECMP 1.39 (±0.86) 27.3 1 2.10 (±2.88) 4.24 (±1.64) 0 (±0) 0.00 (±0.00)
DW 2.57 (±2.41) 65.8 12 823.94 (±1.67e5) 4.99 (±2.03) 0 (±0) 0.00 (±0.00)
DWE 3.10 (±2.90) 75.3 48 3.24e6 (±5.12e9) 5.91 (±2.47) 0 (±0) 0.00 (±0.00)
ALR COL 3.19 (±2.37) 89.8 128 6.42e5 (±8.02e8) 6.59 (±2.88) 323 (±28) 0.10 (±0.01)
ALR UNR 3.19 (±2.37) 89.8 128 3.38e5 (±2.39e8) 6.54 (±2.85) 132 (±3) 0.04 (±0.00)
ALR-H2 COL 3.18 (±2.37) 89.5 120 7.01e5 (±1.21e9) 6.56 (±2.90) 1,447 (±51) 0.46 (±0.02)
ALR-H2 UNR 3.18 (±2.37) 89.3 96 6.65e5 (±7.77e8) 6.37 (±2.82) 687 (±2) 0.22 (±0.00)
NLSR2 COL 1.81 (±0.39) 81.3 8 96.53 (±5.43e3) 6.89 (±3.66) ∞ (±∞) ∞ (±∞)
XNLSR2 UNR 1.85 (±0.35) 85.4 8 63.19 (±6.11e3) 6.15 (±3.04) 4,706 (±42) 2.50 (±0.02)
NLSR3 COL 2.06 (±0.84) 67.4 18 3.08e4 (±1.46e7) 9.03 (±5.31) 1.0e5 (±2,153) 39.92 (±0.83)
XNLSR3 UNR 2.41 (±0.74) 84.6 12 451.99 (±1.03e5) 6.14 (±2.96) 19,663 (±85) 7.62 (±0.03)
NLSR COL 1.32 (±1.87) 10.7 3 1.27e4 (±2.03e7) 18.72 (±14.32) ∞ (±∞) ∞ (±∞)
XNLSR UNR 3.51 (±2.70) 86.1 96 1.30e7 (±1.18e10) 6.49 (±2.91) 2.6e5 (±636) 42.65 (±0.11)


	Introduction
	Loop-Free Routing
	Almost Loop-free Routing
	Heuristic Loop Checks
	Implementation & Computational Complexity

	Forwarding Loop Removal
	Evaluation
	Almost Loop-free Routing
	Metrics
	Results

	Forwarding Loop Removal
	Coloring Scheme
	Scenario Description
	Metrics
	Results – Uphill Nexthop Removal vs. Coloring Scheme
	Further Results for Routing Algorithms


	Concluding Remarks
	References

