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Abstract—As a novel Internet architecture, Named Data Net-
working (NDN) shifts the communication model from address-
centric to content-centric. An NDN router caches the data in its
content store, greatly reducing network traffic. NDN adopts the
hierarchical naming schema, which allows the name aggregation
and enables high scalability. However, in a richly connected
topology, the nearest data replica are often not on the path
dictated by NDN’s tree-like data fetching model. This might
result in a lower data delivery efficiency compared with the
flat self-certifying naming schema in other Information-Centric
Networking (ICN) architectures.

To address the low efficiency problem, we propose a CDN-like
enhancement to the NDN design, called Fetching the Nearest
Replica (FNR). In FNR, when a consumer sends an interest for
a popular data, the data is fetched from the nearest replica in
the network, regardless of whether it is on the best path from
the producer to the consumer. We present the design details and
theoretical overhead analysis for FNR. Our evaluation results
using ndnSIM simulator show that on average FNR reduces
the total (inter-domain, intra-domain) traffic by 25.6% (53.0%,
18.2%) on average, compared to the default NDN approach. In
addition, the average latency is reduced by 37% and the average
cost is reduced by 51.4%. To the best of our knowledge, this
paper is the first NDN enhancement in the literature to support
nearest replica fetching in NDN.

I. INTRODUCTION

Information-Centric Networking (ICN) is a new Internet
architecture that focuses on what instead of where. The
proposals of ICN includes decoupling names from locations,
binding names to content, and providing a publish/subscribe
model to discover and retrieve the content by name. In-network
storage is introduced in ICN to help reduce the network
traffic significantly, and data copies which are called replicas
are dynamically created, cached and deleted in in-network
storage. Among several proposed ICN architectures, different
naming schemes result in the different data fetching models
and routing principles.

Some ICN proposals, such as DONA [1], NetInf/SAIL [2],
and MobilityFirst [3], adopt flat self-certifying naming
schema. To publish content, Distributed Hash Table (DHT)
is adopted to announce the content availability. To retrieve
a content object, a name resolution and mapping process is
proposed to resolve the mapping between the flat names to
locations. In Flat self-certifying naming schema, the network
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can locate the nearest data replica for every data request.
However, it faces the great challenge of scalability because
the flat names of contents cannot be aggregated. With the rapid
growth of content objects, a conservative estimate is that an
ICN resolution and mapping system should be able to handle
at least 1012 objects [4].

In contrast, NDN [5], [6] employs a URL-like hierarchical
naming schema which enables prefix-based aggregation like
in IP. Prefix-based aggregation, on-path storage, and tree-like
routing model in NDN in general offer a better scalability
than other ICN proposals. However, as the Internet topology
becomes more and more richly connected in these years [8],
the nearest data replica might not be on the best-path dictated
by NDN’s tree-like fetching data model. For example, in the
forwarding plane, the router must forward the Interest packet
along the default path according to the FIB, even if the nearest
replicas might not be on the default forwarding path, resulting
in the low data delivery efficiency problem in the current
NDN design.

To address the low efficiency problem, in this paper we aim
to design an NDN enhancement such that when a consumer
sends an Interest packet for a popular data, the data is fetched
from the nearest replica in the network, regardless of whether
it is on the best path from the producer to the consumer.
There can be two strawman approaches. First, in the multi-path
approach, multiple copies of the same data are retrieved to the
consumers. This approach has prohibitive overhead and defeats
the NDN’s initial purpose of reducing the traffic overhead.
Second, each router announces the replica information in its
Content Stores (CS) to other routers, so that the nearest replica
can be known for each request. However, the announcement
overhead is also prohibitive if all CS of all routers are sent.
Apparently neither of the two strawman approaches works.

Our approach in this paper takes advantage of the fact
that the distribution of data popularity in the current Internet
is close to a Zipf distribution [9]. Therefore, instead of
announcing the entire CS in the second strawman approach,
in FNR a router just announces the information about the top-
N data ranked by popularity in NDN routers’ Content Store
(CS). As such, according to the request popularity, we divide
a router’s CS into two parts: Top-N Subset and Heavy-Tailed
Subset. With Zipf law, the Top-N Subset (with a very small
subset size N ) can already satisfy most data requests, while



the Heavy-Tailed Subset (with a huge subset size) just satisfies
a small number of data requests. The Top-N subsets of routers
are announced to Tracker Servers, and a consumer can consult
its Tracker Server to locate the nearest replica for a popular
data request, and then redirect the data request to the nearest
replica.

Based on our above idea, we propose an NDN enhancement
design, Fetching the Nearest Replica (FNR). The design of
FNR shares the same spirits as the CDN for IP networks: one
level of redirection to help locate the nearest replica for the
requested data in the network. The top-N subsets maintained
by Tracker Servers and routers are similar to the (dynamically
updated) DNS system in the CDN network. The consumer
looks up the tracker system to find the nearest replica in FNR,
just like a host uses DNS to map the destination host name
to a best IP address among multiple ones that serve the same
content in the IP CDN system.

The contributions of this paper are summarized as follows.
1) To address current NDN design’s problem of low data

delivery efficiency, in this paper we propose FNR, a
CDN-like enhancement to the NDN design. In FNR,
when a consumer sends an Interest packet for a popular
data, the data is fetched from the nearest replica in the
network, regardless of whether it is on the best path
from the producer to the consumer. To the best of our
knowledge, this paper is the first NDN enhancement in
the literature to support nearest replica fetching in NDN.

2) To make FNR scalable, practical, and light-weight, we
addressed two major challenges. First, to reduce the
overhead of replica announcement, we take advantage of
Zipf law so that a router only announces the information
of Top-N data in its CS and uses Bloom filter to further
minimize the announcement traffic. Second, to make
FNR scalable and practical, we employ an effective but
conceptually simple design that in spirit is similar to CDN
in IP network, and use one level of redirection to locate
and retrieve the nearest replica for popular data.

3) Our evaluation results using ndnSIM simulator [11] show
that our FNR enhancement to NDN greatly improves the
performance, compared to the current NDN design. FNR
on average reduces the total traffic by 25.6% on average,
the inter-domain traffic by 52.0%, and the intra-domain
traffic by 18.2%, compared to the current NDN design.
Furthermore, the average latency is reduced by 37.0%
and the average cost is reduced by 51.4%.

The remainder of the paper is organized as follows. The
overall design goal of FNR and details of design are respec-
tively presented in Section II and Section III. We conduct
theoretical analysis for FNR overhead in Section IV. In
Section V, we evaluate FNR using ndnSIM 2.0 simulator and
analyze the results. Section VI briefly reviews related work.
Finally, Section VII concludes the paper.

II. DESIGN GOALS AND CORE IDEA

Our proposed Fetching the Nearest Replica (FNR) in NDN
consists of three steps. Pre-lookup: before sending out the

Interest packet I1 for the data D1, the consumer needs to
check whether there exists any replica of D1. Locating: if
the consumer ensures the existence of the replica, then the
consumer will ask for the location of that replica. Redirection:
with the location of the replica, the consumer will modify the
destination of I1 in the Interest packet and send it out.

A. Design goals

The functionality of FNR boils down to one major chal-
lenge: all the consumers and routers should synchronize the
up-to-date information of replicas and rapidly return responses
(such as synchronizing and locating). A more precise break-
down of FNR goals is as follows.

1) High performance. The design must ensure a high
performance to locate and fetch the nearest replica, which
impacts the inter-domain/intra-domain traffic and QoS of
consumers.

2) Low overhead. The design must ensure a low overhead,
including the extra storage overhead and transmission
overhead.

3) Practicality. The design must ensure the practicality
based on the NDN networking protocol, which means
that the design should not be too complex to modify the
fundamental design of NDN.

4) Security. The design must be robust to malicious con-
sumers attempting to announce or hijack replica records.

B. Challenges

Based on the above design goals, there are several chal-
lenges as follows.

Challenge: How to deal with a large number of replicas in
the router’s CS before their announcements?

Solution: Given a huge number of contents in CS and the
popularity of data requests due to Zipf distribution, we divide
the contents of CS into two subsets: the Top-N Subset to be
announced, and Heavy-tailed Subset not to be announced.
Our strategy of replica announcement is just to announce
the replicas in Top-N Subset instead of all the replicas. The
amount of replicas in Top-N Subset are not so many, but can
satisfy the most requests. In addition, because that popular
contents are requested so frequently that they will exist in the
cache for a relatively long time, replicas in Top-N Subset are
relatively stable so that they are suitable for announcement.

Challenge: How to collect and synchronize the information
of replicas?

Solution: In our design, we adopt the centralized model by
deploying a Track Server (TS) in each ISP to collect and
synchronize the information of replicas. A TS collects all the
information of replicas to maintain a Replica List and sends
it to each consumer in its domain. Once the replicas in Top-N
Subset of any router change, the router will upload the latest
information of replicas to its TS. Likewise, once the Replica
List updates, TS will notify all the consumers to synchronize
the local Replica List with the TS.

Challenge: How to locate the nearest replica?



Solution: In an ISP, a TS stores the information of internal
network topology, including the mapping relation between
replica and router, and network metrics. To locate the nearest
replica, the consumer sends the name of the requested Interest
packet to the TS, and the TS will return the location of the
nearest replica according to its information of internal network
topology.

Challenge: How to guarantee that fetching data from the
replica performs better than fetching data from the producer
directly?

Solution: Local Hashing Table (LHT) is proposed to
adaptively make the decision between fetching data from the
replica and fetching data from the producer directly. LHT
records the Round-Trip Time (RTT) of the two methods of
fetching data and updates the RTT dynamically.

Challenge: How to minimize the overhead?
Solution: The overhead, including storage overhead and

transmission overhead, is mainly caused by the Replica List.
To minimize the overhead, we adopt Bloom Filter [12], a sim-
ple space-efficient randomized data structure for representing
a set in order to support membership queries, to represent all
the replicas in each Top-N Subset so that the Replica List
becomes a list of Bloom Filter, which causes little overhead
during either storage or transmission.

C. Core idea

Our core design idea is that each router announces the
popular data in routers’ Top-N subset to all the network, and
each consumer can fetch popular data directly from the CS
of corresponding routers with redirection. As shown in Fig. 1,
the core idea consists of three aspects:

1) TS. Deploy a specified Tracker Server (TS) in each ISP to
collect all the content information from all the routers’
Top-N Subsets in the network as well as the network
status.

2) Consumer. A consumer synchronizes the local Replica
List with TS’s Replica List. Before a consumer sends out
an Interest packet to fetch the data, the consumer will
check the existence of data’s replica by looking it up in
the local Replica List. If so, the consumer will ask the TS
for the location of the router whose Top-N Subset stores
the data. Then, TS will tell the consumer about the most
suitable router, and the consumer will try to fetch the data
from the router’s Top-N Subset.

3) Router. A router needs to timely generate the Top-N
Subset from CS. When a router receives an Interest packet
for the content in Top-N Subset, the router will return the
corresponding data.

This process is similar to the one in IP CDN lookup. A
TS resembles the DNS sytem and a router’s Top-N Subset
is like the CDN cache. The similar spirit is that DNS/TS
tells the host/consumer where to request the nearest replica
in CDN/Top-N Subset with address/name redirection.

Fig. 1. The design.

D. Example

Here is an example to illustrate our design. In Fig. 1,
I1 and I2 are the two Interest packets to fetch data. The
name of I1 is “/google/message/0000” and the name of I2
is “/google/x.mov/0003”. The corresponding Data packet of
I2 has a copy in the Top-N Subset of the router B. Before
the consumer sends the two Interest packets to the network,
it firstly looks up the Interest names in the local Replica List,
which consists of all the Bloom Filters of the Top-N Subsets
of routers’ Content Store. There are different decisions for I1
and I2, depending on whether the look-up in Replica List hits
or not.

Interest I1: As soon as the look-up of I1 in Replica List
fails, there is no additional step before I1 is sent out and the
consumer just sends out I1 to the network as usual.

Interest I2: When the look-up of I2 in Replica List suc-
ceeds, before I2 will be sent out, the processing of I2 contains
the following steps:

• In locating module, the name of I2 (“/google/x.mov”) will
be sent to TS to locate the copies of the corresponding
Data packet.

• Combining the network status and parameters, TS will
return the current best destination (router B).

• A new Interest packet I
′

2 will be produced by changing
the original name of I2 (“/google/x.mov”) to a shadow
name (“/B/google/x.mov”).

Then, the new Interest packet I
′

2 will be sent out to the
network instead of I2. According to the routing table, I

′

2 with
the prefix “/B” will be forwarded to the router B. When the
router B receives the Interest packet I

′

2, it firstly looks up
the name of I

′

2 in a mapping table (implemented by pointers)
to map the shadow name (“/B/google/x.mov”) to the original
name (“/google/x.mov”). Then, with the look-up of the original



(a) Local mode (Adopted)

(b) Global mode

Fig. 2. The comparison of deployment of TS between local mode and global
mode.

name in its Content Store, the router B will return the Data
with the shadow name (“/B/google/x.mov”) to the consumer.

III. DESIGN DETAILS

In this section, we will introduce our design in detail,
which is divided into three parts: Tracker Server (TS), process
in consumer and process in router. In this paper, domain
represents ISP.

A. Tracker Server (TS)

Tracker Server (TS) is proposed as a new network in-
frastructure component to manage information of replicas in
network. In the view of a TS, there are several main challenges
and objectives:

1) Deployment of TSs: There are two modes to deploy
TSs: local mode and global mode, and the most important
difference between the two modes is the scope of the routers
and consumers served by TS. Local mode means that each
ISP deploys just one TS, which just serves all the routers and
consumers in this ISP. Correspondingly, with another deploy-
ment mode called global mode, there are some TSs that serve
all the routers and consumers in the whole network. Each TS
maintains global information and synchronizes the information
with all the other TSs. Fig. 2 shows the comparison between
local mode and global mode.

We adopt local mode by making a trade-off between the
overhead and the performance. First, with local mode, because
of the intra-domain lookup, the space complexity of Replica
List and the time complexity of looking up the nearest replica
will be greatly reduced. Second, fetching data from the local
nearest replica (in ISP) performs equally well as fetching data
from the global nearest replica (in the whole network) in most
cases.

2) Maintain a network topology G = (V,E), where V is a
set of nodes and E is a set of links: To help consumers find
the best replica location, TS needs to collect network status
information for implementing the traditional traffic engineer-
ing objective: to minimize the maximum link utilization
(MLU) [10].

min
∀k:tk∈Tk

max
e∈E

(
be +ΣkΣiΣj ̸=it

k
ijIe (i, j)

)
(1)

In the above equation, be denotes the amount of background
traffic on link e ∈ E. We use Ie (i, j) to present the indicator
of edge e being on the route from router i to j in the topology
G. T k presents the set of acceptable traffic demand according
to the requirements and properties of application session k,
and correspondingly, tke presents the amount of traffic on link
e ∈ E [10].

3) Merge, update and synchronize information: A TS pro-
vides the services (such as merging, updating and synchroniz-
ing) of all the popular content names and network information.

A TS maintains a Replica List from merging all the content
names of each router’s Top-N Subset. The Replica List consists
of all the Bloom Filters of routers’ Top-N subsets as shown
in Fig. 3 and tells consumers which data is popular enough to
be found in some routers’ Top-N Subset.

Fig. 3. An example of Replica List.

The information in a TS should be updated timely. Here
are two cases. First, when any router needs to change its
Bloom Filter because of the update of Top-N Subset, the router
will notify TS to fetch the latest Bloom Filter. Then, TS will
update its Replica List and synchronize with all the consumers.
Second, for each router’s Bloom Filter, TS will update the
Bloom Filter from the router if the router doesn’t update its
Bloom Filter for a long time (e.g. one day).

4) Verify the identity of routers: To avoid fake announce-
ments of attackers, each router must be authenticated as a real
device in the network with the unique ID. A Router ID List
of authenticated routers should be stored in TS. When TS
receives any Interest packet which is claimed from a router,
TS must match the ID of the router in the Router ID List and
check the signature of the Interest packet to verify the identity
of the router.

B. Consumer

For an Interest packet, before sending out the Interest
packet, there are two more steps:



1) Check whether the Interest packet name is in the local
Replica List. If not, the user will send out the Interest packet
without any changes. Otherwise, the user will deal with the
Interest packet in the Locating Module as follows.

2) Using Locating Module and LHT to get to the nearest
replica location. LHT is introduced to cache the calculated
information by TS to avoid repeated look-ups in TS as well
as recording the states of outgoing Interest packets for replicas.
Unlike the Replica List which records the existence of all the
replicas, LHT just records the information of Interest packets
which have requested for replicas recently. The time-life of an
entry in LHT is limited. For a valid LHT entry, it serves three
purposes:

• For the Subsequent Interest name, it avoids repeatedly
locating the data.

• Provides the mapping from the name and the shadow
name.

• Provides the decision about whether to fetch data from
the replica location or to fetch the data from the producer.

The entry of LHT contains the following fields:

• Timer. If the timer expired, this entry is invalid.
• Name. The name of the Interest packet.
• Shadow Name. The name of the corresponding R-

Interest (mentioned later) packet.
• PRTT. The dynamically updated RTT for fetching the

data from the producer.
• RLRTT. The dynamically updated RTT for fetching the

nearest replica.
• Decision. Dynamically deciding about fetching data from

the producer or replica location according to their RTT
value.

Locating Module will first check whether the Interest packet
is the New Interest packet or the Subsequent Interest packet
by looking it up in the LHT. If the look-up fails, which means
the Interest packet is a New Interest packet, then the following
steps will be performed:

• Send the Interest name to TS to get the nearest replica
location which stores the corresponding backup data.

• Create a new entry in LHT.
• Add the nearest replica location as a new prefix to the

Interest name as a new Interest packet. We define it as
R-Interest packet and its name is called shadow name.
Then, send out both the original Interest packet and R-
Interest packet to the network to test the PRTT and
RLRTT.

If the look-up succeeds, which means the Interest packet
is the Subsequent Interest packet, then the timer of the entry
for the Subsequent Interest packet will first be checked. If the
timer is expired, this Interest packet will be still treated as a
New Interest. Else, the Subsequent Interest will be queried in
the LHT to make a decision about the type of outgoing Interest
packet (R-Interest or original Interest) and be sent out.

Consumers should periodically obtain the latest version of
Replica from TS to synchronize the Replica List with TS.

TABLE I
SOME DENOTATIONS

R The number of routers in an ISP
Re The number of edge routers in an ISP
N The number of entries in Top-N Subset
Ncs The number of entries in CS
Nlht The number of entries in LHT
Nts The number of TSs in an ISP
m The length of array in Bloom Filter
f False positive rate of Bloom Filter
k The number of hashing fuctions

Once the Replica List in TS changes, the consumer will
download the changed part to update the local Replica List.

C. Router

A CS of a network router stores the most popular data.
In our design, according to the popularity, a CS will be
divided into two parts: announced Top-N Subset, and not
announced Heavy-Tailed Subset. The two different subsets
are just distinguished with different marks, T and H, in each
entry of the CS. To ensure the announced contents exist in the
CS, once an entry is marked with T, it cannot be replaced by
any content until this mark is removed.

There is a control module to help the CS deal with the
incoming R-Interest with two steps:

1) Maintain a mapping table to support shadow name
lookup. The Interest packet needs to be checked whether it
is an R-Interest packet. If so, before the lookup in CS, the
shadow name of the R-Interest packet should be mapped to
the original name. Thus, the CS needs to maintain a mapping
table to deal with the name mapping process. This mapping
table is just implemented with pointers.

2) Update the contents in Top-N Subset and upload its
Bloom Filter to TS periodically. The contents in Top-N
Subset are popular at present, while the popularity is reduced
after a while. Thus, the contents in Top-N Subset should be
updated with some content replacement policy, periodically.
Once the popularity ranking of contents is changed greatly,
or the contents in Top-N Subset are not updated for a long
time, the Top-N Subset should also be changed. Then, after the
contents in Top-N Subset are updated, the latest Bloom Filter
of the Top-N Subset will be uploaded to the corresponding TS
to make sure of the validity.

IV. ANALYSIS OF OVERHEAD

Some denotations are shown in Table I. The overhead
of FNR consists of two parts: storage overhead SOV and
transmission overhead TOV .

A. Storage overhead

The total storage overhead SOV is mainly composed of
two parts: overhead in CS (SOVr) and overhead in consumer
(SOVc).



For each router’s CS, firstly, every CS entry must add a
bit to record the mark of subset type, thus, the extra storage
overhead is Ncs · 1 bit = Ncs bit. Secondly, each router’s CS
also needs to store an array of N pointers to all the contents
in Top-N Subset. Assume that each pointer occupies 32 bits,
then the extra storage overhead of N pointers equals N ·32 bit
= 32N bit. Thirdly, each router has to store a Bloom Filter
of Top-N Subset, which needs m bits. Thus, the total extra
storage overhead of each router SOVr equals:

SOVr = Ncs + 32N +m bit (2)

For each consumer, the extra storage includes the storage of
Replica List and LHT. On the one hand, as shown in Fig. 3,
Replica List at least includes three fields: Route Number,
Bloom Filter and Update Time. Assume that the bits of these
three fields respectively require 16 bit, m bit and 64 bit,
then the total extra storage overhead of Replica List equals
(16 + m + 64) · R bit ≈ m · R bit. On the other hand, as
mentioned in Section III B, in LHT, each entry needs 6 fields
to store the information, which approximately occupies 8 Kbit.
Thus, the total storage space of LHT equals 8000Nlht bit. In
conclusion, the total extra storage for each consumer SOVc

equals:

SOVc ≈ mR+ 8000Nlht bit (3)

B. Transmission overhead

The total transmission overhead TOV consists of two parts:
the transmission overhead between TS and routers (TOVtr)
and the transmission overhead between TS and consumers
(TOVtc).

To estimate the data transmission overhead between TS and
routers, we assume that for the router ri, the average update
cycle of Top-N Subset is Ti. When a router needs to update
its Bloom Filter array of Top-N Subset, it will upload the
Bloom Filter array to TS. Thus, the transmission overhead of
the router ri equals m/Ti bit/s. Thus, the total transmission
overhead between TS and routers TOVtr equals:

TOVtr =
∑
i

m

Ti
bit/s (4)

Once a router updates its Top-N Subset, every consumer
needs to update the Replica List. However, because of the
aggregation of the same data, the overhead of updating Replica
List by all the consumers which are connected to the same
edge router equals the overhead by just one consumer. Thus,
the total transmission overhead between TS and consumers
TOVtr equals:

TOVtc ≈ Re · TOVtr = Re

∑
i

m

Ti
bit/s (5)

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of FNR with
modified ndnSIM 2.0 simulator [11]. The new version of
ndnSIM integrates ndn-cxx library (NDN C++ library with
eXperimental eXtensions) and the NDN Forwarding Daemon
(NFD) to enable experiments with real code in a simulation
environment.

A. Experimental setup

Topology: We set one domain with consumers to request
the data provided by the producers outside the domain. To
make our simulation as close as possible to reality, we use the
topology of Tsinghua University Campus Network (THUNet)
for intra-domain topology, which contains 20 routers, 49
consumers and 82 links with link metrics.

Dataset: Lots of studies investigate the request distribution
and observe that the request distribution follows the heavy-
tailed or Zipf-like distribution quite well [14]. Based on the
above observation, the requesting dataset for consumers in our
evaluation contains more than 1,000,000 objects whose request
frequency distribution follows the Zipf law [9]:

fi ∼
1

rαi
(6)

In Equation 6, fi denotes the frequency request of the ith

popular object and ri denotes the rank of fi. α is the Zipf
parameter which in our experiments equals 1.04 (The study [9]
shows that the data request distribution in Asia follows the Zipf
law with α = 1.04).

Parameters: There are some reasonable assumptions of
parameters:

• Consumers are set to send Interest packets to the network
under the random frequency ranging from 100 times per
second to 1500 times per second.

• The capacity of router’s cache in the network is set as
10000 objects and the N of Top-N Subset of Cache is
set as 1000, which means that we choose 10% of cache
size to provide data replicas. We vary N at the end of
this section.

• To simplify the complexity of implementation of min-
imizing the MLU, we use the following equation to
measure the virtual distance between two nodes:

V dij =
costij · delayij
bandwithij

(7)

Bloom Filter: In our experiments, the parameters of Bloom
Filter are set as follow:

• Elements: n = N = 1000
• Bloom Filter bits: m = 8n = 800bit
• Hash functions: k = 6

According to the above parameters, the false positive rate f ≈
0.02.

Comparison: We compare all the evaluation metrics in 60s
among three data fetching models:

• Nearest. Fetching data from the nearest replica.



(a) Total Traffic (b) Inter-domain Traffic (c) Intra-domain Traffic

Fig. 4. The comparison of intro-domain/inter-domain/total traffic among Nearest, Random and Producer.

• Random. Fetching data from random replica.
• Producer. Fetching data from the producer directly.

Evaluation Metrics: We choose the following evaluation
metrics in our experiments:

• Total/inter-domain/intra-domain traffic. Under the same
request model of consumers, we compare the total/inter-
domain/intra-domain/ traffic in 60s among three fetching
data models to illustrate the best trade-off between the
performance and the overhead of our design.

• QoS(latency/cost). We evaluate QoS, which directly re-
flects the performance of our design, with two parts:
latency (the average latency of requests which are hit in
the cache) and cost (the average cost of all the requests).

• Influence of N (size of Top-N subset). We simulate the in-
fluence of varying subset sizes by observing inter-domain
traffic. As a result of this result, we can approximatively
choose the most suitable value of subset size.

B. Total/inter-domain/intra-domain traffic

1) Total Traffic: Firstly, we survey the total traffic among
the three data fetching models. From the Fig. 4(a), we notice
that, with the Producer, the average of the total traffic equals
195.2Mbps. And with the Random, the average of the total
traffic is still as high as 186.7Mbps, which has just declined by
4.3% compared with the Producer. However, with the Nearest,
the average of the total traffic is down to 145.1Mbps, which
is greatly reduced by 25.6% in comparison with the Producer.

2) Inter-domain Traffic: Secondly, we focus on the inter-
domain traffic among the three data fetching models. As shown
in Fig. 4(b), with the Producer, the average inter-domain traffic
shows as high as 43.2Mbps, while with the Nearest the average
inter-domain traffic drops to 20.7Mbps, which is reduced by
52.0% in comparison with the Producer. However, we find
that with the Random the inter-domain traffic average is just
22.2Mbps, which has declined by 48.5% in comparison with
the Producer and is close to the value of the Nearest.

From the figure, we can conclude that, fetching replica helps
the network reduce the inter-domain traffic significantly, no
matter whether the replica is the nearest or not.

3) Intra-domain Traffic: Now we investigate the intra-
domain traffic among the three data fetching models. From
the Fig. 4(c), we notice that, when fetching the data from
the producer, the value of the intra-domain traffic fluctuates
from the minimum 139.5Mbps to the maximum 179.2Mbps,
the average of which is 152.0Mbps. And with Random, the
average intra-domain is as high as 164.4Mbps, which has
risen by 8.2% as compared to the fetching of the data from
the producer. But with Nearest, the average intra-domain
traffic just equals 124.3Mbps, which declined by 18.2% in
comparison with fetching the data from the producer as well
as declining by 24.4% in comparison with Random.

This is because that, although both the Nearest and the
Random transform the part of inter-domain traffic to intra-
domain traffic, the Nearest optimizes the choice of replicas
to the lowest value by choosing the nearest replica, while the
Random is not responsible for the choice, which may introduce
higher traffic. Thus, compared to the Random, the significant
advantage of Nearest is that, it reduces the intra-domain traffic
greatly to fetch the nearest replica, instead of a random replica.

C. QoS

To evaluate QoS, we compare the average rate of latency
and cost among the three data fetching models.

1) Latency: As shown in Fig. 5(a), first, with the Producer,
the average latency of all the data requests per second fluctu-
ates from about 400ms to about 450ms, the average of which
is 424.8ms. Second, with the Nearest, this value fluctuates
from about 270ms to about 300ms, the average of which is
280.5ms. Third, with the Random, this value fluctuates from
about 300ms to about 330ms, the average of which equals
317.8ms. In other words, with the Nearest and the Random,
the average percentage improvement in latency is 33.9% and
25.1% . We find that, with the Nearest or the Random, the
average latency for consumers is reduced greatly, which means
that consumers can obviously feel the improvement of fetching
popular data with the Nearest or the Random.

2) Cost: We report another important parameter, cost, in
terms of the total cost of the whole round trip during data
transmission. Fig. 5(b) shows the ratio of cost among the three
data fetching models. We observe that the cost with Nearest



(a) Average latency

(b) Average Cost

Fig. 5. The comparison of QoS (Latency and Cost) among FNR, FRR and
fetching data from the producer.

is just 48.6 percent of the cost with fetching data from the
producer on average, and the cost with Random is just 69.5
percent on average of the cost with fetching data from the
producer on average.

Compared with the little improvement of latency, the great
improvement of cost depends on the significant decline of
inter-domain traffic, which brings considerably higher cost
than intra-domain traffic. Much lower cost will enhance the
User Experience (UE) and may help decrease the network
charges for consumers to save money.

D. Influence of N

To check the influence of the different choices of Top-N
Subset size N , we keep all the network parameters unchanged
except for the size N which varies from 30 objects to 5000
objects, namely from 0.3% to 50% of cache size. Fig. 6 shows
the average inter-domain traffic ratio and intra-domain traffic
ratio between Nearest and Producer from 5s to 60s. There
are two main observations. First, the larger N is, the lower
the average inter-domain/intra-domain traffic ratio performs.
Second, with the increasing N , the average inter-domain/intra-
domain traffic ratio tends to approximatively decline at a

exponential rate. When the size N achieves a certain value
(about 5% of cache size in Fig. 6), the performance has
hardly improved with the increasing of N and the average
inter-domain traffic ratio reached a stable level. Thus, it’s not
necessary to increase the size of Top-N Subset N blindly. It is
the best trade-off between performance and overhead that the
ratio between the subset size and cache size remains between
5% to 10%.

Fig. 6. Performance with different subset size n

VI. RELATED WORK

Unlike flat self-certifying naming schema with low scal-
ability, hierarchical naming schema in NDN provides high
scalability, which faces three challenges: complex name struc-
ture, large forwarding table and high throughput [15]. Limited
to the tree-like forwarding model, unlike DONA [1], Net-
Inf/SAIL [2], and MobilityFirst [3], NDN cannot support the
nearest replica routing and suffers from the trade-off between
routing state reduction and information loss.

To combine both high scalability and high efficiency, most
ICN studies pay attention to enhancing the scalability with flat
self-certifying naming schema. Some developments of DHT
schemes, such as Chord [16], Hierarchical Rings [17], and
Canon [18], which are proposed for peer-to-peer overlays, are
adopted for ICN architectures with flat self-certifying naming
schema. MDHT [19], a hierarchical name resolution service
for ICN, is introduced to provide name-based anycast routing
and supports constant hop resolution. H. Liu et al. [7] propose
SMVDHT, a new name resolution and routing framework that
employs a combination of aggregation and multi-level virtual
DHTs to improve ICN scalability. A. Sharma et al. [20] in-
troduces a next-generation global name service that addresses
the challenge of how to rapidly resolve identities to network
locations under high mobility.

In contrast, there are few researches on introducing the
nearest replica fetching to ICN architecture with hierarchical
naming schema, such as NDN. Although NDN provides the
adaptive forwarding strategy [21] to improve the forwarding
performance greatly, there is still much information loss
due to NDN’s tree-like data fetching model. As a solution,



nCDN [22], which is similar to the CDN in IP network, to
ensure the requests of popular data are routed to the best data
copies straightforward. However, the nCDN still needs manual
deployment, and the contents in nCDN cannot be dynamically
updated.

VII. CONCLUSION

With the flatter and flatter Internet, the NDN’s tree-like
data fetching model and on-path storage may not take full
advantage of the rich connections and large cache resources
in NDN.

To address current NDN design’s problem of low data
delivery efficiency, in this paper we propose FNR, a CDN-like
enhancement to the NDN design. In FNR, when a consumer
sends an Interest packet for a popular data, the data is fetched
from the nearest replica in the network. To make FNR scalable,
practical, and light-weighted, first, we reduce the overhead
of replica announcement by taking advantage of Zipf law
so that a router only announces the information of Top-N
data in the CS and uses Bloom filter to further minimize
the announcement traffic. Second, we employ an effective but
conceptually simple design that in spirit is similar to CDN
in IP network, and use one level of redirection to locate and
retrieve the nearest replica for popular data.

Our evaluation results using ndnSIM simulator show that
our FNR enhancement to NDN greatly improves the perfor-
mance, compared to the current NDN design. FNR on average
reduces the total traffic by 25.6%, the inter-domain traffic by
52.0%, and the intra-domain traffic by 18.2%, as compared
to the current NDN design. Furthermore, the average latency
is reduced by 37.0% and the average cost is reduced by
51.4%. To the best of our knowledge, this paper is the first
NDN enhancement in the literature to support nearest replica
fetching in NDN.
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