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Packet Authentication 

•  How to authenticate a data packet 
containing the electricity usage of a 
room at certain time? 

•  Data is signed, but how to verify the 
signature? 
– How to get the signer’s public key? 
– How to authenticate the signer? 
– Why the signer should be trusted? 
–  Should the signer be trusted at this moment? 
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Data & Certificate 
•  Retrieved as data packets 

–  public keys are just another type of content 

•  Data packets are similar to certificates 
–  data is signed 

•  Data packets are incomplete certificates 
–  no signature validity period 
–  no signature revocation information 

•  Current solution:  
–  put validity period & other extensions in 

content 
•  Ideal solution: 

–  extend SignatureInfo 
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Name: Certificate name

MetaInfo:
Content: (DER encoded)
  ValidityPeriod:
    NotBefore
    NotAfter
  PublicKeyInfo:
  Extensions:
SignatureInfo:
  SignatureType:
  KeyLocator:

SignatureValue:

Name: Certificate name
MetaInfo:
Content:
  PublicKeyInfo: (Still X509 format)
SignatureInfo:
  SignatureType:
  KeyLocator:
  ValidityPeriod:
  CriticalExtension?
  NonCriticalExtension?

SignatureValue:



Naming 
•  Every data is named, what is the name of certificate? 

•  A certificate binds a key to a namespace (identity) 
–  e.g., /<namespace>/[KeyId] 

•  absolute KeyId: globally unqiue, e.g., key hash 
•  relative KeyId: uniquely identify a key under the namespace, e.g, SeqNo 

•  Application interprets the namespace as some real world 
identity 
–  in BMS, “/bms/boelter/4805/electrical” is interpreted as a sensor in 

the Room 4805 of Boelter Hall at UCLA 
–  in openHealth, “/ucla/haitao/ndnex/dvu” is interpreted as a 

health data publisher of a user “/ucla/haitao” 

•  Certificate name may include version number 
–  different signature versions (Key rollover) 
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Public Key Fetching/Provisioning 

•  Express an interest using the cert name in KeyLocator 
–  certificate name of signer’s public key (w/o version) 

•  Certificate is published somewhere 
–  current solution: 

•  published as NDN DNS record 
–  /ndn/ucla/KEY/yingdi/ksk-123/ID-CERT/%01 

•  published through repo 
–  issue: prefix aggregation 

•  demux interest for certificate introduces extra name components 
in cert name 
–  /ndn/KEY/ucla/yingdi/ksk-123/ID-CERT/%01 
–  /ndn/ucla/yingdi/KEY/ksk-123/ID-CERT/%01 

•  General certificate infrastructure? or app-specific 
certificate infrastructure? 
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Signer Authentication 

•  Construct a chain of trust 
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/bms/boelter/4805/electrical/
20150101

/bms/boelter/4805/KEY/dsk-433

/bms/boelter/KEY/dsk-821

/bms/KEY/dsk-376

Policy 
The rule to regulate 
the chain of trust 

Trust anchor 

The origin of trust 

Intermediate Keys 

The tool to verify 
signature 
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Policy 
•  Conditions on the SignatureInfo 

•  SignatureType 
–  some data may require certain type of signature 

•  algorithm 
•  key size 

•  KeyLocator 
–  some data must be signed by certain parties 

•  ValidityPeriod 
–  signature must be valid at certain timestamp 
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Policy Rules 
•  A rule consists of 

–  a filter 
–  a set of checkers 

•  Filter 
–  which packet should be 

checked by the rule 
•  Checker 

–  the conditions that the packet’s 
SigInfo must meet 

–  could be more than one sets of 
valid conditions 

–  pass one checker, pass the rule 
–  fail all checkers, fail the policy 

checking 
•  Order of rules matters 

–  packet will be checked by the 
first matched rule 

–  rules with more specific filter 
should go first 
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Policy Language 
•  Configurable 

–  allow apps/users to specify its 
own trust models 

•  Interpretable 
–  library can build the validator 

according to configuration 
–  entities with the same 

configuration file share the same 
trust model 
•  if router can fetch the policy, 

router knows how to validate 
data 

•  Easy to distribute 
–  can be published as data packet 
–  data name can be fixed with 

implicit digest 
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rule { 
 filter { 
  packet-type data 
  packet-name <bms><>* 
 } 
 checker { 
  signature-type ecdsa-sha256 
  min-key-size 256 
  key-locator {
   k-pattern (<>*)<KEY>(<>*)<><ID-CERT> \1\2
   h-relation is-prefix-of
   p-pattern (<>*) \1
  } 
 } 
 checker { 
  signature-type ecdsa-sha256 
  min-key-size 256 
  key-locator {
   k-pattern (<>*)<KEY>(<>*)<><ID-CERT> \1\2
   h-relation is-prefix-of
   p-pattern <bms>(<>*) \1
  } 
 } 
} 



Multiple signature 
•  The same content object may be signed by different keys 

–  certificates: the same <name, key> pair may be certified by 
different parties 
•  in openHealth, a doctor’s key may be signed by both patient & medical 

board of California in order to access the patient’s data 
–  signature agility: different signing algorithms & key size 

•  Introduce a signature extension: OtherSignatureLocator  
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SignatureInfo:
  ...
  NonCriticalExtension:
    OtherSignatureLocator

/.../V1/S0

SigValue1

SigInfo1
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/.../V1/Sn
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SigValue7

SigInfo7

...
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Public key retrieval issues 
•  Slow start 

–  retrieve keys one-by-one, multiple RTTs 
–  may involve more data 

•  multiple signatures 
•  Single point failure 

–  validation fail if one key is missing 
•  limited internet access 
•  key provision failure 

•  Key Bundle: why not ask data provider to collect keys 
and publish them along with the data?  
–  fate sharing 

•  if data can be fetched, so do the keys 
–  efficiency 

•  if producer collect the keys once, it can benefit many verifiers  
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Key Bundle Requirements 
•  Publisher & consumer agree on the trust policy and trust 

anchor 

•  In BMS 
–  single trust anchor 
–  hierarchical policy 

•  While expressing interest for data, also  
expressing interests for proofs 

15 

/bms/boelter/4805/electrical/
20150101

/bms/boelter/4805/KEY/dsk-433

/bms/boelter/KEY/dsk-821

/bms/KEY/dsk-376

/bms/boelter/4805/eletrical/20150201

/bms/boelter/4805/eletrical/20150201/AUTH_INFO/
hierarchy/3d4c89ef..

/bms/boelter/KEY/dsk-821

/bms/boelter/4805/KEY/dsk-433

For data

For proof
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Signature Verification 
•  Start when reaching an 

pre-authenticated key 

•  Check signature status 
–  should be done after the 

signature is verified 
–  ensure the signature has 

not been revoked yet 

•  Once an intermediate 
signing key is validated 
–  verify the signature of 

depending packets 
–  recursively go back to the 

original data packet 
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Signature status checking 
•  Check if the signature has been revoked before expiration 

•  Verifier may retrieve signature status data  
–  /<DataName>/[DataDigest]/[Timestamp] 
–  content:  

•  signature status: good, revoked 
•  reasons (optional): revocation reasons 

•  Introduce a signature extension StatusChecking 
–  ForwardingHint: where to forward the signature status interest 
–  AuthorizedSigner: who can be trusted for signing signature status 

data 
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SignatureInfo:
  ...
  (Non)CriticalExtension:
    StatusChecking:
      ForwardingHint
      AuthorizedSigner



Thanks! 
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