
Packet Validation in the
Network Environments

Yingdi Yu
UCLA

1

Packet Authentication

•  How to authenticate a data packet
containing the electricity usage of a
room at certain time?

•  Data is signed, but how to verify the
signature?
– How to get the signer’s public key?
– How to authenticate the signer?
– Why the signer should be trusted?
–  Should the signer be trusted at this moment?

2

Data & Certificate
•  Retrieved as data packets

–  public keys are just another type of content

•  Data packets are similar to certificates
–  data is signed

•  Data packets are incomplete certificates
–  no signature validity period
–  no signature revocation information

•  Current solution:
–  put validity period & other extensions in

content
•  Ideal solution:

–  extend SignatureInfo

3

Name: Certificate name

MetaInfo:
Content: (DER encoded)
 ValidityPeriod:
 NotBefore
 NotAfter
 PublicKeyInfo:
 Extensions:
SignatureInfo:
 SignatureType:
 KeyLocator:

SignatureValue:

Name: Certificate name
MetaInfo:
Content:
 PublicKeyInfo: (Still X509 format)
SignatureInfo:
 SignatureType:
 KeyLocator:
 ValidityPeriod:
 CriticalExtension?
 NonCriticalExtension?

SignatureValue:

Naming
•  Every data is named, what is the name of certificate?

•  A certificate binds a key to a namespace (identity)
–  e.g., /<namespace>/[KeyId]

•  absolute KeyId: globally unqiue, e.g., key hash
•  relative KeyId: uniquely identify a key under the namespace, e.g, SeqNo

•  Application interprets the namespace as some real world
identity
–  in BMS, “/bms/boelter/4805/electrical” is interpreted as a sensor in

the Room 4805 of Boelter Hall at UCLA
–  in openHealth, “/ucla/haitao/ndnex/dvu” is interpreted as a

health data publisher of a user “/ucla/haitao”

•  Certificate name may include version number
–  different signature versions (Key rollover)

4

Public Key Fetching/Provisioning

•  Express an interest using the cert name in KeyLocator
–  certificate name of signer’s public key (w/o version)

•  Certificate is published somewhere
–  current solution:

•  published as NDN DNS record
–  /ndn/ucla/KEY/yingdi/ksk-123/ID-CERT/%01

•  published through repo
–  issue: prefix aggregation

•  demux interest for certificate introduces extra name components
in cert name
–  /ndn/KEY/ucla/yingdi/ksk-123/ID-CERT/%01
–  /ndn/ucla/yingdi/KEY/ksk-123/ID-CERT/%01

•  General certificate infrastructure? or app-specific
certificate infrastructure?

5

Signer Authentication

•  Construct a chain of trust

6

/bms/boelter/4805/electrical/
20150101

/bms/boelter/4805/KEY/dsk-433

/bms/boelter/KEY/dsk-821

/bms/KEY/dsk-376

Policy
The rule to regulate
the chain of trust

Trust anchor

The origin of trust

Intermediate Keys

The tool to verify
signature

Validation Framework

Info Manager

Trusted Info

Unverified Info
Policy Checker

Authenticator
Trust Anchors

Certificate Cache

Data Buffer

Info Fetcher

Origin Validation Request

Failure

Failure

Success

Auth
Info Internal

Validation
Request

Cache
certificate

Key
Retrival

Check
Signature

Failure

7

Validation Framework

Info Manager

Trusted Info

Unverified Info
Policy Checker

Authenticator
Trust Anchors

Certificate Cache

Data Buffer

Info Fetcher

Origin Validation Request

Failure

Failure

Success

Auth
Info Internal

Validation
Request

Cache
certificate

Key
Retrival

Check
Signature

Failure

8

Policy
•  Conditions on the SignatureInfo

•  SignatureType
–  some data may require certain type of signature

•  algorithm
•  key size

•  KeyLocator
–  some data must be signed by certain parties

•  ValidityPeriod
–  signature must be valid at certain timestamp

9

Policy Rules
•  A rule consists of

–  a filter
–  a set of checkers

•  Filter
–  which packet should be

checked by the rule
•  Checker

–  the conditions that the packet’s
SigInfo must meet

–  could be more than one sets of
valid conditions

–  pass one checker, pass the rule
–  fail all checkers, fail the policy

checking
•  Order of rules matters

–  packet will be checked by the
first matched rule

–  rules with more specific filter
should go first

10

Filter
Checker

Checker
Rule 1

Filter CheckerRule 2

Filter CheckerRule 3

Filter
Checker

Checker
Rule 4

F

F

F

F

F

F

F
P

P

P

P

P

P

Policy Language
•  Configurable

–  allow apps/users to specify its
own trust models

•  Interpretable
–  library can build the validator

according to configuration
–  entities with the same

configuration file share the same
trust model
•  if router can fetch the policy,

router knows how to validate
data

•  Easy to distribute
–  can be published as data packet
–  data name can be fixed with

implicit digest

11

rule {
 filter {
 packet-type data
 packet-name <bms><>*
 }
 checker {
 signature-type ecdsa-sha256
 min-key-size 256
 key-locator {
 k-pattern (<>*)<KEY>(<>*)<><ID-CERT> \1\2
 h-relation is-prefix-of
 p-pattern (<>*) \1
 }
 }
 checker {
 signature-type ecdsa-sha256
 min-key-size 256
 key-locator {
 k-pattern (<>*)<KEY>(<>*)<><ID-CERT> \1\2
 h-relation is-prefix-of
 p-pattern <bms>(<>*) \1
 }
 }
}

Multiple signature
•  The same content object may be signed by different keys

–  certificates: the same <name, key> pair may be certified by
different parties
•  in openHealth, a doctor’s key may be signed by both patient & medical

board of California in order to access the patient’s data
–  signature agility: different signing algorithms & key size

•  Introduce a signature extension: OtherSignatureLocator

12

SignatureInfo:
 ...
 NonCriticalExtension:
 OtherSignatureLocator

/.../V1/S0

SigValue1

SigInfo1

SigValue2

SigInfo2

/.../V1/Sn

SigValue8

SigInfo8

SigValue7

SigInfo7

...

Validation Framework

Info Manager

Trusted Info

Unverified Info
Policy Checker

Authenticator
Trust Anchors

Certificate Cache

Data Buffer

Info Fetcher

Origin Validation Request

Failure

Failure

Success

Auth
Info Internal

Validation
Request

Cache
certificate

Key
Retrival

Check
Signature

Failure

13

Public key retrieval issues
•  Slow start

–  retrieve keys one-by-one, multiple RTTs
–  may involve more data

•  multiple signatures
•  Single point failure

–  validation fail if one key is missing
•  limited internet access
•  key provision failure

•  Key Bundle: why not ask data provider to collect keys
and publish them along with the data?
–  fate sharing

•  if data can be fetched, so do the keys
–  efficiency

•  if producer collect the keys once, it can benefit many verifiers

14

Key Bundle Requirements
•  Publisher & consumer agree on the trust policy and trust

anchor

•  In BMS
–  single trust anchor
–  hierarchical policy

•  While expressing interest for data, also
expressing interests for proofs

15

/bms/boelter/4805/electrical/
20150101

/bms/boelter/4805/KEY/dsk-433

/bms/boelter/KEY/dsk-821

/bms/KEY/dsk-376

/bms/boelter/4805/eletrical/20150201

/bms/boelter/4805/eletrical/20150201/AUTH_INFO/
hierarchy/3d4c89ef..

/bms/boelter/KEY/dsk-821

/bms/boelter/4805/KEY/dsk-433

For data

For proof

Validation Framework

Info Manager

Trusted Info

Unverified Info
Policy Checker

Authenticator
Trust Anchors

Certificate Cache

Data Buffer

Info Fetcher

Origin Validation Request

Failure

Failure

Success

Auth
Info Internal

Validation
Request

Cache
certificate

Key
Retrival

Check
Signature

Failure

16

Signature Verification
•  Start when reaching an

pre-authenticated key

•  Check signature status
–  should be done after the

signature is verified
–  ensure the signature has

not been revoked yet

•  Once an intermediate
signing key is validated
–  verify the signature of

depending packets
–  recursively go back to the

original data packet

17

D0: Original Data Success Failure

K1: Signing Key of D0 Success Failure

 K2: Signing Key of K1 Success Failure

 K3: Signing Key of K2 Success Failure

Pre-authenticate key
Bu

ild
 v

al
id

at
io

n
pa

th

Pr
op

ag
at

e
va

lid
at

io
n

re
su

lt

Signature status checking
•  Check if the signature has been revoked before expiration

•  Verifier may retrieve signature status data
–  /<DataName>/[DataDigest]/[Timestamp]
–  content:

•  signature status: good, revoked
•  reasons (optional): revocation reasons

•  Introduce a signature extension StatusChecking
–  ForwardingHint: where to forward the signature status interest
–  AuthorizedSigner: who can be trusted for signing signature status

data

18

SignatureInfo:
 ...
 (Non)CriticalExtension:
 StatusChecking:
 ForwardingHint
 AuthorizedSigner

Thanks!

19

