NDN ROUTING SECURITY

Lan Wang, Beichuan Zhang

2/9/2015 www.named-data.net

Routing Security

= Required: authenticity and integrity of routing information

o Link state routing: LSAs are originated by the routing process
authorized to do so and have not been modified.

o Hyperbolic routing: hyperbolic coordinates are coordinates for the
associated nodes and prefixes

= Not required: confidentiality of routing information

= Solution: routing data is signed by originating router and
verified by receivers based on trust model.

2/9/2015 www.named-data.net

Example: NLSR Trust Model [1]

= NLSR’s trust model follows network management structure in a single
network.
o The entire network has a root key, the trust anchor (pre-configured at every router).

root
|
e —_— e, +
gitel gitel
S e & +
operatorl operator2 operator3
| I |
e S & tommm e ——— + e N e &
routerl routerd router3 routerd routers routeré router?
+ ¥ + + + & ¥
NLSR NSLR NSLE NSLE NSLR HSLR NSLR

[1] AKM M. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang. NLSR: Named-data link state
routing protocol. In ACM SIGCOMM ICN Workshop, 2013.

Presenter
Presentation Notes
Each site in the network has a site key, signed by the root key.
Each operator In a site has an operator key, signed by the site key.
Each router has a router key, signed by the key of the operator that configured the router.
Each NLSR instance on a router has a unique NLSR key for signing its data. Each NLSR key is signed by the router’s key.

2/9/2015 www.named-data.net

BigCo/NetOps/SFpop/OSPF/rir731/pid345/LSP#678

The name in one Link State Packet generated by

signed by the SFpop IGP routing process on rtr731.

BigCo/NetOps/SFpop/OSPF/rtr731/pid345

The name of the routing process cert (given to the
process when the router creates it). This name must
match the bold part of each packet's name.

signed by

BigCo/NetOps/SFpop/RTR731

The name of the router cert (given

signed by to the router when it's configured).

NN\

* BigCo/NetOps/SFpop/config/employee975

The name of the cert of the employee who last
configured the router. (This key signs the entire
router config as well as the router's signing key.)

signed by

N\

* BigCo/NetOps/SFpop/config

The name of the cert that is the root of trust for
SFpop router configuration.

2/9/2015 www.named-data.net

Trust Schema

k4 = my.config.root BigCo/NetOps/SFpop/config/key

k3 = k4 +"empl”+ n BigCo/NetOps/SFpop/config/lempl/975/key

k2 = k3[-4] +"rtr'+ n BigCo/NetOps/SFpop/rtr/72/key

k1 = k2[-3] +"OSPF"+ k2[2-1] +“pid"+ n BigCo/NetOps/SFpop/OSPF/rtr/72/pid/345/key

pkt = k1 +“LSP"+ n BigCo/NetOps/SFpop/OSPF/rtr/72/pid/345/LSP/678
Usage

if (validTrustChain(pkt, schema) && signatureValid(pkt))
process the packet

Since schema is just lexical constraints on key names, validation
normally only has to check that key name is appropriate for data name.

Only have to validate chain & signature for a key once.

() 2/9/2015 www.named-data.net

Signing and Verification

Root key /<network>/key

Site key /<network>/<site>/key

Operator key /<network>/<site>/<operator>/key

Router key /<network>/<site>/<router>/key

NLSR key /<network>/<site>/<router>/NLSR/key

Data /<network>/NLSR/LSA/<site>/<router>/<type>/<ver>

Presenter
Presentation Notes
Trust model specifies the name of the key that can sign the data (or key)

2/9/2015 www.named-data.net

NLSR Security Configuration

security
{ rule
validator {
{.. id "NSLR Hierarchical Rule"
rule for data
{ filter
id "NSLR LSA Rule" {
for data type name
filter regex N[*<KEY>]*<KEY><ksk-.*><ID-CERT><>$
{ }
type name checker
regex N[*<NLSR><LSA>]*<NLSR><LSA> {
} type hierarchical
checker sig-type rsa-sha256
{ }
type customized }
sig-type rsa-sha256
key-locator trust-anchor
{ {
type name type file
hyper-relation file-name "root.cert"
{ }
k-regex M["<KEY><NLSR>]*)<NLSR><KEY><ksk-.*><ID-CERT>$ }
k-expand \\1 ; cert-to-publish "site.cert” ; optional, containing the site certificate.
h-relation equal ; cert-to-publish "operator.cert” ; optional, containing the operator cert.
p-regex N[*<NLSR><LSA>]*)<NLSR><LSA>(<>*)<><><>$ cert-to-publish "router.cert" ; a file containing the router certificate.
p-expand \1\\2 }
}
}
}

2/9/2015 www.named-data.net

Issues iIn NLSR Security Implementation (1)

= Key generation and signing.
o Whenever NLSR starts, it creates a new NLSR key.

o NLSR signs the key using the router key.

- what entity should have the authority to use the router key? A special
launch process?

= Verification

o Problem: timestamp of a received certificate may be later than the
router’s time (due to clock difference), which causes the router to
drop the key and certificate

o Current solution: when signing a key, the timestamp on the
certificate is earlier than the actual clock time

o Is this the right solution?

Presenter
Presentation Notes
Not related to security, but implementation details: NLSR data currently uses a broadcast prefix. Can we get rid of it? (1) piggybacking in chronosync data packets. Is it a reliable mechanism? (2) how do we allow intermediate routers to serve the data?

2/9/2015 www.named-data.net

Issues in NLSR Security Implementation (2)

= NLSR key rollover

o When NLSR restarts, it generates a new key. How do other routers
know that from now on this key should be used rather than the
previous key?

= Key revocation: an NLSR key (or router key etc.) is

compromised and a new key needs to be used

o Previous NLSR version used ChronoSync to distribute key names,
which could solve this problem (and the previous one), but was
taken out when new Validator was put in.

2/9/2015 www.named-data.net

Issues in NLSR Security Implementation (3)

= Key retrieval and key name

o key is retrieved after NLSR Data packet is received (if the key has not
been retrieved)

o Currently Interests for keys are broadcast (no FIB entries for the keys
until routing table is built)

o Below are alternatives:

- use ChronoSync to distribute key names: the keys still need to have a
broadcast prefix since ChronoSync doesn’t actually send the keys in its data
paclléets)(unless ChronoSync always piggybacks the keys in its data
packets).

- append key to data packet when a node replies with NLSR data: requires
composite packet format, but makes the packet bigger than necessary if the
receiver already has the key

- sends Interest for key to the neighbor that previously replied with the NLSR
data: requires NLSR to know which face the data came in and send key
Interest to that face

	NDN Routing Security
	Routing Security
	Example: NLSR Trust Model [1]
	Slide Number 4
	Slide Number 5
	Signing and Verification
	NLSR Security Configuration
	Issues in NLSR Security Implementation (1)
	Issues in NLSR Security Implementation (2)
	Issues in NLSR Security Implementation (3)

