Some Technical/Architectural
Issues

Overview

 Update and discussion of some ongoing work

— Packet format, system design, tech memos.
LINK, ENCAP, NACK

e Routing scalability

 Name discovery, selectors.

e Variable-length header

e Hop-by-hop fragmentation/reassembly

e Implicit digest

* Naming conventions

e Suggestions on new topics.

LINK

e LINK is a data packet whose payload contains
multiple names that point to the same

content.

e Example:
— Files are published under /net/ndnsim,
— but hosted by ATT, /att/user/alex/net/ndnsim

— Consumers need to use the latter name to retrieve
the content across the Internet.

LINK

Name of the link object (/net/ndnsim/LINK)
Metalnfo: ContentType=LINK,

Content:
alias 1, pref (/att/user/alex/net/ndnsim, 100)
alias 2, pref

Signed by the publisher of the LINK

 LINK is defined as a new ContentType.
— Allow multiple aliases.
— Support preference/weight for each alias.

ENCAP

e A general mechanism to encapsulate one or more
packets under a different name.

— A new ContentType
— Each enclosed object is a complete packet on its own.

— The outer signature covers the outer name and signatures
of all the enclosed objects.

Name
Metalnfo: ContentType=ENCAP, ...

Content:
e Object 1, Object 2, ...

Signature

ENCAP

e Example:

— Return a chain of certificates in response to a key
retrieval request.

e Example:
— Interest /att/user/alex/net/ndnsim/a.cpp

— Return an encapsulated packet that contains
e Original data object (/net/ndnsim/a.cpp), and
* The LINK object (/net/ndnsim <- /att/user/alex/net/ndnsim)

e Under an outer name like
— /att/user/alex/net/ndnsim/a.cpp/encap

Application NACK

e “Content doesn’t exist yet”
— Published by the content producer

— A new ContentType

e Routers process it as a regular data packet.
— Satisfy PIT, cache it, etc.
— No need to explore alternative paths.

e Consumer apps need to handle this NACK.
— Meant to be used at time scale much longer than
regular interest/data exchange.
e App NACK vs. retx/refresh.

Application NACK

Name of this NACK object
Metalnfo: ContentType=NACK,

Content:

 Name (prefix) of non-existent content

* A code of why the content is not available
e Expiration time of this NACK

Signed by the publisher

e Applications may add/remove what’s in the
content part. Need more experimentation.

Application NACK Example

e A NACK is published for a prefix
— /ndnsim/src

e But an Interest asks for a specific piece of data
— /ndnsim/src/a.cpp

* Need to encapsulate the NACK object in order to match
the interest name.

Name /ndnsim/src/a.cpp/nack
Metalnfo: ContentType=ENCAP, ...

Content:
 NACK (name=/ndnsim/src/nack, content, sig)

signature

Network NACK

 Non-authoritative, generated by routers, repos,
server replica, etc.
— “cannot get the content, because of X”.
— Downstream node should explore other paths upon
receiving this NACK.
 NACK only when exhausted all local options.
— The reason “X” is important for downstream to react
appropriately. For examples:
e Link failure: don’t send future interests upstream.

e Congestion: send to upstream with reduced rate.
e Loop/duplicate: try an interest with different nonce.

Per-packet Network NACK

e Return the Interest packet to the downstream as a
NACK

e |nclude the error code in the shim layer (layer 2.5)
e In-band, fine-grained feedback.

Layer 2.5: NACK and error code

Interest Name
Other fields

signature

11

Aggregated Network NACK

Upstream and downstream neighbors run a
control plane app, e.g., /localhop/feedback/...

Send NACK information as regular interest/data
exchange between the control processes.

Provide out-of-band, aggregated feedback.

— E.g., when the outgoing link at the upstream node
fails, it can send this NACK to the downstream node to
stop incoming traffic.

Closely related to routing decisions and
forwarding strategy.

Routing Scalability

 The problem: what if core routers can no longer
hold all the content prefixes.

 The solution: map-and-encap

— Only a subset of prefixes are allowed in DFZ routers.
They’re globally routable prefixes.

— A distributed mapping system that given a content
prefix will return one or multiple routable prefixes
belong to ISPs hosting the content.

— Interest is sent using the ISP/routable prefix to reach
and retrieve the content. Returned data is
encapsulated.

Data Encapsulation Approach

Consumer app: /net/ndnsim/a.cpp
— Should not be bothered with anything below.

Consumer library/serivce/...

— Look up the mapping system, get a LINK
e /att/user/alex/net/ndnsim -> /net/ndnsim
— Send interest with a routable prefix

o /att/users/alex/net/ndnsim/a.cpp
e Which prefix to use if multiple? Who makes the decision?

Producer reply with encapsulated data
— Need to know the ISP prefixes and register.
— Think about a corporate network multihomed to several ISPs.

How would selectors such as Exclude work if we modify the
names?

Forwarding Hint Approach

Keep the name intact: /net/ndnsim/a.cpp

Consumer library/service ...

— Look up the mapping system, get a LINK
o /att/user/alex/net/ndnsim -> /net/ndnsim

— Send interest with original name
e Attach the LINK object to the Interest.

Routers lookup /att prefix if no route to /net/ndnsim.
— Better routing decision in the network
Producer reply with original data

— No change to the logic, no encapsulation.
— Better caching, multicast, etc.

Colluded content poisoning?

Name Discovery

If a consumer supplies the complete name, we
only need exact match between interest/data.
Name discovery problem: how to find out the
complete name?

A complete name usually contains components
that need to be dynamically discovered.

— E.g, Version, local context.

Can we accomplish the discovery at the app layer
rather than the network layer?

— So the network layer only needs to support exact
match.

Example: discovering versions

* When an app doesn’t know the exact version
number

— E.g., the latest version of /nytimes.com/frontpage.
NDN’s approach

e Allow the consumer to ask a vague question, i.e.,
an incomplete name.

— E.g., /nytimes.com/frontpage/latest
 Any answer with a longer name will do.
— E.g., /nytimes.com/frontpage/latest/v6

e Consumer uses selectors to narrow down to the
data that it wants.

Alternatives

e Manifest

— Publish manifest file that contains the complete names of all
versions of /nytimes.com/frontpage. Retrieve the manifest first,
then request desired page using complete name.

— However, the manifest itself is just another piece of data, how
to discover the latest version of the manifest?

e Can |l request /nytimes.com/frontpage/latest and get the
current latest page in return with the exact same name?

— Then the page you got today and yesterday have different
contents but share the same name.

e How about each node (cache) runs a service that
periodically announces what contents it offers over the
network?

— Need to run this directory service
— Doesn’t work in wide-area network due to broadcast.

What can we do?

* Apps: minimize the use of name discovery.

— E.g., limit it to manifest. The bulk retrieval is done
using complete names.

e Routers

— Can core routers ignore selectors?

e Architecture: examine existing selectors

— Do we need them? Any better way to achieve the
functionality?

Can core routers ignore selectors?

e Approach One

— Core routers skip selector processing, skip CS for
these packets, forward *all* interests carrying
selectors without interest aggregation.

— Edge routers and producers will still evaluate
selectors.

— May increase bandwidth use, and consumer delay,
but should not impact system correctness.

* |t works most of the time, but has a problem
under certain conditions.

Selectors at core routers

e C1and C2 are sending interests with the same name
but different selectors.

e C2 could get starved under certain circumstances.

Can core routers ignore selectors?

e Approach Two

— Consumer appends the hash (H) of the selector
field to the interest name (N) to make it /N/H.

— Router processing has no change.

— Producer sends data /N/x back by encapsulating it
under name /N/H/x.

* No need to change the forwarding behavior,
but consumers/producers need to agree on
the naming convention.

Next step

Write these up

Implement and experiment

Add a ContentType for encrypted data?
Mobility support, especially producer mobility.

The shim layer

— Hop-by-hop fragmentation/reassembly
— Detect loss on a link, retransmission.

— Carry network NACK

	Some Technical/Architectural Issues
	Overview
	LINK
	LINK
	ENCAP
	ENCAP
	Application NACK
	Application NACK
	Application NACK Example
	Network NACK
	Per-packet Network NACK
	Aggregated Network NACK
	Routing Scalability
	Data Encapsulation Approach
	Forwarding Hint Approach
	Name Discovery
	Example: discovering versions
	Alternatives
	What can we do?
	Can core routers ignore selectors?
	Selectors at core routers
	Can core routers ignore selectors?
	Next step

