
Some Technical/Architectural 
Issues



Overview

• Update and discussion of some ongoing work
– Packet format, system design, tech memos.

• LINK, ENCAP, NACK
• Routing scalability
• Name discovery, selectors.
• Variable-length header
• Hop-by-hop fragmentation/reassembly
• Implicit digest
• Naming conventions

• Suggestions on new topics.



LINK

• LINK is a data packet whose payload contains 
multiple names that point to the same 
content.

• Example:
– Files are published under /net/ndnsim,
– but hosted by ATT, /att/user/alex/net/ndnsim
– Consumers need to use the latter name to retrieve 

the content across the Internet.



LINK

• LINK is defined as a new ContentType.
– Allow multiple aliases.
– Support preference/weight for each alias.

Name of the link object (/net/ndnsim/LINK)
MetaInfo: ContentType=LINK, ….
Content:
alias 1, pref (/att/user/alex/net/ndnsim, 100)
alias 2, pref
Signed by the publisher of the LINK



ENCAP
• A general mechanism to encapsulate one or more 

packets under a different name.
– A new ContentType
– Each enclosed object is a complete packet on its own.
– The outer signature covers the outer name and signatures 

of all the enclosed objects.

Name
MetaInfo: ContentType=ENCAP, …
Content:
• Object 1, Object 2, …
Signature



ENCAP

• Example:
– Return a chain of certificates in response to a key 

retrieval request.

• Example:
– Interest /att/user/alex/net/ndnsim/a.cpp
– Return an encapsulated packet that contains

• Original data object (/net/ndnsim/a.cpp), and
• The LINK object (/net/ndnsim <- /att/user/alex/net/ndnsim)
• Under an outer name like

– /att/user/alex/net/ndnsim/a.cpp/encap



Application NACK

• “Content doesn’t exist yet”
– Published by the content producer
– A new ContentType

• Routers process it as a regular data packet.
– Satisfy PIT, cache it, etc. 
– No need to explore alternative paths.

• Consumer apps need to handle this NACK.
– Meant to be used at time scale much longer than 

regular interest/data exchange.
• App NACK vs. retx/refresh.



Application NACK

• Applications may add/remove what’s in the 
content part. Need more experimentation.

Name of this NACK object
MetaInfo: ContentType=NACK, ….
Content:
• Name (prefix) of non-existent content
• A code of why the content is not available
• Expiration time of this NACK
Signed by the publisher



Application NACK Example
• A NACK is published for a prefix

– /ndnsim/src
• But an Interest asks for a specific piece of data

– /ndnsim/src/a.cpp
• Need to encapsulate the NACK object in order to match 

the interest name.

Name /ndnsim/src/a.cpp/nack
MetaInfo: ContentType=ENCAP, …
Content:
• NACK (name=/ndnsim/src/nack, content, sig)
signature

9



Network NACK

• Non-authoritative, generated by routers, repos, 
server replica, etc.
– “cannot get the content, because of X”.
– Downstream node should explore other paths upon 

receiving this NACK.
• NACK only when exhausted all local options.

– The reason “X” is important for downstream to react 
appropriately. For examples:

• Link failure: don’t send future interests upstream.
• Congestion: send to upstream with reduced rate.
• Loop/duplicate: try an interest with different nonce.

10



Per-packet Network NACK
• Return the Interest packet to the downstream as a 

NACK
• Include the error code in the shim layer (layer 2.5) 
• In-band, fine-grained feedback.

Layer 2.5: NACK and error code

Interest Name
Other fields
signature

11



Aggregated Network NACK

• Upstream and downstream neighbors run a 
control plane app, e.g., /localhop/feedback/…

• Send NACK information as regular interest/data 
exchange between the control processes.

• Provide out-of-band, aggregated feedback. 
– E.g., when the outgoing link at the upstream node 

fails, it can send this NACK to the downstream node to 
stop incoming traffic. 

• Closely related to routing decisions and 
forwarding strategy.

12



Routing Scalability

• The problem: what if core routers can no longer 
hold all the content prefixes.

• The solution: map-and-encap
– Only a subset of prefixes are allowed in DFZ routers. 

They’re globally routable prefixes.
– A distributed mapping system that given a content 

prefix will return one or multiple routable prefixes 
belong to ISPs hosting the content.

– Interest is sent using the ISP/routable prefix to reach 
and retrieve the content. Returned data is 
encapsulated.



Data Encapsulation Approach
• Consumer app: /net/ndnsim/a.cpp

– Should not be bothered with anything below.
• Consumer library/serivce/…

– Look up the mapping system, get a LINK
• /att/user/alex/net/ndnsim -> /net/ndnsim

– Send interest with a routable prefix
• /att/users/alex/net/ndnsim/a.cpp
• Which prefix to use if multiple? Who makes the decision?

• Producer reply with encapsulated data
– Need to know the ISP prefixes and register.
– Think about a corporate network multihomed to several ISPs.

• How would selectors such as Exclude work if we modify the 
names?



Forwarding Hint Approach
• Keep the name intact: /net/ndnsim/a.cpp
• Consumer library/service …

– Look up the mapping system, get a LINK
• /att/user/alex/net/ndnsim -> /net/ndnsim

– Send interest with original name
• Attach the LINK object to the Interest.

• Routers lookup /att prefix if no route to /net/ndnsim.
– Better routing decision in the network

• Producer reply with original data
– No change to the logic, no encapsulation.
– Better caching, multicast, etc.

• Colluded content poisoning?



Name Discovery

• If a consumer supplies the complete name, we 
only need exact match between interest/data.

• Name discovery problem: how to find out the 
complete name?

• A complete name usually contains components 
that need to be dynamically discovered.
– E.g, Version, local context. 

• Can we accomplish the discovery at the app layer 
rather than the network layer?
– So the network layer only needs to support exact 

match.

16



Example: discovering versions
• When an app doesn’t know the exact version 

number
– E.g., the latest version of /nytimes.com/frontpage.

NDN’s approach
• Allow the consumer to ask a vague question, i.e., 

an incomplete name.
– E.g., /nytimes.com/frontpage/latest

• Any answer with a longer name will do.
– E.g., /nytimes.com/frontpage/latest/v6

• Consumer uses selectors to narrow down to the 
data that it wants.

17



Alternatives
• Manifest

– Publish manifest file that contains the complete names of all 
versions of /nytimes.com/frontpage. Retrieve the manifest first, 
then request desired page using complete name.

– However, the manifest itself is just another piece of data, how 
to discover the latest version of the manifest?

• Can I request /nytimes.com/frontpage/latest and get the 
current latest page in return with the exact same name?
– Then the page you got today and yesterday have different 

contents but share the same name.
• How about each node (cache) runs a service that 

periodically announces what contents it offers over the 
network?
– Need to run this directory service
– Doesn’t work in wide-area network due to broadcast.

18



What can we do?

• Apps: minimize the use of name discovery.
– E.g., limit it to manifest. The bulk retrieval is done 

using complete names.

• Routers
– Can core routers ignore selectors?

• Architecture: examine existing selectors 
– Do we need them? Any better way to achieve the 

functionality?

19



Can core routers ignore selectors?

• Approach One
– Core routers skip selector processing, skip CS for 

these packets, forward *all* interests carrying 
selectors without interest aggregation.

– Edge routers and producers will still evaluate 
selectors.

– May increase bandwidth use, and consumer delay, 
but should not impact system correctness.

• It works most of the time, but has a problem 
under certain conditions.



Selectors at core routers

• C1 and C2 are sending interests with the same name 
but different selectors.

• C2 could get starved under certain circumstances.

G

F

ED

C

Producer
C1

C2

B

A
R1

R2
H



Can core routers ignore selectors?

• Approach Two
– Consumer appends the hash (H) of the selector 

field to the interest name (N) to make it /N/H.
– Router processing has no change.
– Producer sends data /N/x back by encapsulating it 

under name /N/H/x.
• No need to change the forwarding behavior, 

but consumers/producers need to agree on 
the naming convention.



Next step

• Write these up
• Implement and experiment
• Add a ContentType for encrypted data?
• Mobility support, especially producer mobility.
• The shim layer

– Hop-by-hop fragmentation/reassembly
– Detect loss on a link, retransmission.
– Carry network NACK


	Some Technical/Architectural Issues
	Overview
	LINK
	LINK
	ENCAP
	ENCAP
	Application NACK
	Application NACK
	Application NACK Example
	Network NACK
	Per-packet Network NACK
	Aggregated Network NACK
	Routing Scalability
	Data Encapsulation Approach
	Forwarding Hint Approach
	Name Discovery
	Example: discovering versions
	Alternatives
	What can we do?
	Can core routers ignore selectors?
	Selectors at core routers
	Can core routers ignore selectors?
	Next step

