
T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

1

This revision is OUTDATED and preserved for
historical purposes only.

Check for the most recent revision at
https://named-data.net/publications/techreports/

https://named-data.net/publications/techreports/
https://named-data.net/publications/techreports/

NDN, Technical Report NDN-0021. http://named-data.net/techreports.html

NFD Developer’s Guide

Alexander Afanasyev1, Junxiao Shi2, Beichuan Zhang2, Lixia Zhang1, Ilya Moiseenko1, Yingdi Yu1,
Wentao Shang1, Yanbiao Li1, Spyridon Mastorakis1, Yi Huang2, Jerald Paul Abraham2, Eric Newberry2,

Steve DiBenedetto3, Chengyu Fan3, Christos Papadopoulos3, Davide Pesavento4, Giulio Grassi4,
Giovanni Pau4, Hang Zhang5, Tian Song5, Haowei Yuan6, Hila Ben Abraham6, Patrick Crowley6, Syed

Obaid Amin7, Vince Lehman7, Muktadir Chowdhury7, and Lan Wang7

1University of California, Los Angeles
2The University of Arizona
3Colorado State University

4University Pierre & Marie Curie, Sorbonne University
5Beijing Institute of Technology

6Washington University in St. Louis
7The University of Memphis

NFD Team

Abstract

NDN Forwarding Daemon (NFD) is a network forwarder that implements the Named Data Networking (NDN) protocol.
NFD is designed with modularity and extensibility in mind to enable easy experiments with new protocol features, algo-
rithms, and applications for NDN. To help developers extend and improve NFD, this document explains NFD’s internals
including the overall design, major modules, their implementations, and their interactions.

Revision history

• Revision 7 (October 4, 2016):

– Added brief description and reference to the new Adaptive SRTT-based (ASF) forwarding strategy
– Update description of Strategy API to reflect latest changes
– Miscellaneous updates

• Revision 6 (March 25, 2016):

– Added description of refactored Face system (Face, LinkService, Transport)
– Added description of WebSocket transport
– Updated description of RIB management
– Added description of Nack processing
– Added introductory description of NDNLP
– Added description of best-route retransmission suppression
– Other updates to synchronize description with current NFD implementation

• Revision 5 (Oct 27, 2015):

– Add description of CS CachePolicy API, including information about new LRU policy
– BroadcastStrategy renamed to MulticastStrategy
– Added overview of how forwarder processes Link objects
– Added overview of the new face system (incomplete)
– Added description of the new automatic prefix propagation feature
– Added description of the refactored management
– Added description of NetworkRegionTable configuration
– Added description about client.conf and NFD

1

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

• Revision 4 (May 12, 2015): New section about testing and updates for NFD version 0.3.2:

– Added description of new ContentStore implementation, including a new async lookup model of CS
– Added description of the remote prefix registration
– Updated Common Services section

• Revision 3 (February 3, 2015): Updates for NFD version 0.3.0:

– In Strategy interface, beforeSatisfyPendingInterest renamed to beforeSatisfyInterest
– Added description of dead nonce list and related changes to forwarding pipelines
– Added description of a new strategy_choice config file subsection
– Amended unix config text to reflect removal of ”listen” option
– Added discussion about encapsulationg of NDN packets inside WebSocket messages
– Revised FaceManager description, requiring canonical FaceUri in create operations
– Added description of the new access router strategy

• Revision 2 (August 25, 2014): Updated steps in forwarding pipelines, nfd::BestRouteStrategy is replaced with
nfd::BestRouteStrategy2 that allows client-based recovery from Interest losses

• Revision 1 (July 1, 2014): Initial release

2

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

CONTENTS CONTENTS

Contents

1 Introduction 6
1.1 NFD Modules . 6
1.2 How Packets are Processed in NFD . 7
1.3 How Management Interests are Processed in NFD . 8

2 Face System 9
2.1 Face . 9
2.2 Transport . 10

2.2.1 Internal Transport . 11
2.2.2 Unix Stream Transport . 11
2.2.3 Ethernet Transport . 11
2.2.4 UDP unicast Transport . 12
2.2.5 UDP multicast Transport . 12
2.2.6 TCP Transport . 13
2.2.7 WebSocket Transport . 13
2.2.8 Developing a New Transport . 13

2.3 Link Service . 14
2.3.1 Generic Link Service . 14
2.3.2 Vehicular Link Service . 15
2.3.3 Developing a New Link Service . 16

2.4 Face Manager, Protocol Factories, and Channels . 16
2.4.1 Creation of Faces From Configuration . 16
2.4.2 Creation of Faces From faces/create Command . 16

2.5 NDNLP . 16

3 Tables 19
3.1 Forwarding Information Base (FIB) . 19

3.1.1 Structure and Semantics . 19
3.1.2 Usage . 20

3.2 Network Region Table . 20
3.3 Content Store (CS) . 20

3.3.1 Semantics and Usage . 20
3.3.2 Implementation . 21

3.4 Interest Table (PIT) . 23
3.4.1 PIT Entry . 23
3.4.2 PIT . 24

3.5 Dead Nonce List . 24
3.5.1 Structure, Semantics, and Usage . 24
3.5.2 Capacity Maintenance . 25

3.6 Strategy Choice Table . 25
3.6.1 Structure and Semantics . 25
3.6.2 Usage . 26

3.7 Measurements Table . 26
3.7.1 Structure . 26
3.7.2 Usage . 27

3.8 NameTree . 27
3.8.1 Structure . 27
3.8.2 Operations and Algorithms . 29
3.8.3 Shortcuts . 29

3

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

CONTENTS CONTENTS

4 Forwarding 31
4.1 Forwarding Pipelines . 31
4.2 Interest Processing Path . 31

4.2.1 Incoming Interest Pipeline . 32
4.2.2 Interest Loop Pipeline . 33
4.2.3 ContentStore Miss Pipeline . 33
4.2.4 ContentStore Hit Pipeline . 33
4.2.5 Outgoing Interest Pipeline . 34
4.2.6 Interest Reject Pipeline . 34
4.2.7 Interest Unsatisfied Pipeline . 35
4.2.8 Interest Finalize Pipeline . 35

4.3 Data Processing Path . 35
4.3.1 Incoming Data Pipeline . 35
4.3.2 Data Unsolicited Pipeline . 37
4.3.3 Outgoing Data Pipeline . 37

4.4 Nack Processing Path . 37
4.4.1 Incoming Nack Pipeline . 37
4.4.2 Outgoing Nack Pipeline . 38

4.5 Helper Algorithms . 38
4.5.1 FIB lookup . 38

5 Forwarding Strategy 40
5.1 Strategy API . 40

5.1.1 Triggers . 40
5.1.2 Actions . 41
5.1.3 Storage . 42

5.2 List of Strategies . 42
5.2.1 Best Route Strategy . 42
5.2.2 Multicast Strategy . 43
5.2.3 Client Control Strategy . 44
5.2.4 NCC Strategy . 44
5.2.5 Access Router Strategy . 44
5.2.6 ASF Strategy . 46

5.3 How to Develop a New Strategy . 46
5.3.1 Should I Develop a New Strategy? . 46
5.3.2 Develop a New Strategy . 46

6 Management 48
6.1 Protocol Overview . 48
6.2 Dispatcher and Authenticator . 48

6.2.1 Manager Base . 49
6.2.2 Internal Face and Internal Client Face . 49
6.2.3 Command Validator . 49

6.3 Forwarder Status . 49
6.4 Face Management . 50
6.5 FIB Management . 51
6.6 Strategy Choice Management . 52
6.7 Configuration Handlers . 52

6.7.1 General Configuration File Section Parser . 52
6.7.2 Tables Configuration File Section Parser . 52

6.8 How to Extend NFD Management . 52

4

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

CONTENTS CONTENTS

7 RIB Management 53
7.1 Initializing the RIB Manager . 55
7.2 Command Processing . 55
7.3 FIB Updater . 56

7.3.1 Route Inheritance Flags . 57
7.3.2 Cost Inheritance . 57

7.4 RIB Status Dataset . 57
7.5 Auto Prefix Propagator . 57

7.5.1 What Prefix to Propagate . 57
7.5.2 When to Propagate . 58
7.5.3 Secure Propagations . 58
7.5.4 Propagated-entry State Machine . 58
7.5.5 Configure Auto Prefix Propagator . 60

7.6 Extending RIB Manager . 60

8 Security 62
8.1 Interface Control . 62
8.2 Trust Model . 62

8.2.1 Command Interest . 62
8.2.2 NFD Trust Model . 63
8.2.3 NFD RIB manager Trust Model . 63

8.3 Local Key Management . 63

9 Common Services 64
9.1 Configuration File . 64

9.1.1 User Info . 64
9.1.2 Developer Info . 66

9.2 Basic Logger . 67
9.2.1 User Info . 67
9.2.2 Developer Info . 67

9.3 Hash Computation Routines . 67
9.4 Global Scheduler . 68
9.5 Global IO Service . 68
9.6 Privilege Helper . 68

10 Testing 69
10.1 Unit Tests . 69

10.1.1 Test Structure . 69
10.1.2 Running Tests . 69
10.1.3 Test Helpers . 69
10.1.4 Test Code Guidelines and Naming Conventions . 70

10.2 Integration Tests . 70

References 71

5

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

1 INTRODUCTION

1 Introduction

NDN Forwarding Daemon (NFD) is a network forwarder that implements and evolves together with the Named Data
Networking (NDN) protocol [1]. This document explains the internals of NFD and is intended for developers who are
interested in extending and improving NFD. Other information about NFD, including instructions of how to compile and
run NFD, are available on NFD’s home page [2].

The main design goal of NFD is to support diverse experimentation with NDN architecture. The design emphasizes
modularity and extensibility to allow easy experiments with new protocol features, algorithms, and applications. We have
not fully optimized the code for performance. The intention is that performance optimizations are one type of experiments
that developers can conduct by trying out different data structures and different algorithms; over time, better implementations
may emerge within the same design framework.

NFD will keep evolving in three aspects: improvement of the modularity framework, keeping up with the NDN protocol
spec, and addition of new features. We hope to keep the modular framework stable and lean, allowing researchers to
implement and experiment with various features, some of which may eventually work into the protocol specification.

1.1 NFD Modules

The main functionality of NFD is to forward Interest and Data packets. To do this, it abstracts lower-level network transport
mechanisms into NDN Faces, maintains basic data structures like CS, PIT, and FIB, and implements the packet processing
logic. In addition to basic packet forwarding, it also supports multiple forwarding strategies, and a management interface to
configure, control, and monitor NFD. As illustrated in Figure 1, NFD contains the following inter-dependent modules:

• ndn-cxx Library, Core, and Tools (Section 9)

Provides various common services shared between different NFD modules. These include hash computation routines,
DNS resolver, config file, Face monitoring, and several other modules.

• Faces (Section 2)

Forwarding

Management

Faces

Tables

Core

Strategies

ndn-cxx library

NFD Tools NDN Essential Tools

ndnpeek, ndnpoke; ndncatchunks, ndnputchunks; ndnping,

Figure 1: Overview of NFD modules

6

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

1.2 How Packets are Processed in NFD 1 INTRODUCTION

Implements the NDN Face abstraction on top of various lower level transport mechanisms.

• Tables (Section 3)

Implements the Content Store (CS), the Interest table (PIT), the Forwarding Information Base (FIB), StrategyChoice,
Measurements, and other data structures to support forwarding of NDN Data and Interest packets.

• Forwarding (Section 4)

Implements basic packet processing pathways, which interact with Faces, Tables, and Strategies (Section 5).

Strategies are a major part of the forwarding module. The forwarding module implements a framework to support
different forwarding strategies in the form of forwarding pipelines, described in detail in Section 4.

• Management (Section 6)

Implements the NFD Management Protocol [3], which allows applications to configure NFD and set/query NFD’s
internal states. Protocol interaction is done via NDN’s Interest/Data exchange between applications and NFD.

• RIB Management (Section 7)

Manages the routing information base (RIB). The RIB may be updated by different parties in different ways, including
various routing protocols, application prefix registrations, and command-line manipulation by sysadmins. The RIB
management module processes all these requests to generate a consistent forwarding table, and syncs it up with NFD’s
FIB, which contains only the minimal information needed for forwarding decisions.

The rest of this document will explain all these modules in more detail.

1.2 How Packets are Processed in NFD

To give readers a better idea on how NFD works, this section explains how a packet is processed in NFD.
Packets arrive at NFD via Faces. “Face” is a generalization of “interface”. It can be either a physical interface (where NDN

operates directly over Ethernet), or an overlay tunnel (where NDN operates as an overlay above TCP, UDP, or WebSocket).
In addition, communication between NFD and a local application can be done via a Unix-domain socket, which is also a
Face. A Face is composed of a LinkService and a Transport. The LinkService provides high-level services for the Face, like
fragmentation and reassembly, network-layer counters, and failure detection, while the Transport acts as an wrapper over
an underlying network transmission protocol (TCP, UDP, Ethernet, etc.) and provides services like link-layer counters. The
Face reads incoming stream or datagrams via the operating system API, extracts network-layer packets from link protocol
packets, and delivers these network-layer packets (NDN packet format Interests, Datas, or Nacks) to the forwarding.

A network-layer packet (Interest, Data, or Nack) is processed by forwarding pipelines, which define series of steps that
operate on the packet. NFD’s data plane is stateful, and what NFD does to a packet depends on not only the packet itself
but also the forwarding state, which is stored in tables.

When the forwarder receives an Interest packet, the incoming Interest is first inserted into the Interest table (PIT), where
each entry represents a pending Interest or a recently satisfied Interest. A lookup for a matching Data is performed on the
Content Store (CS), which is an in-network cache of Data packets. If there is a matching Data packet in CS, that Data
packet is returned to the requester; otherwise, the Interest needs to be forwarded.

A forwarding strategy decides how to forward an Interest. NFD allows per-namespace strategy choice; to decide which
strategy is responsible for forwarding an Interest, a longest prefix match lookup is performed on the Strategy Choice table,
which contains strategy configuration. The strategy responsible for an Interest (or, more precisely, the PIT entry) makes
a decision whether, when, and where to forward the Interest. While making this decision, the strategy can take input
from the Forwarding Information Base (FIB), which contains routing information that comes from local application’s prefix
registrations and routing protocols, use strategy-specific information stored in the PIT entry, and record and use data plane
performance measurements in Measurements entry.

After the strategy decides to forward an Interest to a specified Face, the Interest goes through a few more steps in
forwarding pipelines, and then it is passed to the Face. The Face, depending on the underlying protocol, fragments the
Interest if necessary, encapsulates the network-layer packet(s) in one or more link-layer packets, and sends the link-layer
packets as an outgoing stream or datagrams via the operating system APIs.

An incoming Data is processed differently. Its first step is checking the Interest table to see if there are PIT entries that
can be satisfied by this Data packet. All matched entries are then selected for further processing. If this Data can satisfy
none of the PIT entries, it is unsolicited and it is dropped. Otherwise, the Data is added to the Content Store. Forwarding
strategy that is responsible for each of the matched PIT entries is notified. Through this notification, and another “no Data
comes back” timeout, the strategy is able to observe the reachability and performance of paths; the strategy can remember

7

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

1.3 How Management Interests are Processed in NFD 1 INTRODUCTION

its observations in the Measurements table, in order to improve its future decisions. Finally, the Data is sent to all requesters,
recorded in downstream records (in-records) of the PIT entries; the process of sending a Data via a Face is similar to sending
an Interest.

When the forwarder receives a Nack, the processing varies depending upon the forwarding strategy in use.

1.3 How Management Interests are Processed in NFD

NFD Management protocol [3] defines three inter-process management mechanisms that are based on Interest-Data exchanges:
control commands, status datasets, and notification streams. This section gives a brief overview how these mechanisms work
and what are their requirements.

A control command is a signed (authenticated) Interest to perform a state change within NFD. Since the objective of
each control command Interest is to reach the destination management module and not be satisfied from CS, each control
command Interest is made unique through the use of timestamp and nonce components. For more detail refer to control
command specification [4].

When NFD receives a control command request, it directs that request to a special Face, called the Internal Face.1 When
a request is forwarded to this Face, it is dispatched internally to a designated manager (e.g., Interests under /localhost/

nfd/faces are dispatched to the Face manager, see Section 6). The manager then looks at the request name to decide
which action is requested. If the name refers to a valid control command, the dispatcher validates the command (checks the
signature and validates whether the requester is authorized to send this command), and the manager performs the requested
action if validation succeeds. The response is sent back to the requester as a Data packet, which is processed by forwarding
and Face in the same way as a regular Data.

The exception from the above procedure is RIB Management (Section 7), which is performed in a separate thread. All
RIB Management control commands, instead of Internal Face, are forwarded toward the RIB thread using the same methods
as forwarding to any local application (the RIB thread “registers” itself with NFD for the RIB management prefix when it
starts).

A status dataset is a dataset containing an internal NFD status that is generated either periodically or on-demand (e.g.,
NFD general status or NFD Face status). These datasets can be requested by anybody using a simple unsigned Interest
directed towards the specific management module, as defined in the specification [3]. An Interest requesting a new version
of a status dataset is forwarded to the internal Face and then the designated manager the same way as control commands.
The manager, however, will not validate this Interest, but instead generate all segments of the requested dataset and put
them into the forwarding pipeline. This way, the first segment of the dataset will directly satisfy the initial Interest, while
others will satisfy the subsequent Interests through CS. In the unlikely event when subsequent segments are evicted from the
CS before being fetched, the requester is responsible for restarting the fetch process from the beginning.

Notification streams are similar to status datasets in that they can be accessed by anybody using unsigned Interests, but
operate differently. Subscribers that want to receive notification streams still send Interests directed towards the designated
manager. However, these Interests are dropped by the dispatcher and are not forwarded to the manager. Instead, whenever
a notification is generated, the manager puts a Data packet into the forwarding, satisfying all outstanding notification
stream Interests, and the notification is delivered to all subscribers. It is expected that these Interests will not be satisfied
immediately, and the subscribers are expected to re-express the notification stream Interests when they expire.

1There is always a FIB entry for the management protocol prefix that points to the Internal Face.

8

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

2 FACE SYSTEM

2 Face System

Face is the generalization of network interface. Similar to a physical network interface, packets can be sent and received on
a face. A face is more general than a network interface. It could be:

• a physical network interface to communicate on a physical link
• an overlay communication channel between NFD and a remote node
• an inter-process communication channel between NFD and a local application
The face abstraction provides a best-effort delivery service for NDN network layer packets. Forwarding can send and

receive Interests, Data, and Nacks through faces. The face then handles the underlying communication mechanisms (e.g.
sockets), and hides the differences of underlying protocols from forwarding.

Section 2.1 introduces the semantics of face, how it’s used by forwarding, and its internal structure consisting of transport
(Section 2.2) and link service (Section 2.3). Section 2.4 describes how faces are created and organized.

2.1 Face

NFD, as a network forwarder, moves packets between network interfaces. NFD can communicate on not only physical network
interfaces, but also on a variety of other communication channels, such as overlay tunnels over TCP and UDP. Therefore, we
generalize “network interface” as “face”, which abstracts a communication channel that NFD can use for packet forwarding.
The face abstraction (nfd::Face class) provides a best-effort delivery service for NDN network layer packets. Forwarding can
send and receive Interests, Data, and Nacks through faces. The face then handles the underlying communication mechanisms
(e.g. sockets), and hides the differences of underlying protocols from forwarding.

In NFD, the inter-process communication channel between NFD and a local application is also treated as a face. This
differs from traditional TCP/IP network stack, where local applications use syscalls to interact with the network stack, while
network packets exist on the wire only. NFD is able to communicate with a local application via a face, because the network
layer packet format is same as the packets on the wire. Having an unified face abstraction for both local application and
remote hosts simplifies NFD architecture.

How forwarding uses faces? The FaceTable class, which is part of forwarding, keeps track of all active faces. A newly
created face is passed to FaceTable::add, which assigns the face a numeric FaceId for identification purpose. After a face is
closed, it’s removed from the FaceTable. Forwarding receives packets from a face by connecting to afterReceiveInterest

afterReceiveData afterReceiveNack signals, which is done in FaceTable. Forwarding can send network layer packets via
the face by calling sendInterest sendData sendNack methods.

Face attributes A face exposes some attributes to display its status and control its behavior.

• FaceId is a numeric ID to identify the face. It’s assigned a non-zero value by FaceTable, and cleared when a face is
removed from the FaceTable.

• LocalUri is a FaceUri (Section 2.2) that represents the local endpoint. This attribute is read-only.

• RemoteUri is a FaceUri (Section 2.2) that represents the remote endpoint. This attribute is read-only.

• Scope indicates whether the face is local for scope control purposes. It can be either non-local or local. This attribute
is read-only.

• Persistency controls the behavior when an error occurs in the underlying communication channel, or when the face
has been idle for some time.

– A on-demand face closes if it remains idle for some time, or when an error occurs in the underlying communication
channel.

– A persistent face remains open until it’s explicitly destroyed, or when an error occurs in the underlying commu-
nication channel.

– A permanent face remains open until it’s explicit destroyed; errors in the underlying communication channel are
recovered internally.

• LinkType indicates the type of communication link. It can be either point-to-point or multi-access. This attribute is
read-only.

• State indicates the current availability of the face.

– UP : the face is working properly

9

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

2.2 Transport 2 FACE SYSTEM

– DOWN : the face is down temporarily, and is being recovered; sending packets is possible but delivery is unlikely
to succeed

– CLOSING : the face is being closed normally
– FAILED : the face is being closed due to a failure
– CLOSED : the face has been closed

• Counters gives statictics about the count and size of Interests, Data, Nacks, and lower layer packets sent and received
on the face.

Face

Forwarding

Socket

generic link
service

vehicular link
service

UNIX
transport

Ethernet
transport

UDP
transport

TCP
transport

network layer packet: Interest, Data, Nack

TLV Block

UNIX/TCP stream, Ethernet frame, UDP packet

Figure 2: Face = LinkService + Transport

Internal structure Internally, a face is composed of a link service and a transport (Figure 2). The transport (Sec-
tion 2.2) is the lower part of a face, which wraps the underlying communication mechanism (such as sockets or libpcap
handles), and exposes a best-effort TLV packet delivery service. The link service (Section 2.3) is the upper part of a face,
which translates between network layer packets and lower layer packets, and provides additional services such as fragmenta-
tion, link failure detection, retransmission. The link service contains a fragmenter and a reassembler to allow it to perform
fragmentation and reassembly.

The face is implemented as nfd::face::Face class. The Face class is designed to be non-inheritable (except for unit
testing), and the link service and transport passed to its constructor fully defines its behavior. Within the constructor, both
the link service and the transport are given a pointer to each other and to the face, so that they may call into each other
with lowest runtime overhead.

Received and sent packets pass through both the transport and the link service before they are passed to forwarding
or are sent on the link, respectively. When packets are received by the transport, they are passed to the link service by
calling the LinkService::receivePacket function. When a packet is sent through the face, it is first passed to the link
service through a function specific to the packet type (Face::sendInterest, Face::sendData, or Face::sendNack). Once
the packet has been processed, it is passed (or, if it has been fragmented, its fragments are passed) to the transport by
calling the Transport::send function. Within the link service and transport, remote endpoints are identified using a remote
endpoint id (Transport::EndpointId), which is a 64-bit unsigned integer that contains a protocol-specific unique identifier
for each remote host.

2.2 Transport

A transport (nfd::face::Transport base class) provides best-effort packet delivery service to the link service of the face.
The link service may invoke Transport::send to send a packet. When a packet arrives, LinkService::receivePacket will
be invoked. Each packet must be a complete TLV block; the transport makes no assumption on the TLV-TYPE of this
block. In addition, each received packet is accompanied with an EndpointId which indicates the sender of this packet, which
is useful for fragment reassembly, failure detection, and other purposes on a multi access link.

Transport attributes The transport provides LocalUri, RemoteUri, Scope, Persistency, LinkType, State attributes. The
transport also maintains lower-layer packet counters and byte counters on incoming and outgoing directions. These attributes
and counters are accessible through the face.

10

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

2.2 Transport 2 FACE SYSTEM

If a transport’s persistency is set to permanent, the transport is responsible for taking necessary actions to recover
from underlying failures. For example: a UDP transport should ignore socket errors; a TCP transport should attempt to
re-establish TCP connection if the previous connection is closed. The progress of such recovery is reflected in the State
attribute.

In addition, the transport provides the following attributes for use by link service:

• Mtu indicates the maximum packet size that can be sent or received through this transport. It can be either a positive
number, or a special MTU UNLIMITED that indicates there’s no limit on packet size. This attribute is read-only. The
transport may change the value of this attribute at any time, and the link service should be prepared for such changes.

FaceUri FaceUri is a URI that represents the endpoint or communication channel used by a transport. It starts with
a scheme that indicates the underlying protocol (e.g. udp4), followed by a scheme-specific representation of the underlying
address. It’s used in LocalUri and RemoteUri attributes.

The rest of this section describes each individual transport for different underlying communication mechanism, including
their FaceUri format, implementation details, and feature limitations.

2.2.1 Internal Transport

Internal transport (nfd::face::InternalForwarderTransport) is a transport that pairs with an internal client-side trans-
port (nfd::face::InternalClientTransport). Packets transmitted on the internal forwarder-side transport is received on
the paired client-side transport, and vice versa. This is mainly used to communicate with NFD management; this is also
used to implement TopologyTester (Section 10.1.3) for unit testing.

2.2.2 Unix Stream Transport

Unix stream transport (nfd::face::UnixStreamTransport) is a transport that communicates on stream-oriented Unix
domain sockets.

NFD listens for incoming connections via UnixStreamChannel at a named socket whose path is specified by face system.unix.path

configuration option. A UnixStreamTransport is created for each incoming connection. NFD does not support making out-
going Unix stream connections.

The static attributes of a Unix stream transport are:
• LocalUri unix://path where path is the socket path; e.g. unix:///var/run/nfd.sock
• RemoteUri fd://file-descriptor where file-descriptor is the file descriptor of the accepted socket within NFD process;

e.g. fd://30
• Scope local
• Persistency on-demand; other persistency settings are disallowed
• LinkType point-to-point
• Mtu unlimited
UnixStreamTransport is derived from StreamTransport, a transport which is used for all stream-based transports,

including Unix stream and TCP. Most of the functionality of UnixStreamTransport is handled by StreamTransport. As
such, when a UnixStreamTransport receives a packet that exceeds the maximum packet size or is not valid, the transport
enters a failed state and closes.

Received data is stored in a buffer. The current amount of data in the buffer is stored. Upon every receive, the transport
processes all valid packets in the buffer. Then, the transport copies any remaining octets to the beginning of the buffer and
waits for more octets, appending the new octets to the end of the existing octets.

2.2.3 Ethernet Transport

Ethernet transport (nfd::face::EthernetTransport) is a transport that communicates directly on Ethernet.
Ethernet transport currently supports multicast only. NFD automatically creates an Ethernet transport on every

multicast-capable network interface during initialization or configuration reload. To disable Ethernet multicast transports,
change face system.ether.mcast option to “no” in NFD configuration file.

The multicast group is specified on face system.ether.mcast group option in NFD configuration file. All NDN hosts
on the same Ethernet segment must be configured with the same multicast group in order to communicate with each other;
therefore, it’s recommended to keep the default multicast group setting.

The static attributes of an Ethernet transport are:
• LocalUri dev://ifname where ifname is network interface name; e.g. dev://eth0
• RemoteUri ethet://[ethernet-addr] where ethernet-addr is the multicast group; e.g. ether://[01:00:5e:00:17:aa]

11

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

2.2 Transport 2 FACE SYSTEM

• Scope non-local
• Persistency permanent; other persistency settings are disallowed
• LinkType multi-access
• Mtu MTU of the network interface
EthernetTransport uses a libpcap handle to transmit and receive on an Ethernet link. The handle is initialized by

activating onto an interface. Then, the link-layer header format is set to EN10MB and libpcap is set to only capture
incoming packets. After the handle is initialized, the transport sets a packet filter to only capture packets with the NDN
type (0x8624) that are sent to the multicast address. The use of promiscuous mode is avoided by directly adding the address
to the link-layer multicast filters using SIOCADDMULTI. However, if this fails, the interface can fall back to promiscuous
mode.

The libpcap handle is integrated with Boost Asio through the async read some function by calling the pcap read functions
in the read handler. If an oversized or invalid packet is received, it is dropped.

Each Ethernet link is a broadcast medium that naturally supports multicast communication. Although it is possible to
use this broadcast medium as many point-to-point links, doing so loses NDN’s native multicast benefits, and increases the
workload of NFD hosts. Therefore, we decided it is best to use Ethernet links as multi-access only, and to not support
Ethernet unicast.

2.2.4 UDP unicast Transport

UDP unicast transport (nfd::face::UnicastUdpTransport) is a transport that communicates on UDP tunnels over IPv4
or IPv6.

NFD listens for incoming datagrams via UdpChannel at a port number specified by the face system.udp.port configura-
tion option. A UnicastUdpTransport is created for each new remote endpoint. NFD can also create outgoing UDP unicast
Transports.

The static attributes of a UDP unicast transport are:
• LocalUri and RemoteUri

– IPv4 udp4://ip:port ; e.g. udp4://192.0.2.1:6363
– IPv6 udp6://ip:port where ip is in lower case and enclosed by square brackets; e.g. udp6://[2001:db8::1]:6363

• Scope non-local
• Persistency on-demand for transport created from accepted socket, persistent or permanent for transport created for

outgoing connection; changing persistency settings is allowed in the transport, but currently forbidden in FaceManager

• LinkType point-to-point
• Mtu maximum IP length minus IP and UDP header
UnicastUdpTransport is derived from DatagramTransport. As such, it is created by adding an existing UDP socket to

the transport.
The unicast UDP transport relies on IP fragmentation instead of fitting packets to the MTU of the underlying link. This

allows packets to traverse links with lower MTUs, as intermediate routers are able to fragment the packet as needed. IP
fragmentation is enabled by preventing the Don’t Fragment (DF) flag from being set on outgoing packets. On Linux, this is
done by disabling PMTU discovery.

When the transport receives a packet that is too large or is incomplete, the packet is dropped. Unicast UDP transports
with an on demand persistency will time out if a non-zero idle timeout is set.

Unicast UDP transports will fail on an ICMP error, unless they have a permanent persistency. However, when choosing
permanent persistency, note that there are no UP/DOWN transitions, requiring the use of a strategy that tries multiple
faces.

2.2.5 UDP multicast Transport

UDP multicast transport (nfd::face::MulticastUdpTransport) is a transport that communicates on a UDP multicast
group.

NFD automatically creates a UDP multicast transport on every multicast-capable network interface during initialization
or configuration reload. To disable UDP multicast transports, change face system.udp.mcast option to “no” in NFD
configuration file.

UDP multicast transport currently only supports IPv4 multicast over a single hop. Since UDP multicast communication
is only supported over a single hop and almost all platforms support IPv4 multicast, there is no use case for IPv6 multi-
cast and it is not supported. The multicast group and port number are specified on face system.udp.mcast group and
face system.udp.mcast port options in NFD configuration file. All NDN hosts on the same IP subnet must be configured
with the same multicast group in order to communicate with each other; therefore, it’s recommended to keep the default
multicast group setting.

12

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

2.2 Transport 2 FACE SYSTEM

The static attributes of a UDP multicast transport are:
• LocalUri udp4://ip:port ; e.g. udp4://192.0.2.1:56363
• RemoteUri udp4://ip:port ; e.g. udp4://224.0.23.170:56363
• Scope non-local
• Persistency permanent
• LinkType multi-access
• Mtu maximum IP length minus IP and UDP header
MulticastUdpTransport is derived from DatagramTransport. The transport uses two separate sockets, one for sending

and one for receiving. These functions are split between the sockets to prevent sent packets from being looped back to the
sending socket.

2.2.6 TCP Transport

TCP transport (nfd::face::TcpTransport) is a transport that communicates on TCP tunnels over IPv4 or IPv6.
NFD listens for incoming connections via TcpChannel at a port number specified by face system.tcp.port configuration

option. A TcpTransport is created for each incoming connection. NFD can also make outgoing TCP connections.
The static attributes of a TCP transport are:
• LocalUri and RemoteUri

– IPv4 tcp4://ip:port ; e.g. tcp4://192.0.2.1:6363
– IPv6 tcp6://ip:port where ip is in lower case and enclosed by square brackets; e.g. tcp6://[2001:db8::1]:6363

• Scope local if remote endpoint has loopback IP, non-local otherwise
• Persistency on-demand for transport created from accepted socket, persistent for transport created for outgoing

connection; changing between on-demand and persistent is allowed; permanent is unimplemented, but will be supported
in the future

• LinkType point-to-point
• Mtu unlimited
Like UnixStreamTransport, TcpTransport is derived from StreamTransport, and thus its other specifics can be found

in the UnixStreamTransport section (section 2.2.2).

2.2.7 WebSocket Transport

WebSocket implements a message-based protocol on top of TCP for reliability. WebSocket is the protocol used by many
web applications to maintain a long connection to remote hosts. It is used by NDN.JS client library to establish connections
between browsers and NDN forwarders.

NFD listens for incoming WebSocket connections via WebSocketChannel at a port number specified by face system.websocket.port

configuration option. The channel listens over unencrypted HTTP and at the root path (i.e. ws://<ip>:<port>/); you
may deploy a frontend proxy to enable TLS encryption or change the listener path (wss://<ip>:<port>/<path>). A
WebSocketTransport is created for each incoming connection. NFD does not support outgoing WebSocket connections.

The static attributes of a WebSocket transport are:
• LocalUri ws://ip:port ; e.g. ws://192.0.2.1:9696 ws://[2001:db8::1]:6363
• RemoteUri wsclient://ip:port ; e.g. ws://192.0.2.2:54420 ws://[2001:db8::2]:54420
• Scope local if remote endpoint has loopback IP, non-local otherwise
• Persistency on-demand
• LinkType point-to-point
• Mtu unlimited

WebSocket encapsulation of NDN packets WebSocketTransport expects exactly one NDN packet or LpPacket in
each WebSocket frame. Frames containing incomplete or multiple packets will be dropped and the event will be logged by
NFD. Client applications (and libraries) should not send such packets to NFD. For example, a JavaScript client inside a web
browser should always feed complete NDN packets into the WebSocket.send() interface.

WebSocketTransport is implemented using the websocketpp library.
The relationship between WebSocketTransport and WebSocketChannel is tighter than most Transport-Channel relation-

ships. This is because messages are delivered through the channel.

2.2.8 Developing a New Transport

A new transport type can be created by first creating a new transport class that either specializes one of the transport tem-
plate classes ((StreamTransport and DatagramTransport) or inherits from the Transport base class. If the new transport

13

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

2.3 Link Service 2 FACE SYSTEM

type is inheriting directly from the Transport base class, then you will need to implement some virtual functions, includ-
ing beforeChangePersistency, doClose, and doSend. In addition, you will need to set the static properties (LocalUri,
RemoteUri, Scope, Persistency, LinkType, and Mtu) in the constructor. When necessary, you can set the State of the
transport and the ExpirationTime.

When specializing a transport template, some of the preceding tasks will be handled by the template class. Depending
upon the template, all you may need to implement is the constructor and the beforeChangePersistency function, in addition
to any needed helper functions. However, note that you will still need to set the static properties of the transport in the
constructor.

2.3 Link Service

A link service (nfd::face::LinkService base class) works on top of a transport and provides a best-effort network layer
packet delivery service. A link service must translate between network layer packets (Interests, Data, and Nacks) and link
layer packets (TLV blocks). In addition, additional link services may be provided, to bridge the gap between the desire
of forwarding and the capabilities of the underlying transport. For example, if the underlying transport has a Maximum
Transmission Unit (MTU) limit, fragmentation and reassembly will be needed in order to send and receive network layer
packets larger than MTU; if the underlying transport has a high loss rate, per-link retransmission may be enabled to reduce
loss and improve performance.

2.3.1 Generic Link Service

Generic link service (nfd::face::GenericLinkService) is the default service in NFD. Its link layer packet format is
NDNLPv2 [5].

As of NFD 0.4.0, the following features are implemented:

1. encoding and decoding of Interest, Data, and Nack

Interests, Data, and Nack are now encapsuled in LpPackets (the Generic Link Service only supports one network layer
packet or fragment per LpPacket). LpPackets contain header fields and a fragment. This allows hop-by-hop information
to be separated from ICN information.

2. fragmentation and reassembly (indexed fragmentation)

Interests and Data can be fragmented and reassembled hop-by-hop to allow for the traversal of links with different
MTUs.

3. consumer controlled forwarding (NextHopFaceId field)

The NextHopFaceId field enables the consumer to specify the face that an Interest should be sent out of on a connected
forwarder.

4. local cache policy (CachePolicy field)

The CachePolicy field enables a producer to specify the policy under which a Data should be cached (or not cached,
depending upon the policy).

5. incoming face indication (IncomingFaceId field)

The IncomingFaceId field can be attached to an LpPacket to inform local applications about the face on which the
packet was received.

Other planned features include:

1. failure detection (similar to BFD [6])

2. link reliability improvement (repeat request, similar to ARQ [7])

What services are enabled depends upon the type of transport:

14

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

2.3 Link Service 2 FACE SYSTEM

Fragmentation Local Fields (NextHopFaceId, CachePolicy, IncomingFaceId)

Internal No Yes
UnixStream No No*
Ethernet Yes No
UnicastUdp Yes No
MulticastUdp Yes No
Tcp No No*
WebSocket No No

* Local fields can be enabled on these transport types when they have a local scope. They can be enabled through the
enableLocalControl management command (see section 6.4).

If fragmentation is enabled and a link has a limited MTU, the link service submits the network layer packet encapsulated
in a link layer packet to the fragmenter. The specific implementation of the fragmenter is discussed in a separate section
below. The link service hands each fragment off to the transport for transmission. If fragmentation is not enabled or the link
has an unlimited MTU, a sequence is assigned to the packet and it is passed to the transport for transmission.

When a link layer packet is received on the other end, it is passed from the transport to the link service. If fragmentation
is not enabled on the receiving link service, the received packet is checked for FragIndex and FragCount fields and dropped
if it contains them. The packet is then given to the reassembler, which returns a reassembled packet, but only if the received
fragment completed it. The reassembled packet is then decoded and passed up to the forwarding. Otherwise, the received
fragment is not processed further.

Packet Fragmentation and Reassembly in the Generic Link Service The Generic Link Service uses indexed frag-
mentation (described in further detail in section 2.5). The sending link service has a fragmenter. The fragmenter returns a
vector of fragments encapsulted in link layer packets. If the size of the packet is less than the MTU, the fragmenter returns
a vector containing only one packet. The link service assigns each fragment a consecutive Sequence number and, if there is
more than one fragment, inserts a FragIndex and FragCount field into each. The FragIndex is the 0-based index of the
fragment in relation to the network layer packet and the FragCount is the total number of fragments produced from the
packet.

The receiving link service has a reassembler. The reassembler keeps track of received fragments in a map with a key based
upon the remote endpoint id (see ”Face - Internal Structure” - 2.1) and the Sequence of the first fragment in the packet. It
returns the reassembled packet if it is complete. The reassembler also manages timeouts of incomplete packets, setting the
drop timer when the first fragment is received. Upon receiving a new fragment for a packet, the drop timer for that packet
is reset.

Encode network packet
into link layer packet

Fragment packet
(if allowed)

Assign sequence number

Send Path

Receive Path

Store and then reassemble
packet (if allowed/needed)

Decode complete link layer
packet into network packet

Transport

Link layer packets
from Transport

Forwarding

Interests, Data,
and Nacks from
forwarding

Figure 3: GenericLinkService Internal Structure

2.3.2 Vehicular Link Service

Vehicular link service is a planned feature to implement a link service suitable for vehicular networks.

15

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

2.4 Face Manager, Protocol Factories, and Channels 2 FACE SYSTEM

2.3.3 Developing a New Link Service

The link service can provide many services to the face, so a new link service needs to handle a number of tasks. At the
minimum, a link service must encode outgoing and decode incoming Interests, Data, and Nacks. However, depending upon
the intended use of the new link service, it may also be necessary to implement services like fragmentation and reassembly,
local fields, and Sequence number assignment, in addition to any other needed services.

2.4 Face Manager, Protocol Factories, and Channels

Faces are organized using the FaceManager, which controls individual protocol factories and channels.
The FaceManager (described in detail in section 6.4) manages the creation and destruction of faces. Faces are created

through their protocol-specific factory (described below).
A protocol factory manages the channels (unicast) and multicast faces of a particular protocol type. Subclasses of

ProtocolFactory need to implement the createFace and getChannels virtual functions. Optionally, the createChannel,
createMulticastFace, and getMulticastFaces functions can be implemented, in addition to any protocol-specific functions.

A channel listens for and handles incoming unicast connections and starts outgoing unicast connections for a specific local
endpoint. Faces are created upon the success of either of these actions. Channels are created by protocol factories when
the createChannel function is called. Upon creation of a new face, either incoming or outgoing, the FaceCreatedCallback

specified to the listen function is called. If creation of the face failed, then the FaceCreationFailedCallback (also specified
to listen) is called. Ownership of the listening socket (or in the case of WebSocket, the WebSocket server handle) lies with
the individual channel. Sockets connected to remote endpoints are owned by the transport associated with the relevant face,
except in the case of WebSocket, where all faces use the same server handle. Note that there are no Ethernet channels, as
Ethernet links in NFD are multicast only.

Faces require a canonical face URI, instead of performing DNS resolutions, as the latter would require unnecessary
overhead in the face system. DNS resolution can instead be performed by outside libraries and utilities, providing the
resolved canonical face URI to NFD.

2.4.1 Creation of Faces From Configuration

One way that channels and multicast faces can be created is from a configuration file. To create these faces and channels,
FaceManager processes the face system section of the configuration file. For each protocol type in the file, FaceManager
creates a protocol factory (if one does not already exist). Then, FaceManager directs the appropriate factory to create a
channel for each enabled protocol, depending upon options from the configuration section. For protocols that support both
IPv4 and IPv6, FaceManager can direct the factories to create a channel for each, if they are enabled. For multicast protocols
like UDP and Ethernet, FaceManager directs the factory to create a multicast face on each interface, if multicast and other
relevant options are enabled.

2.4.2 Creation of Faces From faces/create Command

Another way that faces can be created is using the faces/create command. Upon receiving this command, NFD calls the
createFace function in the FaceManager. This command parses the provided face URI and extracts the protocol type from
it. Protocol factories are stored in a map, ordered by protocol type. When creating a face, the FaceManager determines the
correct protocol factory to use by parsing the protocol type from the face URI it is provided with. If no matching protocol
factory is found, the command fails. Otherwise, it calls the createFace function in the relevent protocol factory to create
the face.

2.5 NDNLP

The NDN Link Protocol (version 2) provides a link protocol between the forwarding and the underlying network transmission
protocols and systems (like TCP, UDP, Unix sockets, and Ethernet). It allows for a uniform interface to the forwarding link
services and provides a bridge between these services and the underlying network layers. Through this method, the specific
features and mechanisms of these underlying layers can be overlooked by the upper layers. In addition, the link protocol
provides services common to every type of link, the specific implementation of which may vary from link type to link type.
The link service also specifies a common TLV link-layer packet format. The services currently provided by NDNLP include
fragmentation and reassembly, Negative Acknowledgement (Nacks), consumer-controlled forwarding, cache policy control,
and providing information about the incoming face of a packet to applications. Features planned for the future include link
failure detection (BFD) and ARQ. These features can be individually enabled and disabled.

16

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

2.5 NDNLP 2 FACE SYSTEM

F
a

ce
M

a
n

a
g

e
r

A
g

g
re

g
a

te
 p

ro
to

co
l

fa
cto

rie
s

P
ro

ce
ss F

a
ce

M
a

n
a

g
e

m
e

n
t

co
m

m
a

n
d

s

W
e

b
S

o
cke

tF
a

cto
ry

U
n

ixS
tre

a
m

F
a

cto
ry

U
d

p
F

a
cto

ry

T
cp

F
a

cto
ry

E
th

e
rn

e
tF

a
cto

ry

A
g

g
re

g
a

te
 ch

a
n

n
e

ls o
f

th
e

 sa
m

e
 typ

e

C
re

a
te

 C
h

a
n

n
e

l

C
re

a
te

 M
u

ltica
stF

a
ce

P
ro

to
co

lF
a

cto
ry

U
n

ixS
tre

a
m

C
h

a
n

n
e

l

W
e

b
S

o
cke

tC
h

a
n

n
e

l

U
d

p
C

h
a

n
n

e
l

T
cp

C
h

a
n

n
e

l
C

h
a

n
n

e
l

A
cce

p
t co

n
n

e
ctio

n
s o

n
 lo

ca
l

e
n

d
p

o
in

t (tcp
, u

n
ix, w

s)

C
o

n
n

e
ct to

 re
m

o
te

 e
n

d
p

o
in

t

A
cce

p
t p

a
cke

ts o
n

 lo
ca

l
e

n
d

p
o

in
t (u

d
p

)

C
re

a
te

 u
n

ica
st

F
ace

L
o

o
ku

p
 e

xistin
g

F
a

ce
 u

sin
g

 re
m

o
te

e
n

d
p

o
in

t

F
ace

P
ro

ce
ss re

ce
ive

d
 p

a
cke

ts

S
e

n
d

 a
n

d
 re

ce
ive

 lin
k

la
ye

r p
a

cke
ts

D
isp

a
tch

 cre
a

te
F

a
ce

 re
q

u
e

sts to
co

rre
ct C

h
a

n
n

e
l b

a
se

d
 o

n
 su

p
p

lie
d

F
aceU

ri

P
rocess N

F
D

co
n

fig
u

ra
tio

n
 file

L
in

kS
e

rvice

T
ra

n
s

p
o

rt

F
ra

g
m

e
n

t p
a

cke
ts

b
e

fo
re

 se
n

d
in

g

C
re

a
te

 in
sta

n
ce

 o
f L

in
kS

e
rvice

a
n

d
 T

ra
n

sp
o

rt, cre
a

te
 F

a
ce

in
sta

n
ce

 w
ith

 cre
a

te
d

 L
in

kS
e

rvice
a

n
d

 T
ra

n
sp

o
rt

C
o

n
n

e
ct L

in
kS

e
rvice

 a
n

d
T

ra
n

sp
o

rt

P
ro

vid
e

 u
p

p
e

r in
te

rfa
ce

to
 fo

rw
a

rd
in

g

O
w

n
s liste

n
in

g
so

cke
t

O
w

n
s co

n
n

e
cte

d
 so

cke
t

Figure 4: FaceManager, Channel, ProtocolFactory, and Face interactions

17

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

2.5 NDNLP 2 FACE SYSTEM

In NFD, the link protocol is implemented in the LinkService. This link protocol replaces the previous version of the
NDN Link Protocol (NDNLPv1) [8].

A description of each of the features:

• fragmentation and reassembly

Fragmentation and reassembly is done hop-by-hop using indexed fragmentation. Packets are fragmented and are
assigned a FragIndex field, which indiciates their zero-based index in the fragmented packet, and a FragCount field,
which is the total number of fragments of the packet. All link-layer headers associated with the network-layer packet
are only attached to the first fragment. Other, unrelated link-layer headers may be attached to any fragment by
”piggybacking” onto it. The recipient uses the FragIndex and FragCount fields from each fragment to reassemble
the complete packet.

• Negative Acknowledgement (Nacks)

Negative Acknowledgements are messages sent downstream to indiciate that a forwarder was unable to satisfy a par-
ticular Interest. The relevant Interest is included with the Nack in the Fragment field. The Nack itself is indicated
with the Nack header field in the packet.

The Nack can optionally include a NackReason field (under the Nack field) to indicate why the forwarder was unable
to satisfy the Interest. These reasons include congestion on the link, a duplicate Nonce being detected, and no route
matching the Interest.

• consumer-controlled forwarding

Consumer-controlled forwarding allows an application to specify which face an outgoing Interest should be sent on.
It is indicated with the NextHopFaceId header, which includes the ID of the face on the local forwarder that the
Interest should be sent out of.

• cache policy control

Through cache policy control, a producer can indicate how its Data should be cached (or not cached). This is done
using the CachePolicy header, which contains the CachePolicyType field. The non-negative integer contained in
this inner field is the indication of which cache policy this application wishes downstream forwarders to follow.

• incoming face indication

A forwarder can inform an application of the face on which a particular packet was received by attaching the Incom-
ingFaceId header to it. This field contains the face ID of the face on the forwarder that the packet was received
on.

18

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

3 TABLES

3 Tables

The tables module provides main data structures for NFD.
The Forwarding Information Base (FIB) (Section 3.1) is used to forward Interest packets toward potential source(s) of

matching Data. It’s almost identical to an IP FIB except it allows for a list of outgoing faces rather than a single one.
The Network Region Table (Section 3.2) contains a list of producer region names for mobility support.
The Content Store (CS) (Section 3.3) is a cache of Data packets. Arriving Data packets are placed in this cache as long

as possible, in order to satisfy future Interests that request the same Data.
The Interest Table (PIT) (Section 3.4) keeps track of Interests forwarded upstream toward content source(s), so that Data

can be sent downstream to its requester(s). It also contains recently satisfied Interests for loop detection and measurements
purposes.

The Dead Nonce List (Section 3.5 supplements the Interest Table for loop detection.
The Strategy Choice Table (Section 3.6) contains the forwarding strategy (Section 5) chosen for each namespace.
The Measurements Table (Section 3.7) is used by forwarding strategies to store measurements information regarding a

name prefix.
FIB, PIT, Strategy Choice Table, and Measurements Table have much commonality in their index structure. To improve

performance and reduce memory usage, a common index, the Name Tree (Section 3.8), is designed to be shared among these
four tables.

3.1 Forwarding Information Base (FIB)

The Forwarding Information Base (FIB) is used to forward Interest packets toward potential source(s) of matching Data [9].
For each Interest that needs to be forwarded, a longest prefix match lookup is performed on the FIB, and the list of outgoing
faces stored on the found FIB entry is an important reference for forwarding.

The structure, semantics, and algorithms of FIB is outlined in Section 3.1.1. How FIB is used by rest of NFD is described
in Section 3.1.2. The implementation of FIB algorithms is discussed in Section 3.8.

3.1.1 Structure and Semantics

Figure 5 shows logical content and relationships between the FIB, FIB entries, and NextHop records.

FIB

Entry

Name prefixPK

NextHop

FacePK

cost

Figure 5: FIB and related entities

FIB entry and NextHop record
A FIB entry (nfd::fib::Entry) contains a name prefix and a non-empty collection of NextHop records. A FIB entry

of a certain prefix means that given an Interest under this prefix, a potential source(s) of matching Data can be reached via
the faces given by the NextHop record(s) in this FIB entry.

Each NextHop record (nfd::fib::NextHop) contains an outgoing face toward a potential content source and its routing
cost. A FIB entry can contain at most one NextHop record toward the same outgoing face. Within a FIB entry, NextHop
records are ordered by ascending cost. The routing cost is relative between NextHop records; the absolute value is insignificant.

Unlike the RIB (Section 7.3.1), there is no inheritance between FIB entries. The NextHop records within a FIB entry are
the only “effective” nexthops for this FIB entry.

FIB
The FIB (nfd::Fib) is a collection of FIB entries, indexed by name prefix. The usual insertion, deletion, exact match

operations are supported. FIB entries can be iterated over in a forward iterator, in unspecified order.

19

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

3.2 Network Region Table 3 TABLES

Longest Prefix Match algorithm (Fib::findLongestPrefixMatch) finds a FIB entry that should be used to guide the
forwarding of an Interest. It takes a name as input parameter; this name should be the name field in an Interest. The return
value is a FIB entry such that its name prefix is (1) a prefix of the parameter, and (2) the longest among those satisfying
condition 1; NULL is returned if no FIB entry satisfy condition 1.

Fib::removeNextHopFromAllEntries is a convenient method that iterates over all FIB entries, and removes NextHop
record of a certain face from every entry. Since a FIB entry must contain at least one FIB entry, if the last NextHop record
is removed, the FIB entry is deleted. This is useful when a face is gone.

3.1.2 Usage

The FIB is updated only through using FIB management protocol, which on NFD sides is operated by the FIB manager
(Section 6.5). Typically, FIB manager takes commands from RIB Daemon (Section 7), which in turn receives static routes
configured manually or registered by applications, and dynamic routes from routing protocols. Since most FIB entries
ultimately come from dynamic routes, the FIB is expected to contain a small number of entries, if the network has a small
number of advertised prefixes.

The FIB is expected to be relatively stable. FIB updates are triggered by RIB updates, which in turn is caused by
manual configuration, application startup or shutdown, and routing updates. These events are infrequent in a stable network.
However, each RIB update can cause lots of FIB updates, because changes in one RIB entry may affect its descendants due
to inheritance.

The longest prefix match algorithm is used by forwarding in incoming Interest pipeline (Section 4.2.1). It is called at
most once per incoming Interest.

3.2 Network Region Table

The Network Region Table (nfd::NetworkRegionTable) is used for mobility support (Section 4.2.3). It contains an unordered
set of producer region names, taken from NFD configuration file (Section 6.7.2). If any delegation name in the Link object
of an Interest is a prefix of any region name in this table, it means the Interest has reached the producer region, and should
be forwarded according to its Name rather than delegation name.

3.3 Content Store (CS)

The Content Store (CS) is a cache of Data packets. Arriving Data packets are placed in this cache as long as possible, in
order to satisfy future Interests that request same Data. As define in NDN architecture [9] and described in more detail in
Section 4, the Content Store is searched before the incoming Interest is given to the forwarding strategy for further processing.
This way, the cached Data, if available, can be used to satisfy the Interest without actually forwarding the Interest anywhere
else.

The following Section 3.3.1 will define the semantics and algorithms of CS, while details about current implementation
are discussed in Section 3.3.2.

3.3.1 Semantics and Usage

The Content Store (nfd::cs::Cs) is a cache of Data packets. Data packets are inserted to the CS (Cs::insert) either in the
incoming Data pipeline (Section 4.3.1) or in the Data unsolicited pipeline (Section 4.3.2), after forwarding ensures eligibility
of the Data packet to be processed at all (e.g., that the Data packet does not violate the name-based scope [10].

Before storing the Data packet, the admission policy is evaluated. Local applications can give hints to the admission
policy in CachePolicy field of LocalControlHeader [11] attached to the Data packet. Those hints are considered advisory.

After passing the admission policy, the Data packet is stored, along with the time point at which it would become stale
and can no longer satisfy an Interest with MustBeFresh Selector.

CS is queried (Cs::find) with an incoming Interest before it’s forwarded in incoming Interest pipeline (Section 4.2.1).
The lookup API is asynchronous. The search algorithm gives the Data packet that best matches the Interest to ContentStore
hit pipeline (Section 4.2.4), or informs ContentStore miss pipeline (Section 4.2.3) if there’s no match.

CS has limited capacity, measured in number of packets. It is controlled via NFD configuration file (Section 6.7.2).
Management calls Cs::setLimit to update the capacity. CS implementation should ensure number of cached packets does
not exceed the capacity.

20

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

3.3 Content Store (CS) 3 TABLES

Enumeration and Entry Abstraction The Content Store can be enumerated via ForwardIterators. This feature is not
directly used in NFD, but it could be useful in simulation environments.

In order to keep a stable enumeration interface, but still allow the CS implementation to be replaced, the iterator is
dereferenced to nfd::cs::Entry type, which is an abstraction of CS entry. The public API of this type allows the caller to
get the Data packet, whether it’s unsolicited, and the time point at which it would become stale. An CS implementation
may define its own concrete type, and convert to the abstraction type during enumeration.

3.3.2 Implementation

CS performance has a big impact on the overall performance of NFD, because it stores a large number of packets, and
virtually every packet accesses the CS. The choice of the underlying data structure for an efficient lookup, insertion, and
deletion, and cache replacement algorithm is crucial for maximizing the practical benefits of in-network caching.

The current implementation uses two separate data structures: the Table as a Name index, and CachePolicy for cache
replacement.

Table for lookup The Table is an ordered container that stores concrete entries (nfd::cs::EntryImpl, subclass of the
entry abstraction type). This container is sorted by Data Name with implicit digest. 2

Lookups are performed entirely using the Table. The lookup procedure is optimized to minimize the number of entries
visited in the expected case. In the worst case, a lookup would visit all entries that has Interest Name as a prefix.

Although the lookup API is asynchronous, the currently implementation does lookups synchronously.
The Table uses std::set as the underlying container because its good performance in benchmarks. A previous CS

implementation uses a skip list for a similar purpose, but its performance is worse than std::set, probably due to algorithm
complexity and code quality.

CachePolicy for cache replacement A CachePolicy is a interface used to keep track of data usage information in CS
and has the same capacity limit as CS all the time. CS uses CS::setPolicy to specify a Cache Policy. When CS::setLimit

is invoked to update CS’s capacity. CachePolicy::setLimit should be invoked as well.
All CS cache policies are implemented as subclasses of CS::CachePolicy base class, which provides four public APIs for

interaction of the implemented cache policy and CS. The implementation of the APIs are seperated from the public APIs
and are declared as pure virtual method.

1. CachePolicy::afterInsert invoked by CS after a new entry is inserted and implemeneted in CachePolicy::doAfter-

Insert;

2. CachePolicy::afterRefresh invoked by CS after an existing entry is refreshed by same Data and implemented in
CachePolicy::doAfterRefresh;

3. CachePolicy::beforeErase invoked by CS before an entry is erased due to management command and implemented
in CachePolicy::doBeforeErase;

4. CachePolicy::beforeUse invoked by CS before an entry is used to match a lookup and implemented in CachePolicy::

doBeforeUse.

CachePolicy::doAfterInsert
When a new entry is inserted into CS, the policy will decide whether to accept it or not. If it is accepted, it should be

inserted into a cleanup index. Otherwise, CachePolicy::evictEntries will be called to inform CS to do cleanup.

CachePolicy::doAfterRefresh
When data is refreshed in CS, the policy may witness this refresh and thus update data usange information to make

better eviction decisions in the future.

CachePolicy::doBeforeErase
When an entry is erased due to management command, the policy may not need to keep track of its usage any more. It

may need to cleanup information about this entry.

2Implicit digest computation is CPU-intensive. The Table has an optimization that avoids implicit digest computation in most cases while still
guarantee correct sorting order.

21

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

3.3 Content Store (CS) 3 TABLES

CachePolicy::doBeforeUse
When entry is looked up in CS, the policy may witness this usage and thus update data usange information to make

better eviction decisions in the future.

CachePolicy::evictEntries
Besides the four pure method which are used to seperate implementation and APIs of CachePolicy, the CachePolicy::

evictEntries is used to help make eviction decisions when needed. It is also declared as pure virtual.
When eviction is needed because the policy is exceeding its capacity after an insertion or capacity adjustment, it will emit

a CachePolicy::beforeEvict signal which CS connects to and after that CS will erase the entry upon signal emission. The
entry which will be picked for eviction depends on how the policy is designed.

Priority FIFO cache policy
Priority-FIFO is the default CachePolicy. Priority-FIFO do evict upon every insertion, because its performance is more

predictable; the alternate, periodical cleanup of many entries, can cause jitter in packet forwarding. Priority-FIFO uses three
queues three queues to keep track of data usage in CS:

1. unsolicited queue contains entries with unsolicited Data;

2. stale queue contains entries with stale Data;

3. FIFO queue contains entries with fresh Data.

At any time, an entry belongs to exactly one Queue, and can appear only once in that queue. Priority-FIFO keeps which
queue each entry belongs to.

These fields, along with the Table iterator stored in the Queue, establish a bidirectional relation between the Table and
the Queues.

Mutation operations must maintain this relation:

• When an entry is inserted, the Entry is emplaced in the Table, and

• When an entry is evicted, its Table iterator erased from the head of its Queue, and the entry is erased from the Table.

• When a fresh entry becomes stale (which is controlled by a timer), its Table iterator is moved from the FIFO queue to
the stale queue, and the Queue indicator and iterator on the entry are updated.

• When an unsolicited/stale entry is updated with a solicited Data, its Table iterator is moved from the unsolicited/stale
queue to the FIFO queue, and the Queue indicator and iterator on the entry are updated

A Queue, despite the name, is not a real first-in-first-out queue, because an entry can move between queues (see mutation
operations above). When an entry is moved, its Table iterator is detached from the old Queue, and appended to the new
Queue. std::list is used as the underlying container; std::queue and std::deque are unsuitable because they can’t
efficiently detach a node.

LRU cache policy
LRU cache policy implements the Least Recently Used cache replacement algorithm which discards discards the least

recently used items first. LRU do evict upon every insertion, because its performance is more predictable; the alternate,
periodical cleanup of many entries, can cause jitter in packet forwarding.

LRU uses one queue to keep track of data usage in CS. The Table iterator is stored in Queue. At any time, when an entry
is used or refreshed, its Table iterator is relocated to the tail of the queue. Also, when an entry is newly inserted, its Table
iterator is pushed at the tail of the queue. When an entry is evicted, its Table iterator erased from the head of its Queue,
and the entry is erased from the Table.

The Queue uses boost::multi index container as the underlying container because its good performance in bench-
marks. boost::multi index container::sequenced index is used for inserting, updating usage and refreshing and boost::

multi index container::ordered unique index is used for erasing by Table::iterator.

22

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

3.4 Interest Table (PIT) 3 TABLES

3.4 Interest Table (PIT)

The Interest Table (PIT) keeps track of Interests forwarded upstream toward content source(s), so that Data can be sent
downstream to its requester(s) [9]. It also contains recently satisfied Interests for loop detection and measurements purposes.
This data structure is called “pending Interest table” in NDN literatures; however, NFD’s PIT contains both pending Interests
and recently satisfied Interests, so “Interest table” is a more accurate term, but the abbreviation “PIT” is kept.

PIT is a collection of PIT entries, used only by forwarding (Section 4). The structure and semantics of PIT entry, and how
it’s used by forwarding are described in Section 3.4.1. The structure and algorithms of PIT, and how it’s used by forwarding
are described in Section 3.4.2. The implementation of PIT algorithms is discussed in Section 3.8.

3.4.1 PIT Entry

Figure 6 shows the PIT, PIT entries, in-records, out-records, and their relations.

PIT

PIT entry

InterestPK

Nonce list

in-record

facePK

lastNonce

lastRenewed

out-record

facePK

lastNonce

lastRenewed

Interest

Figure 6: PIT and related entities

PIT entry
A PIT entry (nfd::pit::Entry) represents either a pending Interest or a recently satisfied Interest. Two Interest packets

are similar if they have same Name and same Selectors [1]. Multiple similar Interests share the same PIT entry.
Each PIT entry is identified by an Interest. All fields in this Interest, except Name and Selectors, are insignificant.
Each PIT entry contains a collection of in-records, a collection of out-records, and two timers, described below. In addition,

forwarding strategy is allowed to store arbitrary information on PIT entry, in-records, and out-records (Section 5.1.3).

In record
An in-record (nfd::pit::InRecord) represents a downstream face for the Interest. A downstream face is a requester

for the content: Interest comes from downstream, and Data goes to downstream.
The in-record stores:

• a reference to the face

• the Nonce in the last Interest packet from this face

• the timestamp on which the last Interest packet from this face arrives

• the last Interest packet

An in-record is inserted or updated by incoming Interest pipeline (Section 4.2.1). All in-records are deleted by incoming
Data pipeline (Section 4.3.1) when a pending Interest is satisfied.

An in-record expires when InterestLifetime has elapsed after the last Interest packet arrives. A PIT entry expires when
all in-records expire. A PIT entry is said to be pending if it contains at least one unexpired in-record.

23

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

3.5 Dead Nonce List 3 TABLES

Out record
An out-record (nfd::pit::OutRecord) represents an upstream face for the Interest. An upstream face is a potential

content source: Interest is forwarded to upstream, and Data comes from upstream.
The out-record stores:

• a reference to the face

• the Nonce in the last Interest packet to this face

• the timestamp on which the last Interest packet to this face is sent

• Nacked field: indicates the last outgoing Interest has been Nacked; this field also records the Nack reason

An out-record is inserted or updated by outgoing Interest pipeline (Section 4.2.5). An out-record is deleted by incoming
Data pipeline (Section 4.3.1) when a pending Interest is satisfied by a Data from that face.

An out-record expires when InterestLifetime has elapsed after the last Interest packet is sent.

Timers
There are two timers on a PIT entry, used by forwarding pipelines (Section 4):

• unsatisfy timer fires when the PIT entry expires (Section 4.2.1)

• straggler timer fires when the PIT entry can be deleted because it has been satisfied or rejected, and is no longer needed
for loop detection and measurements purposes (Section 4.3.1)

3.4.2 PIT

The PIT (nfd::Pit) is a table containing PIT entries, indexed by <Name,Selectors>tuple. The usual insert and delete
operations are supported. Pit::insert method first looks for a PIT entry for similar Interest, and inserts one only if it does
not already exist; there is no separate method for exact match, because forwarding does not need to determine the existence
of a PIT entry without inserting it. The PIT is not iterable, because this is not needed by forwarding.

Data Match algorithm (Pit::findAllDataMatches) finds all Interests that a Data packet can satisfy. It takes a Data
packet as input parameter. The return value is a collection of PIT entries that can be satisfied by this Data packet. This
algorithm does not delete any PIT entry.

3.5 Dead Nonce List

The Dead Nonce List is a data structure that supplements PIT for loop detection purposes.
In August 2014, we found a persistent loop problem when InterestLifetime is short (Bug 1953). Loop detection previously

only uses the Nonces stored in PIT entry. If an Interest is unsatisfied within InterestLifetime, the PIT entry is deleted at the
end of InterestLifetime. When the network contains a cycle whose delay is longer than InterestLifetime, a looping Interest
around this cycle cannot be detected because the PIT entry is gone before the Interest loops back.

A naive solution to this persistent loop problem is to keep the PIT entry for longer duration. However, the memory
consumption of doing this is too high, because PIT entry contains many other things than the Nonce. Therefore, Dead
Nonce List is introduced to store Nonces ”dead” from the PIT.

The Dead Nonce List is a global container in NFD. Each entry in this container stores a tuple of Name and Nonce. The
existence of an entry can be queried efficiently. Entries are kept for a duration after which the Interest is unlikely to loop
back.

The structure and semantics of Dead Nonce List, and how it’s used by forwarding are described in Section 3.5.1. Sec-
tion 3.5.2 discusses how the capacity of Dead Nonce List is maintained.

3.5.1 Structure, Semantics, and Usage

A tuple of Name and Nonce is added to Dead Nonce List (DeadNonceList::add) in incoming Data pipeline (Section 4.3.1)
and Interest finalize pipeline (Section 4.2.8) before out-records are deleted.

The Dead Nonce List is queried (DeadNonceList::has) in incoming Interest pipeline (Section 4.2.1). If an entry with
same Name and Nonce exists, the incoming Interest is a looping Interest.

The Dead Nonce List is a probabilistic data structure: each entry is stored as a 64-bit hash of the Name and Nonce. This
greatly reduces the memory consumption of the data structure. At the same time, there’s a non-zero probability of hash
collisions, which inevitably cause false positives: non-looping Interests are mistaken as looping Interests. Those false positives
are recoverable: the consumer can retransmit the Interest with a fresh Nonce, which most likely would yield a different hash
that doesn’t collide with an existing one. We believe the gain from memory savings outweighs the harm of false positives.

24

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

3.6 Strategy Choice Table 3 TABLES

3.5.2 Capacity Maintenance

Entries are kept in Dead Nonce List for a configurable lifetime. The entry lifetime is a trade-off between effectiveness of
loop detection, memory consumption of the container, and probability of false positives. Longer entry lifetime improves the
effectiveness of loop detection, because a looping Interest can be detected only if it loops back before the entry is removed,
and longer lifetime allows detecting looping Interests in network cycles with longer delay. Longer entry lifetime causes more
entries to be stored, and therefore increases the memory consumption of the container; having more entries also means higher
probability of hash collisions and thus false positives. The default entry lifetime is set to 6 seconds.

A naive approach of entry lifetime enforcement is to keep a timestamp in each entry. This approach consumes too much
memory. Given that the Dead Nonce List is a probabilistic data structure, entry lifetime doesn’t need to be precise. Thus,
we index the container as a first-in-first-out queue, and approximate entry lifetime to the configured lifetime by adjusting
the capacity of the container.

It’s infeasible to statically configure the capacity of the container, because the frequency of adding entries is correlated
to Interest arrival rate, which cannot be accurately estimated by an operator. Therefore, we use the following algorithm to
dynamically adjust the capacity for expected entry lifetime L:

• At interval M , we add a special entry called a mark to the container. The mark doesn’t have a distinct type: it’s
an entry with a specific value, with the assumption that the hash function is non-invertible so that the probability of
colliding with a hash value computed from Name and Nonce is low.

• At interval M , we count the number of marks in the container, and remember the count. The order between adding a
mark and counting marks doesn’t matter, but this shall be consistent.

• At interval A, we look at recent counts. When the capacity of the container is optimal, there should be L/M marks in
the container at all times. If all recent counts are above L/M , the capacity is adjusted down. If all recent counts are
below L/M , the capacity is adjusted up.

In addition, there is a hard upper bound and lower bound of the capacity, to avoid memory overflow and to ensure correct
operations. When the capacity is adjusted down, to bound algorithm execution time, excess entries are not evicted all at
once, but are evicted in batches during future adding operations.

3.6 Strategy Choice Table

The Strategy Choice Table contains the forwarding strategy (Section 5) chosen for each namespace. This table is a new
addition to the NDN architecture. Theoretically, forwarding strategy is a program that is supposed to be stored in FIB
entries [9]. In practice, we find that it is more convenient to save the forwarding strategy in a separate table, instead of
storing it with FIB entry, for the following reasons:

• FIB entries come from RIB entries, which are managed by NFD RIB Daemon (Section 7). Storing the strategy in FIB
entries would require the RIB Daemon to create/update/remove strategies when it manipulates the FIB. This increases
the RIB Daemon’s complexity.

• FIB entry is automatically deleted when the last NextHop record is removed, including when the last upstream face
fails. However, we don’t want to lose the configured strategy.

• The granularity of strategy configuration is different from the granularity of RIB entry or FIB entry. Having both in
the same table makes inheritance handling more complex.

The structure, semantics, and algorithms of Strategy Choice Table is outlined in Section 3.6.1. How Strategy Choice Table
is used by rest of NFD is described in Section 3.6.2. The implementation of Strategy Choice Table algorithms is discussed in
Section 3.8.

3.6.1 Structure and Semantics

Strategy Choice entry
A Strategy Choice entry (nfd::strategy choice::Entry) contains a Name prefix, and the Name of a forwarding strategy

chosen for this namespace. Currently, there is no parameters.
At runtime, a reference to the instantiation of the strategy program is also linked from the Strategy Choice entry.

25

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

3.7 Measurements Table 3 TABLES

Strategy Choice Table
The Strategy Choice Table (nfd::StrategyChoice) is a collection of Strategy Choice entries—associations of namespaces

with specific strategies. There could be only one strategy set per namespace, but sub-namespaces can have their own choices
for the strategy.

Currently, the Strategy Choice Table also maintains a collection of the available (“installed”) strategies and is consulted
by the StrategyChoice manager (see Section ??) whenever a control command is received. Therefore, in order for any
new custom strategy to be known to NFD and be used in the namespace-strategy association, it should be “installed” using
StrategyChoice::install method. Note that each installed strategy should have its own unique name, otherwise an runtim
error will be generated.

In order to guarantee that every namespace has a strategy, NFD always insert the root entry for / namespace to the
Strategy Choice Table during initialization. The strategy chosen for this entry, called the default strategy, is defined by the
hard-coded makeDefaultStrategy free function in daemon/fw/available-strategies.cpp. The default strategy can be
replaced, but the root entry in Strategy Choice Table can never be deleted.

The insertion operation (StrategyChoice::insert) inserts a Strategy Choice entry, or updates the chosen strategy on
an existing entry. The new strategy must have been installed.

The deletion operation (StrategyChoice::erase) deletes a Strategy Choice entry. The namespace covered by the deletes
would inherit the strategy defined on the parent namespace. It is disallowed to delete the root entry.

The usual exact match operation is supported. Strategy Choice entries can be iterated over in a forward iterator, in
unspecified order.

Find Effective Strategy algorithm (StrategyChoice::findEffectiveStrategy) finds a strategy that should be used
to forward an Interest. The effective strategy for the namespace can be defined as follows:

• If the namespace is explicitly associated with the strategy, then this is the effective strategy

• Otherwise, the first parent namespace for which strategy was explicitly set defines the effective strategy.

The find effective strategy algorithm takes a Name, a PIT entry, or a measurements entry as input parameter.3 The
return value of the algorithm is a forwarding strategy that is found by longest prefix match using the supplied name. This
return value is always a valid entry, because every namespace must have a strategy.

3.6.2 Usage

The Strategy Choice Table is updated only through management protocol. Strategy Choice manager (Section ??) is directly
responsible for updating the Strategy Choice Table.

The Strategy Choice is expected to be stable, as strategies are expected to be manually chosen by the local NFD operator
(either user for personal computers or system administrators for the network routers).

The effective strategy search algorithm is used by forwarding in incoming Interest pipeline (Section 4.2.1), Interest
unsatisfied pipeline (Section 4.2.7), and incoming Data pipeline (Section 4.3.1). It is called at most twice per incoming
packet.

3.7 Measurements Table

The Measurements Table is used by forwarding strategies to store measurements information regarding a name prefix.
Strategy can store arbitrary information in PIT and in Measurements (Section 5.1.3). The Measurements Table is indexed
by namespace, so it’s suitable to store information that is associated with a namespace, but not specific to an Interest.

The structure and algorithms of Measurements Table is outlined in Section 3.7.1. How Measurements Table is used by
rest of NFD is described in Section 3.7.2. The implementation of Measurements Table algorithms is discussed in Section 3.8.

3.7.1 Structure

Measurements entry
A Measurements entry (nfd::measurements::Entry) contains a Name, and APIs for strategy to store and retrieve

arbitrary information (nfd::StrategyInfoHost, Section 5.1.3). It’s possible to add some standard metrics that can be
shared among strategies, such as round trip time, delay, jitter, etc. However, we feel that every strategy has its unique needs,
and adding those standard metrics would become unnecessary overhead if the effective strategy is not making use of them.
Therefore, currently the Measurements entry does not contain standard metrics.

3Since the strategy choices can change during the runtime, the last two parameters are necessary to ensure correctness of strategy-specific
information stored in PIT and measurement. For more detail, see Section 5.1.3.

26

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

3.8 NameTree 3 TABLES

Measurements Table
The Measurements Table (nfd::Measurements) is a collection of Measurements entries.
Measurements::get method finds or inserts a Measurements entry. The parameter is a Name, a FIB entry, or a PIT

entry. Because of how Measurements table is implemented, it’s more efficient to pass in a FIB entry or a PIT entry, than to
use a Name. Measurements::getParent method finds or inserts a Measurements entry of the parent namespace.

Unlike other tables, there is no delete operation. Instead, each entry has limited lifetime, and is automatically deleted
when its lifetime is over. Strategy must call Measurements::extendLifetime to request extending the lifetime of an entry.

Exact match and longest prefix match lookups are supported for retrieving existing entries.

3.7.2 Usage

Measurements Table is solely used by forwarding strategy. How many entries are in the Measurements Table and how often
they are accessed are determined by forwarding strategies. A well-written forwarding strategy stores no more than O(log(N))
entries, and performs no more than O(N) lookups, where N is the number of incoming packets plus the number of outgoing
packets.

Measurements Accessor
Recall that NFD has per-namespace strategy choice (Section 3.6), each forwarding strategy is allowed to access the

portion of Measurements Table that are under the namespaces managed by that strategy. This restriction is enforced by a
Measurements Accessor.

A Measurements Accessor (nfd::MeasurementsAccessor) is a proxy for a strategy to access the Measurements Table. Its
APIs are similar to the Measurements Table. Before returning any Measurements entry, the accessor looks up the Strategy
Choice Table (Section 3.6) to confirm whether the requesting strategy owns the Measurements entry. If an access violation
is detected, null is returned instead of the entry.

3.8 NameTree

The NameTree is a common index structure for FIB (Section 3.1), PIT (Section 3.4, Strategy Choice Table (Section 3.6,
and Measurements Table (Section 3.7). It is feasible to use a common index, because there are much commonality in the
index of these four tables: FIB, StrategyChoice, and Measurements are all indexed by Name, and PIT is indexed by Name
and Selectors [1]. It is beneficial to use a common index, because lookups on these four tables are often related (eg. FIB
longest prefix match is invoked in incoming Interest pipeline (Section 4.2.1) after inserting a PIT entry), and using a common
index can reduce the number of index lookups during packet processing; the amount of memory used by the index(es) is also
reduced.

NameTree data structure is introduced in Section 3.8.1. NameTree operations and algorithms are described in Sec-
tion 3.8.2. Section 3.8.3 describes how NameTree can help reducing number of index lookups by adding shortcuts between
tables.

3.8.1 Structure

The conceptual NameTree data structure is shown in Figure 7. The NameTree is a collection of NameTree entries, indexed
by Name. FIB, PIT, Strategy Choice, and Measurements entries are attached onto NameTree entry.

NameTree entry
A NameTree entry (nfd::name tree::Entry) contains:

• the Name prefix

• a pointer to the parent entry

• a list of pointers to child entries

• zero or one FIB entry

• zero or more PIT entries

• zero or one Strategy Choice entry

• zero or one Measurements entry

27

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

3.8 NameTree 3 TABLES

NameTree

name_tree

Node

-m_hash : size_t
-m_prefix : Name
-m_parent : shared_ptr<Entry>
-m_children : vector<shared_ptr<Entry>>
-m_fibEntry : shared_ptr<Entry>
-m_pitEntries : vector<shared_ptr<Entry>>
-m_measurementsEntry : shared_ptr<Entry>
-m_strategyChoiceEntry : shared_ptr<Entry>

Entry

+m_prev-m_node+m_next

Pit

-m_nameTree

StrategyChoice

-m_nameTree

Fib

-m_nameTree

Measurements

-m_nameTree

Figure 7: NameTree overview

NameTree entries form a tree structure via parent and children pointers.
The FIB, Strategy Choice, and Measurements entries attached to a NameTree entry have the same Name as the NameTree

entry. In most cases, PIT entries attached to a NameTree entry can have the same Name as the NameTree entry and differ
only in Selectors; as a special case, a PIT entry whose Interest Name ends with an implicit digest component is attached
to the NameTree entry that corresponds to the Interest Name minus the implicit digest component, so that the all match
algorithm (Section 3.8.2) with an incoming Data Name (without computing its implicit digest) can find this PIT entry.

NameTree hash table
In addition to the tree structure, the NameTree also has a hash table to enable faster lookups.

m_prev = null
m_next = ...

*NTE = ...

/a
...

m_prev = null
m_next = null

*NTE = ...

/a/b/c
...

m_prev = null
m_next = null

*NTE = ...

/a/b
...

...

m_prev = null
m_next = null

*NTE = null

m_prev = null
m_next = null

*NTE = null

m_prev =...
m_next = null

*NTE

/a/b/c/d
...

Hash collisions
are resolved via
chaining

parent

parent

parent

NameTree Node

NameTree Entry

Figure 8: NameTree hash table data structure

We decide to implement the hash table from scratch, rather than using an existing library, so that we can have better
control for performance tuning. The hash table data structure is shown in Figure 8.

Hash values are computed using CityHash [12]; this hash function is chosen because it is fast. For a given Name prefix,
hash is computed over the TLV representation of the Name, and the hash value is mapped to one of the buckets. Hash

28

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

3.8 NameTree 3 TABLES

collisions are resolved via chaining: if multiple Names are mapped to the same bucket, all these entries are chained in that
bucket through a singly linked list.

As the number of stored NameTree entries changes, the hash table is automatically resized. During a resize operation, the
new number of buckets is computed; this number is a trade-off between wasted memory of empty buckets and time overhead
of chaining. Every NameTree entry is then rehashed and moved to a bucket in the new hashtable.

To reduce the overhead of resize operation, the hash value of a Name is stored in the NameTree entry. We also introduce
a NameTree Node type. A Node is stored in the bucket, and contains a pointer to an entry, and a pointer to the next Node
in the chain. The resize operation only needs to move Nodes (which are smaller than entries), and do not need to change
entries.

In Figure 8, name prefixes /a, /a/b, /a/b/c, /a/b/c/d are stored. The parent pointers shown on the figure show the
relationship between these four name prefixes. As shown in the figure, there is a hash collision between /a and /a/b/c/d,
and the hash collision is resolved via chaining.

3.8.2 Operations and Algorithms

Insertion and Deletion operations
The lookup/insertion operation (NameTree::lookup) finds or inserts an entry for a given Name. To maintain the tree

structure, ancestor entries are inserted if necessary. This operation is called when a FIB/PIT/StrategyChoice/Measurements
entry is being inserted.

The conditional deletion operation (NameTree::eraseEntryIfEmpty) deletes an entry if no FIB/PIT/StrategyChoice/
Measurements entry is stored on it, and it has no children; ancestors of the deleted entry are also deleted if they meet the
same requirements. This operation is called when a FIB/PIT/StrategyChoice/Measurements entry is being deleted.

Matching algorithms
The exact match algorithm (NameTree::findExactMatch) finds the entry with a specified Name, or returns null if such

entry does not exist.
The longest prefix match algoritm (NameTree::findLongestPrefixMatch) finds the entry of longest prefix match of a

specified Name, filtered by an optional EntrySelector. An EntrySelector is a predicate that decides whether an entry can be
accepted (returned). This algorithm is implemented as: start from looking up the full Name in the hash table; if no NameTree
entry exists or it’s rejected by the predicate, remove the last Name component and lookup again, until an acceptable NameTree
entry is found. This algorithm is called by FIB longest prefix match algorithm (Section 3.1.1), with a predicate that accepts
a NameTree entry only if it contains a FIB entry. This algorithm is called by StrategyChoice find effective strategy algorithm
(Section 3.6.1), with a predicate that accepts a NameTree entry only if it contains a StrategyChoice entry.

The all match algorithm (NameTree::findAllMatches) enumerates all entries that are prefixes of a given Name, filtered
by an optional EntrySelector. This algorithm is implemented as: perform a longest prefix match first; remove the last Name
component, until reaching the root entry. This algorithm is called by PIT data match algorithm (Section 3.4.2).

Enumeration algorithms
The full enumeration algorithm (NameTree::fullEnumerate) enumerates all entries, filtered by an optional EntrySe-

lector. This algorithm is used by FIB enumeration and Strategy Choice enumeration.
The partial enumeration algorithm (NameTree::partialEnumerate) enumerates all entries under a specified Name

prefix, filtered by an optional EntrySubTreeSelector. An EntrySelector is a double-predicate that decides whether an entry can
be accepted, and whether its children shall be visited. This algorithm is used during runtime strategy change (Section 5.1.3)
to clear StrategyInfo items under a namespace changing ownership.

3.8.3 Shortcuts

One benefit of the NameTree is that it can reduce the number of index lookups during packet forwarding. To achieve this
benefit, one method is to let forwarding pipelines perform a NameTree lookup explicitly, and use fields of the NameTree
entry. However, this is not ideal because NameTree is introduced to improve the performance of four tables, and it should
change the procedure of forwarding pipelines.

To reduce the number of index lookups, but still hide NameTree away from forwarding pipelines, we add shortcuts
between tables. Each FIB/PIT/StrategyChoice/Measurements entry contains a pointer to the corresponding NameTree
entry; the NameTree entry contains pointers to FIB/PIT/StrategyChoice/Measurements entries and the parent NameTree
entry. Therefore, for example, given a PIT entry, one can retrieve the corresponding NameTree entry in constant time by

29

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

3.8 NameTree 3 TABLES

following the pointer 4, and then retrieve or attach a Measurements entry via the NameTree entry, or find longest prefix
match FIB entry by following pointers to parents.

NameTree entry is still exposed to forwarding if we take this approach. To also hide NameTree entry away, we introduce
new overloads to table algorithms that take a relevant table entry in place of a Name. These overloads include:

• Fib::findLongestPrefixMatch can accept PIT entry or Measurements entry in place of a Name

• StrategyChoice::findEffectiveStrategy can accept PIT entry or Measurements entry in place of a Name

• Measurements::get can accept FIB entry or PIT entry in place of a Name

An overload that takes a table entry is generally more efficient than the overload taking a Name. Forwarding can take
advantage of reduced index lookups by using those overloads, but does not need to deal with NameTree entry directly.

To support these overloads, NameTree provides NameTree::get method, which returns the NameTree entry linked from
a FIB/PIT/StrategyChoice/Measurements entry. This method allows one table to retrieve the corresponding NameTree
from an entry of another table, without knowning the internal structure of that entry. It also permits a table to depart from
NameTree in the future without breaking other code: suppose someday PIT is no longer based on NameTree, NameTree::get
could perform a lookup using Interest Name in the PIT entry; Fib::findLongestPrefixMatch can still accept PIT entries,
although it’s not more efficient than using a Name.

4This applies only if the PIT entry’s Interest Name does not end with an implicit digest; otherwise, a regular lookup would be performed.

30

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

4 FORWARDING

4 Forwarding

The packet processing in NFD consists of forwarding pipelines described in this section and forwarding strategies
described in Section 5. A forwarding pipeline (or just pipeline) is a series of steps that operates on a packet or a PIT
entry, which is triggered by a specific event: reception of the Interest, detecting that the received Interest was looped, when
an Interest is ready to be forwarded out of a face, etc. A forwarding strategy (or just strategy) is a decision maker about
Interest forwarding, which is attached at the end or beginning of the pipelines. In other words, the strategy makes decisions
whether, when, and where to forward an Interest, while the pipelines supply the strategy the Interests and supporting
information to make these decisions.

Figure 9 shows the overall workflow of forwarding pipelines and strategy, where blue boxes represent pipelines and white
boxes represent decision points of the strategy.

incoming
Interest

incoming
Data

outgoing
Interest

outgoing
Data

after receive
Interest

Interest
reject

Interest
unsatisfied

Interest loop

Data
unsolicited

before satisfy
Interest

before expire
Interest

unsatisfy
timer

straggler
timer

Interest
finalize

ContentStore
miss

ContentStore
hit

incoming
Nack

after receive Nack
outgoing

Nack

Figure 9: Pipelines and strategy: overall workflow

4.1 Forwarding Pipelines

Pipelines operate on network layer packets (Interest, Data, or Nack) and each packet is passed from one pipeline to another
(in some cases through strategy decision points) until all processing is finished. Processing within pipelines uses CS, PIT,
dead Nonce list, FIB, network region table, and StrategyChoice tables, however for the last three pipelines have only read-only
access (they are managed by the corresponding managers and are not directly affected by the data plane traffic).

FaceTable keeps track all active faces in NFD. It’s the entrypoint from which an incoming network layer packet is given
to forwarding pipelines for processing. Pipelines are also allowed to send packets through faces.

The processing of Interest, Data, and Nack packets in NDN is quite different. We separate forwarding pipelines into
Interest processing path, Data processing path, and Nack processing path, described in the following sections.

4.2 Interest Processing Path

NFD separates Interest processing into the following pipelines:

• incoming Interest: processing of incoming Interests

• Interest loop: processing incoming looped Interests

• ContentStore miss: processing of incoming Interests that cannot be satisified by cached Data

31

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

4.2 Interest Processing Path 4 FORWARDING

• ContentStore hit: processing of incoming Interests that can be satisfied by cached Data

• outgoing Interest: preparation and sending out Interests

• Interest reject: processing PIT entries that are rejected by the strategy

• Interest unsatisfied: processing PIT entries that are unsatisfied before all downstreams timeout

• Interest finalize: deleting PIT entry

4.2.1 Incoming Interest Pipeline

The incoming Interest pipeline is implemented in Forwarder::onIncomingInterest method and is entered from Forwarder::

startProcessInterest method, which is triggered by Face::afterReceiveInterest signal. The input parameters to the
incoming interest pipeline include the newly received Interest packet and reference to the Face on which this Interest packet
was received.

This pipeline includes the following steps, summarized in Figure 10:

CS
lookup

PIT insert

cancel unsatisfy
& straggler timer

Y

receive Interest

detect duplicate Nonce
in PIT entry

Interest
loop

Y

is
pending?

Y

violates /localhost?
N

(drop)

ContentStore
miss

ContentStore
hit

Y N

N

N

detect duplicate Nonce
with Dead Nonce List

N

Y

Figure 10: Incoming Interest pipeline

1. The first step is to check for /localhost scope [10] violation. In particular, an Interest from a non-local Face is not
allowed to have a name that starts with /localhost prefix, as it is reserved for localhost communication. If violation
is detected, such Interest is immediately dropped and no further processing on the dropped Interest is performed. This
check guards against malicious senders; a compliant forwarder will never send a /localhost Interest to a non-local
Face. Note that /localhop scope is not checked here, because its scope rules do not restrict incoming Interests.

2. The Name and Nonce of the incoming Interest is checked against the Dead Nonce List (Section 3.5). If a match is found,
the incoming Interest is suspected of a loop, and is given to Interest loop pipeline for further processing (Section 4.2.2).
Note that unlike a duplicate Nonce detected with PIT entry (described below), a duplicate detected by the Dead Nonce
List does not cause the creation of a PIT entry, because creating an in-record for this incoming Interest would cause
matching Data, if any, to be returned to the downstream, which is incorrect; on the other hand, not creating a PIT
entry without an in-record is not helpful for future duplicate Nonce detection. If a match is not found, processing
continues onto the next step.

3. The next step is looking up existing or creating a new PIT entry, using name and selectors specified in the Interest
packet. As of this moment, PIT entry becomes a processing subject of the incoming Interest and following pipelines.
Note that NFD creates PIT entry before performing ContentStore lookup. The main reason for this decision is to reduce
lookup overhead: ContentStore is most likely be significantly larger than PIT and can incur significant overhead, since,
as described below, ContentStore lookup can be skipped in certain cases.

32

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

4.2 Interest Processing Path 4 FORWARDING

4. Before the incoming Interest is processed any further, its Nonce is checked against the Nonces in the PIT entry and
the Dead Nonce List (Section 3.5). If a match is found, the incoming Interest is considered a duplicate due to either
loop or multi-path arrival, and is given to Interest loop pipeline for further processing (Section 4.2.2). If a match is not
found, processing continues.

5. Next, the unsatisfy timer (described below) and straggler timer (Section 4.2.6) on the PIT entry are cancelled, because
a new valid Interest is arriving for the PIT entry, so that the lifetime of the PIT entry needs to be extended. The
timers could get reset later in the Interest processing path, e.g., if ContentStore will be able to satisfy the Interest.

6. The pipeline then tests whether the Interest is pending, i.e., the PIT entry has already another in-record from the same
or other incoming Face. Recall that NFD’s PIT entry can represent not only pending Interest but also recently satisfied
Interest (Section 3.4.1), this test is equivalent to “having a PIT entry” in CCN Node Model [9], whose PIT contains
only pending Interests.

7. If the Interest is not pending, the Interest is matched against the ContentStore (Cs::find, Section 3.3.1). Otherwise,
CS lookup is unnecessary because a pending Interest implies that a previous CS returns no match. Depending on
whether there’s a match in CS, Interest processing continues either in ContentStore miss pipeline (Section 4.2.3) or in
ContentStore hit pipeline (Section 4.2.4).

4.2.2 Interest Loop Pipeline

This pipeline is implemented in Forwarder::onInterestLoop method and is entered from incoming Interest pipeline (Sec-
tion 4.2.1) when an Interest loop is detected. The input parameters to this pipeline include an Interest packet, and its
incoming Face.

This pipeline sends a Nack with reason code Duplicate to the Interest incoming face, if it’s a point-to-point face. Since
the semantics of Nack is undefined on a multi-access link, if the incoming face is multi-access, the looping Interest is simply
dropped.

4.2.3 ContentStore Miss Pipeline

This pipeline is implemented in Forwarder::onContentStoreMiss method and is entered after incoming Interest pipeline
(Section 4.2.1) performs a ContentStore lookup (Section 3.3.1) and there’s no match. The input parameters to this pipeline
include an Interest packet, its incoming Face, and the PIT entry.

When this pipeline is entered, the Interest is valid and cannot be satisified by cached Data, so it needs to be forwarded
somewhere. This pipeline takes the following steps:

1. An in-record for the Interest and its incoming face is created in the PIT entry; in case an in-record for the same
incoming face already exists (i.e., the Interest is being retransmitted by the same downstream), it’s simply refreshed.
The expiration time of the in-record is directly controlled by the InterestLifetime field in the Interest packet; if
InterestLifetime is omitted, the default value of 4 seconds is used.

2. The unsatisfy timer of the PIT entry is set to expire when all in-records in the PIT entry expire. When the unsatisfy
timer expires, the Interest unsatisfied pipeline (Section 4.2.7) is executed.

3. Finally, the pipeline decides which strategy is responsible for making forwarding decisions for the Interest by calling
Find Effective Strategy algorithm (Section 3.6.1). The after receive Interest trigger of the chosen strategy is called with
the Interest packet, its incoming face, and the PIT entry (Section 5.1.1).

Note that forwarding defers to the strategy the decision on whether, when, and where to forward an Interest. Most
strategies forward a new Interest immediately to one or more upstreams found through a FIB lookup. For a retransmitted
Interest, most strategies will suppress it if the previous forwarding is within a short period of time (see Section 5.1.1 for more
detail), and forward it otherwise.

4.2.4 ContentStore Hit Pipeline

This pipeline is implemented in Forwarder::onContentStoreMiss method and is entered after incoming Interest pipeline
(Section 4.2.1) performs a ContentStore lookup (Section 3.3.1) and there’s a match. The input parameters to this pipeline
include an Interest packet, its incoming Face, the PIT entry, and the matched Data packet.

This pipeline sets the straggler timer (Section 4.2.6) on the Interest because because it’s being satisfied, and then pass
the matching Data to outgoing Data pipeline (Section 4.3.3). The Interest processing is completed.

33

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

4.2 Interest Processing Path 4 FORWARDING

4.2.5 Outgoing Interest Pipeline

The outgoing Interest pipeline is implemented in Forwarder::onOutgoingInterest method and is entered from Strategy::

sendInterest method which handles send Interest action for strategy (Section 5.1.2). The input parameters to this pipeline
include a PIT entry, an outgoing Face, and a wantNewNonce flag. Note that the Interest packet is not a parameter when
entering the pipeline. The pipeline steps either use PIT entry directly to perform checks, or obtain reference to an Interest
stored inside the PIT entry.

This pipeline includes the following steps, summarized in Figure 11:

insert
OutRecord

pick Interest send Interest

violates
/localhost?

Y

(drop)

violates
/localhop?

(drop)

Y

N N

Figure 11: Outgoing Interest pipeline

1. The initial step is to check for potential violations of /localhost and /localhop scopes [10]:

• Interest packets that start with /localhost prefix cannot be send out to a non-local Faces

• Interest packets that start with /localhop prefix can be send out to a non-local Faces only if PIT entry has at
least one in-record that represents a local Face.

This check guards against a careless strategy and guarantees properties of /localhost and /localhop name-based
scope control in NFD.

2. On the next step an Interest packet is selected among the recorded Interests inside in-records in the PIT entry. This is
necessary because Interests in different in-records can have different guiders [1] (e.g. InterestLifetime). The current
implementation always selects the last incoming Interest. However, this simple selection criteria can change in the
future releases after we understand better the effects of guiders.

3. If the strategy indicates a new nonce is wanted (the wantNewNonce flag), the Interest is copied, and a random nonce is
set onto the copy.

This flag is necessary since the strategy may want to retransmit the pending Interest. During the retransmission, the
nonce must be changed, otherwise the upstream nodes may falsely detect Interest loops and prevent the retransmitted
Interest from being processed.

4. The next step is to create in the PIT entry an out-record for the Interest and insert entry for the specified outgoing
Face. If an out-record and/or an entry for the outgoing Face already exist, it will get refreshed by the value of
InterestLifetime in the selected Interest packet (if InterestLifetime in Interest packet is omitted, value of 4
seconds is used).

5. Finally, the Interest is forwarded via the Face.

4.2.6 Interest Reject Pipeline

This pipeline is implemented in Forwarder::onInterestReject method and is entered from Strategy::rejectPendingIn-

terest method which handles reject pending Interest action for strategy (Section 5.1.2). The input parameters to this
pipeline include a PIT entry.

The pipeline cancels the unsatisfy timer on the PIT entry (set by incoming Interest pipeline), and then sets the straggler
timer. After the straggler timer expires, Interest finalize pipline (Section 4.2.8) is entered.

The purpose of the straggler timer is to keep PIT entry alive for a short period of time in order to facilitate duplicate
Interest detection and to collect data plane measurements. For duplicate Interest detection this is necessary, since NFD uses
the Nonces stored inside PIT entry to remember recently seen Interest Nonces. For data plane measurement is it desirable

34

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

4.3 Data Processing Path 4 FORWARDING

to obtain as much data points as possible, i.e., if several incoming Data packets can satisfy the pending Interest, all of these
Data packets should be used to measure performance of the data plane. If PIT entry is deleted right away, NFD may fail to
properly detect Interest loop and valuable measurements can be lost.

We chose 100 ms as a static value for the straggler timer, as we believe it gives good tradeoff between the functionality and
memory overhead: for loop detection purposes, this time is enough for most packets to go around a cycle; for measurement
purposes, a working path that is more than 100 ms slower than the best path is usually not useful. If necessary, this value
can be adjusted in daemon/fw/forwarder.cpp file.

4.2.7 Interest Unsatisfied Pipeline

This pipeline is implemented in Forwarder::onInterestUnsatisfied method and is entered from the unsatisfy timer (Sec-
tion 4.2.1) when InterestLifetime expires for all downstreams. The input parameters to this pipeline include a PIT entry.

The processing steps in the Interest unsatisfied pipeline include:

1. Determining the strategy that is responsible for the PIT entry using Find Effective Strategy algorithm on the Strate-
gyChoice table (see Section 3.6.1).

2. Invoking before expire Interest action of the effective strategy with the PIT entry as the input parameter (Section 5.1.1).

3. Entering Interest finalize pipeline (Section 4.2.8).

Note that at this stage there is no need to keep PIT entry alive for any time longer, as it is the case in the Interest
reject pipeline (Section 4.2.6). Expiration of the unsatisfy timer implies that PIT entry was already alive for substantial
period of time and all Interest loops have been already prevented and no matching Data packet has been received.

4.2.8 Interest Finalize Pipeline

This pipeline is implemented in Forwarder::onInterestFinalize method and is entered from the straggler timer (Sec-
tion 4.2.6) or Interest unsatisfied pipeline (Section 4.2.7).

The pipeline first determines whether Nonces recorded in the PIT entry need to be inserted to the Dead Nonce List
(Section 3.5). The Dead Nonce List is a global data structure designed to detect looping Interests, and we want to insert as
few Nonces as possible to keep its size down. Only outgoing Nonces (in out-records) need to be inserted, because an incoming
Nonce that has never been sent out won’t loop back.

We can further take chances on the ContentStore: if the PIT entry is satisfied, and the ContentStore can satisfy a looping
Interest (thus stop the loop) during Dead Nonce List entry lifetime if Data packet isn’t evicted, Nonces in this PIT entry
don’t need to be inserted. The ContentStore is believed to be able to satisfy a looping Interest, if the Interest does not have
MustBeFresh selector, or the cached Data’s FreshnessPeriod is no less than Dead Nonce List entry lifetime.

If it’s determined that Nonces in the PIT entry should be inserted to the Dead Nonce List, tuples on Name and Nonce
are added to the Dead Nonce List (Section 3.5.1).

Finally, the PIT entry is removed from PIT.

4.3 Data Processing Path

Data processing in NFD is split into these pipelines:

• incoming Data: processing of incoming Data packets

• Data unsolicited: processing of incoming unsolicited Data packets

• outgoing Data: preparation and sending out Data packets

4.3.1 Incoming Data Pipeline

The incoming Data pipeline is implemented in Forwarder::onIncomingData method and is entered from Forwarder::

startProcessData method, which is triggered by Face::afterReceiveData signal. The input parameters to this pipeline
include a Data packet and its incoming Face.

This pipeline includes the following steps, summarized in Figure 12:

35

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

4.3 Data Processing Path 4 FORWARDING

PIT
match

receive Data

Y
CS insert

outgoing
Data

cancel unsatisfy
& straggler timer

mark PIT
satisfied

set PIT
straggler timer

foreach
PIT entry

foreach
pending
downstream

Data
unsolicited

timer event

violates
/localhost?

Y
(drop)

invoke PIT satisfy
callback

Interest
finalize

Dead Nonce
List insert

need Dead
Nonce List

insert?

Y

N

N

N

Figure 12: Incoming Data pipeline

1. Similar to the incoming Interest pipeline, the first step in the incoming Data pipeline is to check the Data packet for
violation of /localhost scope [10]. If the Data comes from a non-local Face, but the name begins with /localhost

prefix, the scope is violated, Data packet is dropped, and further processing is stopped.

This check guards against malicious senders; a compliant forwarder will never send a /localhost Data to a non-local
Face. Note that /localhop scope is not checked here, because its scope rules do not restrict incoming Data.

2. After name-based scope constraint is checked, the Data packet is matched against the PIT using Data Match algorithm
(Section 3.4.2). If no matching PIT entry is found, the Data is unsolicited, and is given to Data unsolicited pipeline
(Section 4.3.2).

3. If one or more matching PIT entries are found, the Data is inserted to ContentStore. Note that even if the pipeline
inserts the Data to the ContentStore, whether it is stored and how long it stays in the ContentStore is determined by
ContentStore admission and replacement policy.5

4. The next step is to cancel the unsatisfy timer (Section 4.2.1) and straggler timer (Section 4.2.6) for each found PIT
entry, because the pending Interest is now getting satisfied.

5. Next, the effective strategy responsible for the PIT entry is determined using Find Effective Strategy algorithm (Sec-
tion 3.6.1). The selected strategy is then triggered for the before satisfy Interest action with the PIT entry, the Data
packet, and its incoming Face (Section 5.1.1).

6. The Nonce on the PIT out-record corresponding to the incoming Face of the Data is inserted to the Dead Nonce List
(Section 3.5), if it’s deemed necessary (Section 4.2.8). This step is necessary because the next step would delete the
out-record and the outgoing Nonce would be lost.

7. The PIT entry is then marked satisfied by deleting all in-records, and the out-record corresponding to the incoming
Face of the Data.

8. The straggler timer (Section 4.2.6) is then set on the PIT entry.

9. Finally, for each pending downstream except the incoming Face of this Data packet, outgoing Data pipeline (Sec-
tion 4.3.3) is entered with the Data packet and the downstream Face. Note that this happens only once for each
downstream, even if it appears in multiple PIT entries. To implement this, during the processing of matched PIT
entries as described above, NFD collects their pending downstreams into an unordered set, eliminating all potential
duplicates.

5The current implementation has fixed “admit all” admission policy and “priority FIFO” as replacement policy, see Section 3.3.

36

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

4.4 Nack Processing Path 4 FORWARDING

4.3.2 Data Unsolicited Pipeline

This pipeline is implemented in Forwarder::onDataUnsolicited method and is entered from the incoming Data pipeline
(Section 4.3.1) when a Data packet is found to be unsolicited. The input parameters to this pipeline include a Data packet,
and its incoming Face.

Generally, unsolicited Data needs to be dropped as it poses security risks to the forwarder. However, there are cases
when unsolicited Data packets needs to be accepted to the ContentStore. In particular, the current implementation allows
any unsolicited Data packet to be cached if this Data packet arrives from a local Face. This behavior supports a commonly
used approach in NDN applications to “pre-publish” Data packets, when future Interests are anticipated (e.g., when serving
segmented Data packets).

If it is desirable to cache unsolicited Data from non-local Faces, the implementation of Forwarder::onDataUnsolicited
needs to be updated to include the desired acceptance policies

4.3.3 Outgoing Data Pipeline

This pipeline is implemented in Forwarder::onOutgoingData method and pipeline is entered from incoming Interest pipeline
(Section 4.2.1) when a matching Data is found in ContentStore and from incoming Data pipeline (Section 4.3.1) when the
incoming Data matches one or more PIT entries. The input parameters to this pipeline include a Data packet, and the
outgoing Face.

This pipeline includes the following steps:

1. The Data is first checked for /localhost scope [10]:

• Data packets that start with /localhost prefix cannot be send out to a non-local Faces.6

/localhop scope is not checked here, because its scope rules do not restrict outgoing Data.

2. The next step is reseved for the traffic manager actions, such as to perform traffic shaping, etc. The current imple-
mentation does not include traffic manager implementation, but it is planned to be implemented in one of the next
releases.

3. Finally, the Data packet is sent via the outgoing Face.

4.4 Nack Processing Path

Nack processing in NFD is split into these pipelines:

• incoming Nack: processing of incoming Nacks

• outgoing Nack: preparation and sending out Nacks

4.4.1 Incoming Nack Pipeline

The incoming Nack pipeline is implemented in Forwarder::onIncomingNack method and is entered from Forwarder::

startProcessNack method, which is triggered by Face::afterReceiveNack signal. The input parameters to this pipeline
include a Nack packet and its incoming Face.

First, if the incoming face is a multi-access face, the Nack is dropped without further processing, because the semantics
of Nack on a multi-access link is undefined.

The Interest carried in the Nack and its incoming face is used to locate a PIT out-record for the same face where the
Interest has been forwarded to, and the last outgoing Nonce was same as the Nonce carried in the Nack. If such an out-record
is found, it’s marked Nacked with the Nack reason. Otherwise, the Nack is dropped because it’s no longer relevant.

The effective strategy responsible for the PIT entry is determined using Find Effective Strategy algorithm (Section 3.6.1).
The selected strategy is then triggered for the after receive Nack procedure with the Nack packet, its incoming Face, and the
PIT entry (Section 5.1.1).

6This check is only useful in a specific scenario (see NFD Bug 1644).

37

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

4.5 Helper Algorithms 4 FORWARDING

4.4.2 Outgoing Nack Pipeline

The outgoing Nack pipeline is implemented in Forwarder::onOutgoingNack method and is entered from Strategy::

sendNack method which handles send Nack action for strategy (Section 5.1.2). The input parameters to this pipeline
include a PIT entry, an outgoing Face, and the Nack header.

First, the PIT entry is queried for an in-record of the specified outgoing face (downstream). This in-record is necessary
because protocol requires the last Interest received from the downstream, including its Nonce, to be carried in the Nack
packet. If no in-record is found, abort this procedure, because the Nack cannot be sent without this Interest.

Second, if the downstream is a multi-access face, abort this procedure, because the semantics of Nack on a multi-access
link is undefined.

After both checks are passing, a Nack packet is constructed with the provided Nack header and the Interest from the
in-record, and sent through the face. The in-record is erased as it has been “satisfied” by the Nack, and no further Nack or
Data should be sent to the same downstream unless there’s a retransmission.

4.5 Helper Algorithms

Several algorithms used in forwarding pipelines and multiple strategies are implemented as helper functions. As we identify
more reusable algorithms, they should be implemented as helper functions as well, rather than repeating the code in several
places.

nfd::fw::violatesScope determines whether forwarding an Interest out of a face would violate namespace-based scope
control.

nfd::fw::findDuplicateNonce searches a PIT entry to see if there’s a duplicate Nonce in any in-record or out-record.
nfd::fw::hasPendingOutRecords determines whether a PIT entry has an out-record that is still pending, i.e. neither

Data nor Nack has come back.

4.5.1 FIB lookup

Strategy::lookupFib implements a FIB lookup procedure with consideration of Link object.

FIB lookup with
Interest Name

done

in
producer
region?

has
Selected

Delegation
?

FIB lookup with
SelectedDelegation

choose and set
SelectedDelegation

Y

N N

Y

FIB lookup with first
Delegation Name

in default-
free zone?

YN

has Link
object?

N

Y

Figure 13: FIB lookup procedure

The procedure (Figure 13) is:

1. If the Interest does not carry a Link object and hence does not require mobility processing, FIB is looked up using
Interest Name (Section 3.1.1, Longest Prefix Match algorithm). FIB guarantees that Longest Prefix Match returns a
valid FIB entry; however, a FIB entry may contain empty set of NextHop records, which could effectively result (but,
strictly speaking, is not required to happen) in the strategy rejecting the Interest.

2. If the Interest carries a Link object, it is processed for mobility support.

3. The procedure determines whether the Interest has reached the producer region, by checking if any delegation name
in the Link object is a prefix of any region name from the network region table (Section 3.2). If so, FIB lookup is
performed using Interest Name, as if the Link object does not exist.

4. The procedure inspects whether the Interest contains the SelectedDelegation field, which indicates that a downstream
forwarder has chosen which delegation to use. If so, it implies that the Interest is already in default-free zone, FIB
lookup is performed using the selected delegation name.

38

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

4.5 Helper Algorithms 4 FORWARDING

5. The procedure determines whether the Interest is in the consumer region or has reached the default-free zone, by looking
up the first delegation Name in FIB. If this lookup turns out the default route (i.e., the root FIB entry ndn:/ with a
non-empty nexthop list), it means the Interest is still in consumer region, and this lookup result is passed down to next
step. Otherwise, the Interest has reached the default-free zone.

6. The procedure selects a delegation for an Interest that has reached the default free zone, by looking up every delegation
name in the FIB, and choose the lowest-cost delegation that matches a non-empty FIB entry. The chosen delegation is
written into the SelectedDelegation field in the Interest packet, so that upstream forwarders can follow this selection
without doing multiple FIB lookups.

A limitation of current implementation is that, when an Interest reaches the first default-free router, which delegation to
use is solely determined by this FIB lookup procedure according to the routing cost in the FIB. Ideally, this choice should
be made by the strategy which can take current performance of different upstreams into consideration. We are exploring a
better design in this aspect.

39

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

5 FORWARDING STRATEGY

5 Forwarding Strategy

In NFD forwarding, forwarding strategies provide the intelligence to make decision on whether, when, and where to forwarding
Interests. Forwarding strategies, together with forwarding piplines (Section 4), make up the packet processing logic in NFD.
The forwarding strategy is triggerred from forwarding pipelines when decisions about Interest forwarding needs to be made.
In addition, strategy can receive notifications on the outcome of its forwarding decisions, i.e. when a forwarded Interest is
satisfied, timed out, or brings back a Nack.

Our experience with NDN applications have shown that different applications need different forwarding behaviors. For
example, a file retrieval application wants to retrieve contents from a content source with highest bandwidth, an audio chat
application wants the lowest delay, and a dataset synchronization library (such as ChronoSync) wants to multicast Interests
to all available faces in order to reach its peers. The need for different forwarding behaviors motivates us to have multiple
forwarding strategies in NFD.

Despite having multiple strategies in NFD, the forwarding decision of an individual Interest must be made by a single
strategy. NFD implements per-namespace strategy choice. An operator may configure a specific strategy for a name prefix,
and Interests under this name prefix will be handled by this strategy. This configuration is recorded in the Strategy Choice
Table (Section 3.6), and is consulted in forwarding pipelines.

Currently, the choice of forwarding strategy is a local configuration. The same Interest may be handled by completely
different strategies on different nodes. Alternatives to this approach are being discussed as of Jan 2016. One notable idea is
routing annotation where the routing announcement carries an indication about the preferred strategy.

5.1 Strategy API

Conceptually, a strategy is a program written for an abstract machine, the strategy API (Section 5.1). The “language” of
this abstract machine contains standard arithmetic and logical operations, as well as interactions with the rest of NFD. The
state of this abstract machine is stored in NFD tables.

Each NFD strategy is implemented as a subclass of nfd::fw::Strategy base class, which provides the strategy API for
interaction of the implemented strategy and the rest of NFD. This API is the only way a strategy can access NFD elements,
therefore available functionality in the strategy API determines what NFD strategy can or cannot do.

A strategy is invoked through one of the triggers (Section 5.1.1). The forwarding decision is made with actions (Sec-
tion 5.1.2). Strategies are also allowed to store information on certain table entries (Section 5.1.3).

5.1.1 Triggers

Triggers are entrypoints to the strategy program. A trigger is declared as a virtual method of nfd::fw::Strategy class,
and is expected to be overridden by a subclass.

After Receive Interest Trigger
This trigger is declared as Strategy::afterReceiveInterest method. This method is pure virtual, which must be

overridden by a subclass.
When an Interest is received, passes necessary checks, and needs to be forwarded, Incoming Interest pipeline (Section 4.2.1)

invokes this trigger with the Interest packet, its incoming face, and the PIT entry. At that time, the following conditions
hold for the Interest:

• The Interest does not violate /localhost scope.
• The Interest is not looped.
• The Interest cannot be satisfied by ContentStore.
• The Interest is under a namespace managed by this strategy.
After being triggered, the strategy should decide whether and where to forward this Interest. Most strategies need a

FIB entry to make this decision, which can be obtained by calling Strategy::lookupFib accessor function. If the strategy
decides to forward this Interest, it should invoke send Interest action at least once; it can do so either immediately or some
time in the future using a timer.7 If the strategy concludes that this Interest cannot be forwarded, it should invoke reject
pending Interest action, so that the PIT entry will be deleted shortly.

7Warning: although a strategy is allowed to invoke send Interest action via a timer, this forwarding may never happen in special cases. For
example, if while such a timer is pending an NFD operator updates the strategy on Interest’s namespace, the timer event will be cancelled and
new strategy may not decide to forward the Interest until after all out-records in the PIT entry expire.

40

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

5.1 Strategy API 5 FORWARDING STRATEGY

Before Satisfy Interest Trigger
This trigger is declared as Strategy::beforeSatisfyInterest method. The base class provides a default implementation

that does nothing; a subclass can override this method if the strategy needs to be invoked for this trigger, e.g., to record data
plane measurement results for the pending Interest.

When a PIT entry is satisfied, before Data is sent to downstreams (if any), Incoming Data pipeline (Section 4.3.1) invokes
this trigger with the PIT entry, the Data packet, and its incoming face. The PIT entry may represent either a pending
Interest or a recently satisfied Interest.

Before Expire Interest Trigger
This trigger is declared as Strategy::beforeExpirePendingInterest method. The base class provides a default imple-

mentation that does nothing; a subclass can override this method if the strategy needs to be invoked for this trigger, e.g., to
record data plane measurements for the expiring Interest.

When a PIT entry expires because it has not been satisfied before all in-records expire, before it is deleted, Interest
Unsatisfied pipeline (Section 4.3.1) invokes this trigger with the PIT entry. The PIT entry always represents a pending
Interest.

Note: this trigger will not be invoked if reject pending Interest action has been invoked.

After Receive Nack Trigger
This trigger is declared as Strategy::afterReceiveNack method. The base class provides a default implementation

that does nothing, which means all incoming Nacks will be dropped, and will not be passed to downstreams. A subclass can
override this method if the strategy needs to be invoked for this trigger.

When an Interest is received, and passes necessary checks, Incoming Nack pipeline (Section 4.4.1) invokes this trigger
with the Nack packet, its incoming face, and the PIT entry. At that time, the following conditions hold:

• The Nack is received in response an forwarded Interest.
• The Nack has been confirmed to be a response to the last Interest forwarded to that upstream, i.e. the PIT out-record

exists and has a matching Nonce.
• The PIT entry is under a namespace managed by this strategy. 8

• The NackHeader has been recorded in the Nacked field of the PIT out-record.
After being triggered, the strategy could typically do one of the following:

• Retry the Interest by forwarding it to the same or different upstream(s), by invoking send Interest action. Most
strategies need a FIB entry to find out potential upstreams, which can be obtained by calling Strategy::lookupFib

accessor function.

• Give up and return the Nack to downstream(s), by invoking send Nack action.

• Do nothing for this Nack. If some but not all upstreams have Nacked, the strategy may want to wait for Data or Nack
from more upstreams. In this case, it’s unnecessary for the strategy to record the Nack in its own StrategyInfo, because
the Nack header is available on the PIT out-record in Nacked field.

5.1.2 Actions

Actions are forwarding decisions made by the strategy. An action is implemented as a non-virtual protected method of
nfd::fw::Strategy class.

Send Interest action
This action is implemented as Strategy::sendInterest method. Parameters include a PIT entry, an outgoing face, and

a wantNewNonce flag.
This action enters the Outgoing Interest pipeline (Section 4.2.5).

Reject Pending Interest action
This action is implemented as Strategy::rejectPendingInterest method. Parameters include a PIT entry.
This action enters the Interest reject pipeline (Section 4.2.6).

8Note: The Interest is not necessarily forwarded by this strategy. In case the effective strategy is changed after an Interest forwarded, and then
a Nack comes back, the new effective strategy would be triggered.

41

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

5.2 List of Strategies 5 FORWARDING STRATEGY

Send Nack action
This action is implemented as Strategy::sendNack method. Parameters include a PIT entry, a downstream face, and a

Nack header.
This action enters the outgoing Nack pipeline (Section 4.4.2). An in-record for the downstream face should exist in the

PIT entry, and a Nack packet will be constructed by taking the last incoming Interest from the PIT in-record and adding
the specified Nack header. If the PIT in-record is missing, this action has no effect.

In many cases the strategy may want to send Nacks to every downstream (that still has an in-record). Strategy::sendNacks
method is a helper for this purpose, which accepts a PIT entry and a Nack header. Calling this helper method is equivalent
to invoking send Nack action for every downstream.

5.1.3 Storage

Strategies are allowed to store arbitrary information on PIT entries, PIT in-records, PIT out-records, and Measurements
entries, all of which are derived from StrategyInfoHost type9 . Inside the triggers, the strategy already has access to
PIT entry and can lookup desired in-records and out-records. Measurement entries (Section 3.7) can be accessed via
Strategy::getMeasurements method; a strategy’s access is restricted to Measurements entries under the namespace(s)
under its control (Section 3.7.2).

Strategy-specific information should be contained in a subclass of StrategyInfo. At anytime, the strategy may call
getStrategyInfo, insertStrategyInfo, and eraseStrategyInfo on a StrategyInfoHost to store and retrieve the infor-
mation. Note that the strategy must ensure that each StrategyInfo has a distinct TypeId; if the same TypeId is assigned
to multiple types, NFD will most likely crash.

Since the strategy choice for a namespace can be changed at runtime, NFD ensures that all strategy-stored items under
the transitioning namespace will be destroyed. Therefore, the strategy must be prepared that some entities may not have
strategy-stored items; however, if an item exists, its type is guaranteed to be correct. The destructor of stored item must
also cancel all timers, so that the strategy will not be activated on an entity that is no longer under its control.

Strategy is only allowed to store information using the above mechanism. The strategy object (subclass of nfd::fw::Strategy)
should otherwise be stateless.

5.2 List of Strategies

NFD comes with these strategies:
• best route strategy (/localhost/nfd/strategy/best-route, Section 5.2.1) sends Interest to lowest cost upstream.
• multicast strategy (/localhost/nfd/strategy/multicast, Section 5.2.2) sends every Interest to every upstream.
• client control strategy (/localhost/nfd/strategy/client-control, Section 5.2.3) allows the consumer to control

where an Interest goes.
• NCC strategy (/localhost/nfd/strategy/ncc, Section 5.2.4) is similar to CCNx 0.7.2 default strategy.
• access router strategy (/localhost/nfd/strategy/access, Section 5.2.5) is designed for local site prefix on an ac-

cess/edge router.
• Adaptive SRTT-based Forwarding (ASF) strategy (/localhost/nfd/strategy/asf, Section 5.2.6) sends Interests to

the upstream with the lowest measured SRTT and periodically probes alternative upstreams.
Since the objective of NFD is to provide a framework for easy experimentation, the list of the provided strategies is in no

way comprehensive and we encourage implementation and experimentation of new strategies. Section 5.3 provides insights
to decide when implementation of a new strategy may be appropriate and give step-by-step guidelines explaining the process
of developing new NFD strategies.

5.2.1 Best Route Strategy

The best route strategy forwards an Interest to the upstream with lowest routing cost. This strategy is implemented as
nfd::fw::BestRouteStrategy2 class.

Interest forwarding The strategy forwards a new Interest to the lowest-cost nexthop (except downstream). After the
new Interest is forwarded, a similar Interest with same Name, Selectors, and Link but different Nonce would be suppressed
if it’s received during a retransmission suppression interval. An Interest received after the suppression interval is called a
“retransmission”, and is forwarded to the lowest-cost nexthop (except downstream) that is not previously used; if all nexthops
have been used, it is forwarded to a nexthop that was used earliest.

9“Host” is in the sense of holding strategy information, not an endpoint/network entity.

42

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

5.2 List of Strategies 5 FORWARDING STRATEGY

It’s worth noting that the suppression and retransmission mechanism does not distiguish between an Interest from the
same downstream and an Interest from a different downstream. Although the former is typically a retransmission from the
same consumer and the latter is typically from a different consumer making use of NDN’s built-in Data multicast, there’s no
prominent difference in terms of forwarding, so they are processed alike.

Retransmission suppression interval Instead of forwarding every incoming Interest, the retransmission suppression
interval is imposed to prevent a malicious or misbehaving downstream from sending too many Interests end-to-end. The
retransmission suppression interval should be chosen so that it permits reasonable consumer retransmissions, while prevents
DDoS attacks by overly frequent retransmissions.

We have identified three design options for setting the retransmission suppression interval:
• A fixed interval is the simplest, but it’s hard to find a balance between reasonable consumer retransmissions and

DDoS prevention.
• Doing RTT estimation would allow a retransmission after the strategy believes the previous forwarded Interest is lost

or otherwise won’t be answered, but RTT estimations aren’t reliable, and in case the consumer applications are also using
RTT estimation to schedule their retransmissions, this results in double control loop and potentially unstable behavior.

• Using exponential back-off gives consumer applications control over the retransmission, and also effectively prevents
DDoS. Starting with a short interval, the consumer can retransmit quickly in low RTT communication scenario; the interval
goes up after each accepted retransmission, so an attacker cannot abuse the mechanism by retransmitting too frequently.

We finally settled with the exponential back-off algorithm. The initial interval is set to 10 milliseconds. After each
retransmission being forwarded, the interval is doubled (multiplied by 2.0), until it reaches a maximum of 250 milliseconds.

Nack generation The best route strategy uses Nack to improve its performance.
When a new Interest is to be forwarded in after receive Interest trigger (Section 5.1.1), but there’s no eligible nexthop,

a Nack will be returned to the downstream. A nexthop is eligible if it is not same as the downstream of current incoming
Interest, and forwarding to this nexthop does not violate scope [10]. TODO#3420 add “face is UP” condition. If there’s no
eligible nexthop available, the strategy rejects the Interest, and returns a Nack to the downstream with reason no route.

Currently, the Nack packet does not indicate the prefix that the node has no route to reach, because it’s non-trivial to
compute this prefix. Also, Nacks will not be returned to multicast downstream faces.

Nack processing Upon receiving an incoming Nack, the strategy itself does not retry the Interest with other nexthops
(because “best route” forwards to only one nexthop for each incoming Interest), but informs the downstream(s) as quickly
as possible. If the downstream/consumer wants, it can retransmit the Interest, and the strategy would retry it with another
nexthop.

Specifically, depending on the situation of other upstreams, the strategy takes one of these actions:
• If all pending upstreams have Nacked, a Nack is sent to all downstreams.
• If all but one pending upstream have Nacked, and that upstream is also a downstream, a Nack is sent to that downstream.
• Otherwise, the strategy continues waiting for the arrival of more Nacks or Data.
To determine what situation a PIT entry is in, the strategy makes use of the Nacked field (Section 3.4.1) on PIT out-

records, and does not require extra measurement storage.
The second situation, “all but one pending upstream have Nacked and that upstream is also a downstream”, is introduced

to address a specific “live deadlock” scenario, where two hosts are waiting for each other to return the Nack. More details
about this scenario can be found at http://redmine.named-data.net/issues/3033#note-7.

In the first situation, the Nack returned to downstreams need to indicate a reason. In the easy case where there’s only
one upstream, the reason from this upstream is passed along to downstream(s). When there are multiple upstreams, the
least severe reason is passed to downstream(s), where the severity of Nack reasons are defined as: Congestion <Duplicate
<NoRoute. For example, one upstream has returned Nack-NoRoute and the other has returned Nack-Congestion. This
forwarder choose to tell downstream(s) “congestion” so that they can retry with this path after reducing their Interest
sending rate, and this forwarder can forward the retransmitted Interests to the second upstream at a slower rate and hope
it’s no longer congested. If we instead tell downstream(s) “no route”, it would make downstreams believe that this forwarder
cannot reach the content source at all, which is inaccurate.

5.2.2 Multicast Strategy

The multicast strategy forwards every Interest to all upstreams, indicated by the supplied FIB entry. This strategy is
implemented as nfd::fw::MulticastStrategy class.

After receiving an Interest to be forwarded, the strategy iterates over the list of nexthop records in the FIB entry, and
determines which ones are eligible. A nexthop face is eligible as an upstream if this face is not already an upstream (unexpired

43

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

5.2 List of Strategies 5 FORWARDING STRATEGY

out-record exists in PIT entry), it is not the sole downstream (another in-record exists in PIT entry), and scope is not violated;
pit::Entry::canForwardTo method is convenient for evaluating these rules. The strategy then multicasts the Interest to
all eligible upstreams. If there is no eligible upstream, the Interest is rejected.

5.2.3 Client Control Strategy

The client control strategy allows a local consumer application to choose the outgoing face of each Interest. This strategy is
implemented as nfd::ClientControlStrategy class.

If an Interest is received from a LocalFace (Section 2.1) that enables NextHopFaceId feature in LocalControlHeader [11],
and the Interest packet carries a LocalControlHeader that contains a NextHopFaceId field, the Interest is forwarded to the
outgoing face specified in the NextHopFaceId field if that face exists, or dropped if that face does not exist. Otherwise, the
Interest is forwarded in the same manner as the best route strategy (Section 5.2.1).

5.2.4 NCC Strategy

The NCC strategy 10 is an reimplementation of CCNx 0.7.2 default strategy [13]. It has similar algorithm but is not
guaranteed to be equivalent. This strategy is implemented as nfd::fw::NccStrategy class.

5.2.5 Access Router Strategy

The access router strategy (aka access strategy) is specifically designed for local site prefix on an access/edge router. It
is suitable for a namespace where producers are single-homed and are one hop away. This strategy is implemented as
nfd::fw::AccessStrategy class.

The strategy is able to make use of multiple paths in the FIB entry, and remember which path can lead to contents. It
is most efficient when FIB nexthops are accurate, but can tolerate imprecise nexthops, and still be able to find the correct
paths.

The strategy is able to recover from a packet loss in the last-hop link. It retries Interests retransmitted by consumer in
the same manner as best route strategy (Section 5.2.1); The same mechanism also allows the strategy to deal with producer
mobility.

Motivation and Use Case One of NDN’s benefits is that it does not require precise routing: a route indicates that
contents under a certain prefix is probably available from a nexthop. The property brings a challenge to forwarding strategy
design: if an Interest matches multiple routes, which nexthop should we forward it to?

• One option is to forward the Interest to all the nexthops. This is implemented in the multicast strategy (Section 5.2.2).
The Data, if available from any of these nexthops, can be retrieved with shortest delay. However, since every Interest is
forwarded to many nexthops, it has significant bandwidth overhead.

• Another option is to forward the Interest to only one nexthop, and if it doesn’t work, try another nexthop. This is
implemented in the best route strategy (Section 5.2.1). While bandwidth overhead on the upstream side is reduced, since
each incoming Interest can be forwarded to only one nexthop, the consumer has to retransmit an Interest multiple times in
order to reach the correct nexthop. It’s even worse when an upstream does not return a Nack or the Nack is lost; in this case,
the consumer has to wait for a timeout (either based on InterestLifetime or RTO) before it can decide to retransmit, causing
further delays. In addition, repeated consumer retransmissions increase bandwidth overhead on the downstream side.

• Between these two extreme options, we want to design a strategy with a trade-off between delay and bandwidth
overhead.

On gateway/access/edge routers of the NDN testbed, despite the availability of automatic prefix propagation (Section 7.5),
the majority of Interest forwarding from an access router to end hosts are relying on routes installed by the nfd-autoreg

tool: when an end host connects to the router, this tool installs a route for the local site prefix toward this end host. Since the
local site prefix is statically configured, these routes will have the same prefix, and an Interest under this prefix will match
all these routes. This is an extreme case of imprecise routing: every end host is a nexthop of a very broad prefix, and they
are many end hosts. The multicast strategy would forward every Interest toward all end hosts, even if only a small subset of
them can serve the content. The best route strategy would require the consumer to retransmit, in the worst case, as many
times as the number of connected end hosts.

The access strategy is designed for this use case. We want to find contents available on end hosts without forwarding
every Interest to all end hosts, and require minimal consumer retransmissions.

10NCC does not stand for anything; it is just CCN backwards.

44

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

5.2 List of Strategies 5 FORWARDING STRATEGY

How Access Router Strategy Works The basic idea of this strategy is to multicast the first Interest, learn which
nexthop can serve the contents, and forward the bulk of subsequent Interests toward the chosen nexthop; if it does not
respond, the strategy starts multicasting again to find an alternate path.

This idea is somewhat similar to Ethernet self-learning, but there are two challenges:
• Ethernet switch learns the mapping from an exact address to a switch port, but NDN router needs to learn the mapping

from a prefix of the Interest name to a nexthop in order to be useful for subsequent Interests. What prefix can we learn
from Interest-Data exchanges?

• In Ethernet, each address is reachable via only one path, and a moved host floods an ARP packet to inform the network
about its new location. In NDN, each prefix can be reachable via multiple paths, and it’s the strategy’s responsibility to
detect the chosen nexthop is no longer working so it can start finding an alternate path; a moved producer won’t actively
inform the network of its new location, and a failed producer has no way to ask other producers to flood an announcement.

Granularity Problem and Solution The first challenge, what prefix can we learn from Interest-Data exchanges, is called
the granularity problem. There are a few differnet approaches to solve this problem, but we pick a simple solution in the
access strategy: learned nexthop is associated with the Data name minus the last component. A commonly adopted NDN
naming convention [14] puts the version number and segment number as the last two components of Data names. Under this
naming convention, the Data name minus the last component covers all segments of a versioned object. We believe it’s safe
to assume that all segments of a version is available on the same upstream, and thus choose this solution.

As a consequence of choosing this simple solution, the access strategy could perform badly if the application does
not follow the above naming convention. Most notably, NDN-RTC [15] realtime conference library (version 1.3 when we
did this analysis in Sep 2015 11) adopts a naming scheme which expresses Interests similar to /ndn/edu/ucla/remap/

ndnrtc/user/remap/streams/camera_1469c/mid/key/2991/data/\%00\%00 and generates Data names similar to /ndn/

edu/ucla/remap/ndnrtc/user/remap/streams/camera_1469c/mid/key/2991/data/\%00\%00/23/89730/86739/5/27576.
In this name, the component before data is the frame number (2991 in the example), and the component after data is the
segment number (%00%00 in the example); every Data name has 5 additional components than the Interest name, which
carries additional signaling information for application use.

Admittedly, this is an example of bad naming design because although NDN supports in-network name discovery, the
majority of Interests should carry complete names [16]; appending application-layer metadata onto the Data name violates
this principle. This naming design makes the access strategy multicast every Interest, because the chosen nexthop of an Inter-
est is recorded on the Data name minus the last component (/ndn/edu/ucla/remap/ndnrtc/user/remap/streams/camera\
_1469c/mid/key/2991/data/\%00\%00/23/89730/86739/5), but the next Interest is /ndn/edu/ucla/remap/ndnrtc/user/
remap/streams/camera_1469c/mid/key/2991/data/\%00\%01 which does not fall under the prefix where the chosen nex-
thop is recorded. As a result, the next Interest is still treated as an “initial Interest” and multicast.

However, even if we change NDN-RTC’s naming scheme so that the Data name is same as the Interest name (i.e. ends
with the segment number), AccessStrategy would only perform slightly better. The chosen nexthop would be recorded
on /ndn/edu/ucla/remap/ndnrtc/user/remap/streams/camera_1469c/mid/key/2991/data, which matches subsequent
Interests for other segments within the same frame, but cannot match Interests for other frames (such as /ndn/edu/ucla/

remap/ndnrtc/user/remap/streams/camera_1469c/mid/key/2992/data/\%00\%00). Within a 700Kbps video stream,
the frame number changes more than 50 times per second, and there are about 25 segment numbers per frame. This means,
the access strategy would multicast about 1250 times per second with NDN-RTC 1.3’s naming scheme; each of those multicast
Interests would reach every end host that has a nexthop added by nfd-autoreg, increase their bandwidth usage and CPU
overhead. Changing the Data name to be same as the Interest name would reduce multicasts to 50 times per second, which
is still inefficient.

The fundamental reason of access strategy’s inefficiency with NDN-RTC 1.3 is the mismatch between the assumption of
naming convention behind our granularity solution and the application naming scheme: the chosen nexthop is recorded at
a longer prefix than the actual prefix. It’s also possible for the chosen nexthop to be recorded at a too-short prefix, but
no known application can suffer from the problem; however, if we change the access strategy to record the chosen nexthop
at shorter prefixes (such as dropping last 3 components of the Data name, which would accommodate NDN-RTC’s naming
scheme after modification), this problem would happen.

It’s our future work to explore other solutions to the granularity problem.

Failure Detection The second challenge, how to detect the chosen nexthop is no longer working, is currently solved with
a combination of RTT-based timeout and consumer retransmission.

RTT-based timeout We maintain RTT estimations following TCP’s algorithm. If a nexthop does not return Data within
the Retransmission Timeout (RTO) computed from the RTT estimator, we consider the chosen nexthop to have failed,

11More details of this analysis can be found at http://redmine.named-data.net/issues/3219.

45

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

5.3 How to Develop a New Strategy 5 FORWARDING STRATEGY

and multicast the Interest toward all nexthops (except the chosen nexthop, because otherwise the upstream would see
a duplicate Nonce).

There are two kinds of RTT estimators: per-prefix RTT estimators, and per-face RTT estimators. On each prefix where
we learn a chosen nexthop (i.e. the Data name minus the last component), we maintain a per-prefix RTT estimator;
if a subsequent Interest is not satisified within the RTO computed from this per-prefix RTT estimator, the strategy
would multicast the Interest. A per-prefix RTT estimator reflects the RTT of the current chosen nexthop; if a different
nexthop is chosen, this RTT estimator shall be reset.

In order to have a good enough initial estimation, when we reset a per-prefix RTT estimator, instead of starting with
a set of default values, we copy the state from the per-face RTT estimator, which is maintained for each upstream face
and not associated with name prefixes. This design assumes different prefixes served by the same upstream face have
similar RTT; this assumption is one reason that this strategy design is limited for use on one hop, and is unfit for usage
over multiple hops.

consumer retransmission Some consumer applications have application-layer means to detect a non-working path. If the
consumer believes the current path is not working, it could retransmit the Interest with a new Nonce. Unless the
retransmissions are too frequent, the access strategy would take an retransmission as a signal that the chosen nexthop
has stopped working, and multicast the Interest right away.

5.2.6 ASF Strategy

The ASF strategy is designed to prioritize upstreams based on their performance in Data retrieval delay. The strategy sends
Interests to the upstream with the lowest measured SRTT and periodically probes alternative upstreams to gather SRTT
measurements for unused upstreams [17]. This strategy is implemented as nfd::fw::AsfStrategy class.

5.3 How to Develop a New Strategy

Before starting development of a new forwarding strategy, it is necessary to assess necessity of the new strategy, as well
strategy capabilities and limitations (Section 5.3.1). The procedure of developing a new built-in strategy is outlined in
Section 5.3.2.

5.3.1 Should I Develop a New Strategy?

In many network environments, it may be sufficient to use one of the existing strategies: best-route, multicast, ncc, or access.
In cases when an application wants a fine-grain control of Interest forwarding, it can use the special client control strategy
(Section 5.2.3) and specify an outgoing face for every Interest. However, this could control the outgoing face of local forwarder
only. In other cases, a new strategy development could be warranted, provided that the desired behavior can fit within the
strategy API framework.

When developing a new strategy, one needs to remember that the strategy choice is local to a forwarder and only one
strategy can be effective for the namespace. Choosing the new strategy on a local forwarder will not affect the forwarding
decisions on other forwarders. Therefore, developing a new strategy may require reconfiguration of all network nodes.

The only purpose of the strategy is to decides how to forward Interests and cannot override any processing steps in the
forwarding pipelines. If it is desired to support a new packet type (other than Interest and Data), a new field in Interest or
Data packets, or override some actions in the pipelines (e.g., disable ContentStore lookup), it can be only accomplished by
modification of the forwarding pipelines.

Even with the mentioned limitations, the strategy can provide a powerful mechanism to control how Data is retrieved in
the network. For example, by using a precise control of how and where Interests are forwarded and re-transmitted, a strategy
can adapt Data retrieval for a specific network environment. Another example would be an application of limits on how
much Interests can be forwarded to which Faces. This way a strategy can implement various congestion control and DDoS
protections schemes [18,19].

5.3.2 Develop a New Strategy

The initial step in creating a new strategy is to create a class, say MyStrategy that is derived from nfd::fw::Strategy.
This subclass must at least override the triggers that are marked pure virtual and may override other available triggers that
are marked just virtual. The class should be placed in daemon/fw directory of NFD codebase, and needs to be compiled into
NFD binary; dynamic loading of external strategy binary may be available in the future.

If the strategy needs to store information, it is needed to decide whether the information is related to a namespace or
an Interest. Information related to a namespace but not specific to an Interest should be stored in Measurements entries;

46

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

5.3 How to Develop a New Strategy 5 FORWARDING STRATEGY

information related to an Interest should be stored in PIT entries, PIT downstream records, or PIT upstream records. After
this decision is made, a data structure derived from StrategyInfo class needs to be declared. In existing strategy classes,
such data structures are declared as nested classes as it provides natural grouping and scope protection of the strategy-specific
entity, but your strategy is not required to follow the same model. If timers (Section 9.4) are needed, EventId fields needs
to be added to such data structure(s).

After creating the data structures, you may implement the triggers with the desired strategy logic. When implementing
strategy logic, refer to Section 5.1.1 describing when each trigger is invoked and what is it expected to do.

Notes and common pitfalls during strategy development:

• When retrieving a stored item from an entity, you should always check whether the retrieved element is not NULL
(Section 5.1.3). Otherwise, even the strategy logic guarantees that item will always be present on an entity, because
NFD allows dynamic per-namespace strategy change, the expected item could not be there.

• Timers must be cancelled in the destructor of the stored item (Section 5.1.3). This is necessary to ensure that the
strategy will not be accidentally triggered on an entity that is no longer being managed by the strategy.

• Measurements entries are cleaned up automatically. If Measurements entries are used, you need to call this->

getMeasurements()->extendLifetime to avoid an entry from being cleaned up prematurely.

• Before satisfy Interest trigger (Section 5.1.1) may be invoked with either pending Interest or recently satisfied Interest.

• The strategy is allowed to retry, but retries should not be attempted after the PIT entry expires. It is also not allowed
to send the same Interest via the same outgoing face before the previous out-record expires.

• The strategy should not violate scope. If the scope is violated, the outgoing Interest pipeline (Section 4.2.5) will not
send the Interest and the strategy may incorrectly gauge data plane performance.

• The strategy is responsible for performing congestion control.

Finally, make your strategy available for selection:
1. Choose an NDN name to identify the strategy. It’s recommended to use a name like ndn:/localhost/nfd/strategy/

my-strategy and append a version number. The version number should be incremented whenever there’s a non-trivial
change to the strategy behavior.

2. Register the strategy class with NFD REGISTER STRATEGY macro.
After that, the strategy is ready to use and can be activated by a StrategyChoice management command (Section ??) such
as nfdc set-strategy command line.

47

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

6 MANAGEMENT

6 Management

NFD management offers the capability to monitor and control NFD through configuration file and Interest-based API.
NFD management is divided into several management modules. Each management module is responsible for a subsystem

of NFD. It may initialize the subsystem from a section in the NFD configuration file, or offer an Interest-based API to allow
others monitor and control the subsystem.

Section 6.1 gives an overview on the NFD configuration file, and basic mechanisms in NFD Management protocol [3].
Section 6.2 describes the dispatcher and authenticator used in NFD Management protocol implementation. Section 6.3, 6.4,
6.5, 6.6 explain details of four major management modules. Section 6.7 introduces two additional management modules used
in configuration file parsing. Section 6.8 offers ideas on how to extend NFD management.

6.1 Protocol Overview

All management actions that change NFD state require the use of control commands [4]; a form of signed Interests. These
allow NFD to determine whether the issuer is authorized to perform the specified action. Management modules respond
with control responses to inform the user of the commands success or failure. Control responses have status codes similar to
HTTP and describe the action that was performed or any errors that occurred.

Management actions that just query the current state of NFD do not need to be authenticated. Therefore, these actions are
defined in NFD Management Protocol [3] as status dataset, and are currently implemented in NFD as a simple Interest/Data
exchange. In the future if data access control is desired, some data can be encrypted.

6.2 Dispatcher and Authenticator

Currently, as shown in figure 14, all managers utilize the ndn::Dispatcher as an agent to deal with high-level Interest / Data
exchange, so that they can focus on low-layer operations toward the NFD.

reject

invalid

reject

dispatcher

manager

re
gi

st
er

C
om

m
an

dH
an

dl
er

re
gi

st
er

St
at

us
D

at
as

et
H

an
dl

er

re
gi

st
er

N
ot

ifi
ca

tio
nS

tre
am

N
ot

ifi
ca

tio
n

ControlCommandHandler

ParametersValidate

Authorzation

StatusDatasetHandler

Authorzation

fail

succeed

accept

valid

reject

append & end

ControlResponse Status Dataset / Response

In
te

re
st

D
at

a

Figure 14: Overview of the manager Interest / Data exchange via the dispatcher.

More specifically, a manager always consists of a series of handlers, each of which is responsible to deal with a control
command request or a status dataset request. Per management protocol, those requests [3], follow a namespace pattern of
/localhost/nfd/$<$manager-name$>$/<verb>. Here, verb describes the action that the manager-name manager should
perform. For example, /localhost/nfd/fib/add-nexthop directs the FIB Manager to add a next hop (command arguments
follow the verb.

48

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

6.3 Forwarder Status 6 MANAGEMENT

A handler is registered, by some manager, to the dispatcher with a partial name that is composed of the manger’s name
and a specified verb. Then, after all managers have registered their handlers, the dispatcher will make full prefixes with
those partial names and each registered top prefix (i.e., /localhost/nfd), and then sets interest filters for them. When a
request arrives the dispatcher, it will finally be directed to some management handler after processed by interest filters. On
the other hand, all types of respones, such as of control responses, status datasets, etc., will be back to the dispatcher, for
concatenating, segmenting and singing when required.

For control command, a handler is always registered along with an authorization method and a parametersValidate method.
Then, a request can be directed to the handler, if and only if it is accepted by the authorization, and its control parameters
can be validated by the parametersValidate. While for status dataset, there is no need to validate parameters, and, currently,
the authorization is made to accept all requests12.

Besides, some managers (such as the FaceManger), that produces notifications, will also register notification streams to
the dispatcher. And this type of registration returns a postNotification, through which the manager will only need to genearte
the notification content, leaving other parts of work (making packet, signing, etc.) to the dispatcher.

6.2.1 Manager Base

ManagerBase is the base class for all managers. This class holds the manager’s shared Dispatcher and CommandValidator,
and provides a number of commonly used methods. In particular, ManagerBase provides the methods to register command
handler, to register status dataset handler, and to register notification streams. Besides, ManagerBase also provides conve-
nience methods for authorizing control commands (authorize), for validating control parameters (validateParameters),
and also for extracting the name of the requester from the Interest (extractRequester).

On construction, ManagerBase obtains a reference to a Dispatcher that is responsible to dispatch requests to the target
management handler, and a CommandValidator that will be used for control command authorization later. Derived manager
classes provide the ManagerBase constructor with the name of their privilege (e.g., faces, fib, or strategy-choice).
This privilege is used to specify the set of authorized capabilities for a given NDN identity certificate in the configuration
file.

6.2.2 Internal Face and Internal Client Face

To initialize the Dispatcher, a reference to a Internal Client Face derived from the ndn::Face class, is provided, which is
connected to a Internal Face derived from the nfd::Face for internal use in NFD. Consequently, the dispatcher is granted
to perform Interest / Data exchange bidirectionally with the Forwarder.

6.2.3 Command Validator

The CommandValidator validates control commands based on privileges specified in the NFD configuration file. The NFD
startup process registers CommandValidator as the processor of the authorizations section using setConfigFile, which
will in turn invoke the onConfig method. onConfig supports several privileges:

• faces (Face Manager)
• fib (FIB Manager)
• strategy-choice (Strategy Choice Manager)
These privileges are associated with a specified NDN identity certificate that will then be authorized to issue control

commands to the listed management modules. The CommandValidator learns about which privileges to expect in the config-
uration file via the addSupportedPrivilege method. This method is invoked by each manager’s ManagerBase constructor
with the appropriate privilege name.

CommandValidator also supports the notion of a “wildcard” identity certificate for demonstration purposes to remove the
“burden” of configuring certificates and privileges. Note, however, that this feature is security risk and should not be used
in production. See Section 9.1 for more detail about CommandValidator configuration.

6.3 Forwarder Status

The Forwarder Status Manager (nfd::StatusServer) provides information about the NFD and basic statistics about NFD
by the method listStatus, which is registered to the dispatcher with the name status (no verb). The supplied information
includes the NFD’s version, startup time, Interest/Data packet counts, and various table entry counts, and is published with
a 5 second freshness time to avoid excessive processing.

12This may be changed whenever data access control is desired.

49

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

6.4 Face Management 6 MANAGEMENT

6.4 Face Management

The Face Manager (nfd::FaceManager) creates and destroys faces for its configured protocol types. Local fields can also be
enabled/disabled to learn over which face an Interest or Data packet arrived, to set the caching policy of a Data packet, and
to direct an Interest out a specific face (when used in conjunction with the client control forwarding strategy (Section 5.2.3)).

Configuration
The NFD startup process registers the Face Manager as the face system configuration file section handler via setConfigFile.

This will cause onConfig to be called by the configuration file parser (ConfigFile, Section 9.1).
The Face Manager relies heavily on the NFD configuration file’s face system section. In particular, this section is used

determine which Face protocols should be enabled, which protocol channels should be constructed for future Face creation,
and whether multicast Faces for the protocol need to be created.

The onConfig method performs dispatching for face system subsections (methods beginning with processSection-).
All subsection processors are given the ConfigSection instance representing their subsection (a typedef around the boost
property tree node [20]) and a flag indicating whether or not a dry run is currently being performed. This allows NFD to
test the sanity of the configuration file before performing any modifications.

Some subsection processors take a list of NetworkInterfaceInfo pointers as one of the input parameters. onConfig gets
this list from the listNetworkInterfaces free function defined in core/network-interface.hpp file. The list describes all
available network interfaces available on the machine. In particular, processSectionUdp and processSectionEther use the
list for detecting multicast-capable interfaces for creating multicast faces.

The Face Manager maintains a protocol (string) to shared ptr<ProtocolFactory> mapping (m factories) to facilitate
Face creation tasks. The mapping is initialized during configuration by the processSection- methods. Each subsection
processor creates a factory of the appropriate type and stores it in the mapping. For example, the TCP processor creates a
shared ptr<TcpFactory> and adds it to the map with “tcp4” and “tcp6” keys. When the FaceManager receives command
to create a Face that specifies FaceURI that starts with “tcp4://”, “tcp6://”, it will use this factory to properly dispatch
the request. The factory will use the protocol specified in the FaceURI to further dispatch the request to the appropriate
IPv4 or IPv6 channel (Note that “tcp://” protocol is no longer supported). Refer to Section 2 for more details on the
workings and interactions of the ProtocolFactory, Channel, and Face classes.

Command Processing
On creation, the Face Manger registers four command handlers, createFace, destroyFace, enableLocalControl,

disableLocalControl, to the dispatcher with names faces/create, faces/destroy, faces/enable-local-control and
faces/disable-local-control respectively.

• createFace: create unicast TCP/UDP Faces
• destroyFace: destroy Faces
• enableLocalControl: enable local fields on the requesting face
• disableLocalControl: disable local fields on the requesting face
While NFD supports a range of different protocols, the Face management protocol currently only supports the creation

of unicast TCP and UDP Faces during runtime. That said, the Face Manager may also be configured to have other channel
types to listen for incoming connections and create Faces on demand.

createFace uses FaceUri to parse the incoming URI in order to determine the type of Face to make. The URI
must be canonical. A canonical URI for UDP and TCP tunnels should specify either IPv4 or IPv6, have IP address in-
stead of hostname, and contain port number (e.g., “udp4://192.0.2.1:6363” is canonical, but “udp://192.0.2.1” and
“udp://example.net:6363” are not). Non-canonical URI results in a code 400 “Non-canonical URI” control response. The
URI’s scheme (e.g., “tcp4”, “tcp6”, etc.) is used to lookup the appropriate ProtocolFactory in m factories. Failure to find
a factory results in a code 501 “unsupported protocol” control response. Otherwise, Face Managers calls ProtocolFactory::
createFace method to initiate asynchronous process of face creation (DNS resolution, connection to remote host, etc.), sup-
plying afterCreateFaceSuccess and afterCreateFaceFailure callbacks. These callbacks will be called by the face system
after the Face is either successfully created or failed to be created, respectively.

After Face has been created (from afterCreateFaceSuccess callback), the Face Manager adds the new Face to the
Face Table 13 and responds with a code 200 “success” control response to the original control command. Unauthorized,
improperly-formatted requests and requests when Face is failed to be created will be responded with appropriate failure
codes and failure reasons. Refere to the NFD Management protocol specification [3] for the list of possible error codes.

13The Face Table is a table of Faces that is managed by the Forwarder. Using this table, the Forwarder assigns each Face a unique ID, manage
active Faces, and perform lookup for a Face object by ID when requested by other modules.

50

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

6.5 FIB Management 6 MANAGEMENT

destroyFace attempts to close the specified Face. The Face Manager responds with code 200 “Success” if the Face is
successfully destroyed or it cannot be found in the Face Table, but no errors occurred. The Face Manager does not directly
remove the Face from the Face Table, but it is a side effect of calling Face::close.

LocalControlHeader can be enabled on local Faces (UnixStreamFace and TcpLocalFace) in order to expose some internal
NFD state to the application or to give the application some control over packet processing. Currently LocalControlHeader
specification [11] defines the following local control features:

• IncomingFaceId: provide the FaceId that Data packets arrive from
• NextHopFaceId: forward Interests out the Face with a given FaceId (requires the client-control forwarding strategy,

Section 5.2.3)
As their names imply, the (enable|disable)LocalControl methods enable and disable the specified local control features

on the Face sending the control command. Both methods utilize extractLocalControlParameters method to perform
common functionality of option validation and ensuring that the requesting Face is local. When incorrectly formatted,
unauthorized request or request from a non-local Face is received, the Face Manager responds with an appropriate error code.
Command success, as defined by Control Command specification [4], is always responded with code 200 “OK” response.

Datasets and Event Notification
The Face Manager provides two datasets: Channel Status and Face Status. The Channel Status dataset lists all channels

(in the form of their local URI) that this NFD has created and can be accessed under the /localhost/nfd/faces/channels

namespace. Face Status, similarly, lists all created Faces, but provides much more detailed information, such as flags and
incoming/outgoing Interest/Data counts. The Face Status dataset can be retrieved from the /localhost/nfd/faces/list

namespace.
These datasets are supplied when listFaces and listChannels methods are invoked. Besides, another method queryFaces

is provided to supply the status of face with a specified name. When the Face Manger is constructed, it will register these
three handlers to the dispatcher with names faces/list, faces/channels and faces/query respectively.

In addition to these datasets, the Face Manager also publishes notifications when Faces are created and destroyed. This
is done using the postNotification function returns after registering a notification stream to the dispatcher with the name
/faces/events. Two methods, afterFaceAdded and afterFaceRemoved, that take the function postNotification as a
argument, are set as connections to the Face Table’s onAdd and onRemove Signals [21]. Once these two signals are emitted, the
connected methods will be invoked immediately, where the postNotification will be used to publish notifications through
the dispatcher.

6.5 FIB Management

The FIB Manager (nfd::FibManager) allows authorized users (normally, it is only RIB Manager daemon, see Section 7)
to modify NFD’s FIB and publishes a dataset of all FIB entries and their next hops. At a high-level, authorized users can
request the FIB Manager to:

1. add a next hop to a prefix

2. update the routing cost of reaching a next hop

3. remove a next hop from a prefix

The first two capabilities correspond to the add-nexthop verb, while removing a next hop falls under remove-nexthop.
These two verbs are used along with the manager name fib to register the following handlers of control commands:

• addNextHop: add next hop or update existing hop’s cost
• removeNextHop: remove specified next hop
Note that addNextHop will create a new FIB entry if the requested entry does not already exist. Similarly, removeNextHop

will remove the FIB entry after removing the last next hop.

FIB Dataset One status dataset handler, listEntries is registered, when the FIB Manger is constructed, to the dis-
patcher with the name fib/list, to publish FIB entries according to the FIB dataset specification. On invocation, the
whole FIB is serialized in the form of a collection of FibEntry and nested NextHopList TLVs, which are appended to a
StatusDatasetContext of the dispatcher. After all parts are appended, that context is ended and will process all received
status data.

51

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

6.6 Strategy Choice Management 6 MANAGEMENT

6.6 Strategy Choice Management

The Strategy Choice Manager (nfd::StrategyChoiceManager) is responsible for setting and unsetting forwarding strategies
for the namespaces via the Strategy Choice table. Note that setting/unsetting the strategy applies only to the local NFD.
Also, the current implementation requires that the selected strategy must have been added to a pool of known strategies in
NFD at compile time (see Section 5. Attempting to change to an unknown strategy will result in a code 504 “unsupported
strategy” response. By default, there is at least the root prefix (“/”) available for strategy changes, which defaults to the
“best route” strategy. However, it is an error to attempt to unset the strategy for root (code 403).

Similar to the FIB and Face Managers, the Strategy Choice Manager registers, when constructed, two command han-
dlers, setStrategy and unsetStrategy, as well as a status dataset handler listChoices to the dispatcher, with names
strategy-choice/set, strategy-choice/unset, and strategy-choice/list respectively.

On invocation, setStrategy and unsetStrategy will set / unset the specified strategy, while listChoices will serialize
the Strategy Choice table into StrategyChoice TLVs, and publish them as the dataset.

6.7 Configuration Handlers

6.7.1 General Configuration File Section Parser

The general namespace provides parsing for the identically named general configration file section. The NFD startup
process invokes setConfigSection to trigger the corresponding localized (static) onConfig method for parsing.

At present, this section is limited to specifying an optional user and group name to drop the effective userid and
groupid for safer operation. The general section parser initializes a global PrivilegeHelper instance to perform the actual
(de-)escalation work.

6.7.2 Tables Configuration File Section Parser

TablesConfigSection provides parsing for the tables configuration file section. This class can then configure the various
NFD tables (CS, PIT, FIB, Strategy Choice, Measurements, and Network Region) appropriately. Currently, the tables

section supports changing the default maximum number of Data packets that the Content Store can hold, per-prefix strategy
choices, and network region names. Like other configuration file parsers, TablesConfigSection is registered as the processor
of its corresponding section by the NFD startup process via setConfigFile method, which invokes onConfig.

6.8 How to Extend NFD Management

Each manager is an interface for some part of the lower layers of NFD. For example, the Face Manager handles Face
creation/destruction. The current set of managers are independent and do not interact with one another. Consequently,
adding a new manager is a fairly straightforward task; one only needs to determine what part(s) of NFD should be exported
to an Interest/Data API and create an appropriate command Interest interpreter.

In general, NFD managers do not need to offer much functionality through a programatic API. Most managers only need
to register request handlers or notification streams to the ndn::Dispatcher, such that the corresponding requests will be routed
to them and the produced notifications could be post out. Some managers may also require to hook into the configuration
file parser. All managerial tasks to control NFD internals should be performed via the defined Interest/Data management
protocol.

52

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

7 RIB MANAGEMENT

7 RIB Management

In NFD, the routing information base (RIB) stores static or dynamic routing information registered by applications, operators,
and NFD itself. Each piece of routing information is represented by a route and is associated with a particular namespace. The
RIB contains a list of RIB entries [22] each of which maintains a list of Routes [22] associated with the same namespace.
RIB entries form a RIB tree structure via a parent pointer and children pointers.

Routing information in the RIB is used to calculate next hops for FIB entries in the FIB (Section 3.1). The RIB manager
manages the RIB and updates the FIB when needed. While a FIB entry can contain at most one NextHop record toward
the same outgoing face, a RIB entry can contain multiple Routes toward the same outgoing face since different applications
may create routes to the same outgoing face each with different parameters. These multiple Routes are processed by the RIB
manager to calculate a single NextHop record toward an outgoing face for the FIB entry (Section 7.3.1).

The RIB manager is implemented as an independent module of NFD, which runs as a separate thread and communicates
with NFD through a face.14 This separation was done in order to keep packet forwarding logic lightweight and simple, as
RIB operations can require complex manipulations. Figure 15 shows the high-level interaction of the RIB Manager with
NFD and other applications. A more detailed interaction is shown in Figure 16.

Applications and Routing protocols

ndnping, NLSR, …

 RIB Manager RIB

NFD
FIB

Data Traffic

RIB updates

FIB updates

Figure 15: RIB Manager—system diagram

NFD provides various route inheritance flags for prefix registration that allow fine grained control and features such as
hole-punching in a namespace. Depending on the flag, a single registration request may result in multiple FIB entry changes.
The RIB manager takes the responsibility of processing these route inheritance flags in place of the FIB Manager. In other
words, the RIB manager receives all registration requests, processes the included route inheritance flags, and creates FIB
updates as needed, which makes the forwarder leaner and faster. To facilitate this FIB update calculation, a RIB entry stores
a list of inherited routes that have been calculated by the FIB Updater (Section 7.3) and applied to the entry’s namespace.
Each RIB entry also keeps a count of the number of its routes which have the CAPTURE flag set (Section 7.3.1). This list
of inherited routes and the count of routes with their CAPTURE flag set are used by the FIB Updater to help calculate FIB
updates.

The RIB manager provides an automatic prefix propagation feature which can be used to propagate knowledge of locally
registered prefixes to a remote NFD. When enabled, the Auto Prefix Propagator component handles these propagations (Sec-
tion 7.5).

As the RIB can be updated by different parties in different ways, including various routing protocols, application’s
prefix registrations, and command-line manipulation by sysadmins, the RIB manager provides a common interface for these

14On NFD-android platform (https://github.com/named-data/NFD-android), RIB manager runs within the same thread as NFD, but is still
independent.

53

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

7 RIB MANAGEMENT

NLSR

Create Face

RIB Manager

Request IncomingFaceId feature

Listen on prefix:
/localhost/nfd/rib

Read NFD configuration file
and load validators

NFD

Start event loop

Create Face

Register Prefix
(/localhost/nfd/rib/register/<TLV-Encoded Options>

Forward to RIB Manager

Do route calculation
and get next hops

● Register prefix
● Translate flags, update RIB
● Create FIB updates

 Update FIB

Enable IncomingFaceID
feature on RIB Manager's face

Listen on prefix:
/localhop/nfd/rib

Set Interest Filters

Forward to RIB Manager

Add incoming Face ID to interest

Update FIB*

* Self-registration of NLSR is complete here. Similar steps are followed by other
applications for self-registration. Please note that the steps beyond this point
are only required by a routing protocol.

● Register NLSR
● Translate flags, update RIB
● Create FIB updates

Figure 16: RIB Manager—timing diagram

54

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

7.1 Initializing the RIB Manager 7 RIB MANAGEMENT

processes and generates a consistent forwarding table. These different parties use the RIB Manager’s interface through
control commands [4], which need to be validated for authentication and authorization. The RIB manager listens for control
commands with the command verbs register and unregister under the prefixes /localhost/nfd/rib and /localhop/nfd/rib [22].
The steps taken in processing these control commands are described in detail in Section 7.2. Applications should use the
RIB management interface to manipulate the RIB, and only the RIB manager should use the FIB management interface to
directly manipulate NFD’s FIB.

7.1 Initializing the RIB Manager

When an instance of the RIB Manager is created, the following operations are performed:

1. Command validation rules are loaded from the the rib block of the NFD configuration file from the localhost security
and localhop security subsections.

2. The Auto Prefix Propagator is initialized from the auto prefix propagate subsection with values to set the forwarding cost
of remotely registered prefixes, the timeout interval of a remote prefix registration command, how often propagations
are refreshed, and the minimum and maximum wait time before retrying a propagation.

3. The control command prefixes /localhost/nfd/rib and /localhop/nfd/rib (if enabled) are “self-registered” in NFD’s
FIB. This allows the RIB manager to receive RIB-related control commands (registration/unregistration requests) and
requests for RIB management datasets.

4. The IncomingFaceId feature [5] is requested on the face between the RIB manager and NFD. This allows the RIB
manager to get the FaceId from where prefix registration/unregistration commands were received (for “self-registrations”
from NDN applications).

5. The RIB manager subscribes to the face status notifications using the FaceMonitor class [21] to receive notifications
whenever a face is created or destroyed so that when a face is destroyed, Routes associated with that face can be
deleted.

7.2 Command Processing

When the RIB manager receives a control command request, it first validates the Interest. The RIB manager uses the com-
mand validation rules defined in the localhost security and localhop security sections of the rib block in the NFD configuration
file to determine if the signature on the command request is valid. If the validation fails, it returns a control response with
error code 403. If the validation is successful, it confirms the passed command is valid and if it is, executes one of the
following commands:

• Register Route: The RIB Manager takes the passed parameters from the incoming request and uses them to create
a RIB update. If the FaceId is 0 or omitted in the command parameters, it means the requester wants to register
a route to itself. This is called a self-registration. In this case, the RIB manager creates the RIB update with the
requester’s FaceId from the IncomingFaceId field. The RIB Manager then passes the RIB update to the RIB to begin
the FIB update process (Section 7.3). The FIB Updater is invoked and if the FIB update process is successful, the
RIB searches for a route that matches the name, FaceId, and Origin of the incoming request. If no match is found, the
passed parameters are inserted as a new route. Otherwise, the matching route is updated. In both cases, the route is
scheduled to expire after the passed expiration period and if the expiration period is being updated, the old expiration
time is cancelled. If the registration request creates a new RIB entry and automatic prefix propagation is enabled, the
Auto Prefix Propagator’s afterInsertRibEntry method is invoked.

• Unregister Route: The RIB Manager takes the passed parameters from the incoming request and creates a RIB
update. If the FaceId is 0 or omitted in the command parameters, it means the requester wants to unregister a route
to itself. This is called a self-unregistration. In this case, the RIB manager creates the RIB update with the requester’s
FaceId from the IncomingFaceId field. The RIB manager then passes the RIB update to the RIB to begin the FIB
update process (Section 7.3). The FIB Updater is invoked and if the FIB update process is successful, the Route with
the same name, FaceId, and origin is removed from the RIB. If automatic prefix propagation is enabled, the Auto Prefix
Propagator’s afterEraseRibEntry method is invoked.

In both cases, the RIB Manager returns a control response with code 200 if the command is received successfully. Because
one RIB update may produce multiple FIB updates, the RIB Manager does not return the result of the command execution

55

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

7.3 FIB Updater 7 RIB MANAGEMENT

since the application of multiple FIB updates may take longer than the InterestLifetime associated with the RIB update
command. Figure 17 shows the verb dispatch workflow of the RIB manager.

If the expiration period in the register command parameters is not set to infinity, the route will be scheduled to expire
after the expiration period. When the route expires, steps similar to an unregistration command are performed to remove
the route, as well as any corresponding inherited routes, from the FIB and RIB.

7.3 FIB Updater

The FIB Updater is used by the RIB Manager to process route inheritance flags (Section 7.3.1), generate FIB updates, and
send FIB updates to NFD. The RIB is only modified after FIB updates generated by a RIB update are applied by the FIB
Updater successfully. The RIB Manager takes parameters from incoming requests and creates a RIB update that is passed
to the RIB using the Rib::beginApplyUpdate method. The RIB creates a RibUpdateBatch, a collection of RIB updates
for the same FaceId, and adds the batch to a queue. The RIB will advance the queue and hand off each batch to the FIB
Updater for processing. Only one batch can be handled by the FIB Updater at a time, so the RIB will only advance the
queue when the FIB Updater is not busy. The FIB Updater processes the route inheritance flags of the update in the received
RibUpdateBatch, generates the necessary FIB updates, and sends the FIB updates to the FIB as needed. If the FIB updates
are applied successfully, the RIB update is applied to the RIB. Otherwise, the FIB update process fails, and the RIB update
is not applied to the RIB.

If a FIB update fails:

1. in case of a non-recoverable error (eg. signing key of the RIB Manager is not trusted, more than 10 timeouts for the
same command), NFD will terminate with an error;

2. in case of a non-existent face error with the same face as the RibUpdateBatch, the RibUpdateBatch is abandoned;

3. in case of a non-existent face error with a different face than the RibUpdateBatch, the FIB update that failed is skipped;

4. in other cases (eg. timeout), the FIB update is retried.

onLocalhostRequest()
Or

onLocalhopRequest()

validate
Command

Print Error
and Continue

registerEntry()

Rib::beginApplyUpdate()

validate
Parameters()

validate
Parameters()

unregisterEntry()

 Expiration
Time?

Yes

scheduler::schedule()

Create RibUpdate with
REGISTER action

Yes Yes

No

No No

Yes

Yes

No

Rib::beginApplyUpdate()

Create RibUpdate with
UNREGISTER action

sendSuccessResponse() sendSuccessResponse()

Figure 17: Verb dispatch workflow of the RIB Manager

56

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

7.4 RIB Status Dataset 7 RIB MANAGEMENT

7.3.1 Route Inheritance Flags

The route inheritance flags allow fine grained control over prefix registration. The currently defined flags and examples of
route inheritance can be found at [22].

7.3.2 Cost Inheritance

Currently, NFD implements the following logic to assign costs to next hops in the FIB when CHILD INHERIT is set. When
the flag is set on the route of a RIB entry, that route’s face and cost are applied to the longer prefixes (children) under the
RIB entry’s namespace. If a child already has a route with the face that would be inherited, the inherited route’s face and
cost are not applied to that child’s next hops in the FIB. Also, if a child already has a route with the face that would be
inherited and the child’s route has its CHILD INHERIT flag set, the inherited route’s face and cost are not applied to the next
hops of the child nor the children of the child namespace. If a RIB entry has neither the CHILD INHERIT nor the CAPTURE

flag set on any of its routes, that RIB entry can inherit routes from longer prefixes which do not have the same FaceId as
one of the RIB entry’s routes. Examples of the currently implemented logic are shown in Table 1.

Future versions will assign the lowest available cost to a next hop face based on all inherited RIB entries
not blocked by a CAPTURE flag. Examples of the future logic are shown at [22].

Table 1: Nexthop cost calculation. The nexthops and their costs for each RIB entry are calculated using the RIB (the table
on the left) and are installed into the FIB (the table on the right).

Name prefix Nexthop FaceId CHILD INHERIT CAPTURE Cost
/ 1 true false 75
/a 2 false false 50
/a/b 1 false false 65
/b 1 true false 100
/b/c 3 true true 40
/b/c/e 1 false false 15
/b/d 4 false false 30

Name prefix (Nexthop FaceId, Cost)
/ (1, 75)
/a (2, 50), (1, 75)
/a/b (1, 65)
/b (1, 100)
/b/c (3, 40)
/b/c/e (1, 15), (3, 40)
/b/d (4, 30), (1, 100)

7.4 RIB Status Dataset

The RIB manager publishes a status dataset under the prefix ndn:/localhost/nfd/rib/list which contains the current contents
of the RIB. When the RIB Manager receives an Interest under the dataset prefix, the listEntries method is called. The
RIB is serialized in the form of a collection of RibEntry and nested Route TLVs [22] and the dataset is published.

7.5 Auto Prefix Propagator

The Auto Prefix Propagator can be enabled by the RIB manager to propagate necessary knowledge of local prefix regis-
trations to a single connected gateway router. Since gateway routers are currently configured to accept prefix registration
commands under /localhop/nfd/rib, the Auto Prefix Propagator cannot handle connections to multiple gateway routers; the
/localhop/nfd/rib prefix does not allow the Auto Prefix Propagator to distinguish which gateway router the propagations
should and should not be forwarded to. Figure 18 provides an example of a locally registered prefix being propagated to a
connected gateway router. The Auto Prefix Propagator propagates prefixes by registering prefixes with a remote NFD and
revokes prefixes by unregistering prefixes from a remote NFD.

7.5.1 What Prefix to Propagate

To reduce not only the cost of propagations but also changes to the router’s RIB, the propagated prefixes should be aggregated
whenever possible. The local RIB Manager owns a key-chain consisting of a set of identities, each of which defines a namespace
and can cover one or more local RIB entries. Given a RIB entry, the Auto Prefix Propagator queries the local key-chain for
signing identities that are authorized to sign a prefix registration command for a prefix of the RIB prefix. If one or more
signing identities are found, the identity with the shortest prefix that can sign a prefix registration command is chosen, and
the Auto Prefix Propagator will then attempt to propagate that shortest prefix of the prefix to the router. Figure 19 presents
a high level example of prefix propagation.

If the propagation succeeds, an event is scheduled to propagate the same prefix to refresh this propagation after a pre-
defined duration. By contrast, if the propagation fails, another event is scheduled to propagate the same prefix to retry this
propagation after some waiting period that is calculated based on an exponential back-off strategy.

57

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

7.5 Auto Prefix Propagator 7 RIB MANAGEMENT

Gateway Router Gateway Router

Application

Propagation

Local registration

Figure 18: A local prefix registration is propagated to a connected gateway router

Router / Remote NFD

End Host / Local NFD

app1 app2 app3

register:
/ndn/ucla/alice/app2

register:
/ndn/ucla/alice/app1

register:
/ndn/ucla/bob/test/app3

register:
/ndn/ucla/alice

signed by:
/ndn/ucla/alice

register:
/ndn/ucla/bob

signed by:
/ndn/ucla/bob

* /ndn/ucla/alice
 /ndn/ucla/bob/
 /ndn/ucla/bob/test

Key-chain

Figure 19: An example of prefix propagation

7.5.2 When to Propagate

The Auto Prefix Propagator monitors RIB insertions and deletions by subscribing to two signals, Rib:afterInsertEntry
and Rib:afterEraseEntry respectively. Once those two signals are emitted, two connecting (the connections are established
when Auto Prefix Propagator is enabled) methods, AutoPrefixPropagator::afterInsertRibEntry and
AutoPrefixPropagator::afterEraseRibEntry, are invoked to process the insertion or deletion, respectively.

When an insertion is processed, the Auto Prefix Propagator will not attempt to propagate prefixes scoped for local use
(i.e., starts with /localhost) or that indicate connectivity to a router (i.e., the link local NFD prefix). The Auto Prefix
Propagator also requires an active connection to the gateway router before attempting a propagation. The Auto Prefix
Propagator considers the connection to the router as active if the local RIB has the link local NFD prefix registered and
inactive if the local RIB does not have the link local NFD prefix registered. If the prefix has not been propagated previously,
a propagation attempt will be made for the prefix.

Similarly, a revocation after deletion requires a qualified RIB prefix (not starting with /localhost or the link local
NFD prefix), an active connection to a gateway router, that the prefix has been propagated previously, and that no other
existing RIB prefix caused a propagation for the same prefix.

Figure 20 demonstrates a simplified workflow of a successful propagation. The process for revocation is similar.

7.5.3 Secure Propagations

To enable gateway routers to process remote registrations, the rib.localhop-security section must be configured on
the router. A series of polices and rules can be defined to validate registration/unregistration commands for propaga-
tions/revocations.

According to the trust schema, a command for propagation/revocation cannot pass the validation unless its signing
identity can be verified by the configured trust anchor on the gateway router.

7.5.4 Propagated-entry State Machine

A propagated entry consists of a PropagationStatus which indicates the current state of the entry, as well as a scheduled
event for either a refresh or retry. In addition, it stores a copy of the signing identity for the entry. All propagated entries are

58

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

7.5 Auto Prefix Propagator 7 RIB MANAGEMENT

Rib AutoPrefixPropagator Controller RibManager
0: insert()

1: afterInsertRibEntry()

1: afterInsertEntry()

2: getPrefixPropagationParameters()

3: afterRibInsert()

5: start() 6: startCommand()

7: onLocalhopRequest()

ValidatorConfig

8: validate()

9: onCommandValidated()

10: registerEntry()

11: sendSuccessResponse()

12: processCommandResponse()
13: afterPropagateSucceed()

Local RIB Manager Remote RIB Manager

4: startPropagation()

14: onRefreshTimer()

15: redoPropagation()
refresh interval

Figure 20: The simplified workflow of a successful propagation

maintained as an unordered map (AutoPrefixPropagator::m propagatedEntries), where the propagated prefix is used as
the key to retrieve the corresponding entry.

More specifically, a propagated entry will stay in one of the following five states in logic.

• NEW, the initial state.

• PROPAGATING, the state when the corresponding propagation is being processed but the response is not back yet.

• PROPAGATED, the state when the corresponding propagation has succeeded.

• PROPAGATE FAIL, the state when the corresponding propagation has failed.

• RELEASED, indicates this entry has been released. It’s noteworthy that this state is not required to be explicitly
implemented, because it can be easily determined by checking whether an existing entry can still be accessed. Thus,
any entry to be released is directly erased from the list of propagated entries.

Given a propagated entry, there are a series of events that can lead to a transition with a state switch from one to another,
or some triggered actions, or even both. All related input events are listed below.

• rib insert, corresponds to AutoPrefixPropagator::afterRibInsert, which happens when the insertion of a RIB
entry triggers a necessary propagation.

• rib erase, corresponds to AutoPrefixPropagator::afterRibErase, which happens when the deletion of a RIB entry
triggers a necessary revocation.

• hub connect, corresponds to AutoPrefixPropagator::afterHubConnect, which happens when the connectivity to a
router is established (or recovered).

• hub disconnect, corresponds to AutoPrefixPropagator::afterHubDisconnect, which happens when the connectiv-
ity to the router is lost.

• propagate succeed, corresponds to AutoPrefixPropagator::afterPropagateSucceed, which happens when the
propagation succeeds on the router.

• propagate fail, corresponds to AutoPrefixPropagator::afterPropagateFail, which happens when a failure is
reported in response to the registration command for propagation.

59

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

7.6 Extending RIB Manager 7 RIB MANAGEMENT

• revoke succeed, corresponds to AutoPrefixPropagator::afterRevokeSucceed, which happens when the revocation
of some propagation succeeds on the router.

• revoke fail, corresponds to AutoPrefixPropagator::afterRevokeFail, which happens when a failure is reported
in response to the unregistration command for revocation.

• refresh timer, corresponds to AutoPrefixPropagator::onRefreshTimer, which happens when the timer scheduled
to refresh some propagation is fired.

• retry timer, corresponds to AutoPrefixPropagator::onRetryTimer, which happens when the timer scheduled to
retry some propagation is fired.

A state machine is implemented to maintain and direct transitions according to the input events. Figure 21 lists all
related events and the corresponding transitions.

rib insert

rib erase

hub connect

hub disconnect

propagate succeed

propagate fail

revoke succeed

revoke fail

refresh timer

retry timer

logically
IMPOSSIBLE

-> RELEASED

-> PROPAGATING

start propagation

logically
IMPOSSIBLE

logically
IMPOSSIBLE

NEW

logically
IMPOSSIBLE

logically
IMPOSSIBLE

logically
IMPOSSIBLE

logically
IMPOSSIBLE

logically
IMPOSSIBLE

logically
IMPOSSIBLE

-> RELEASED

logically
IMPOSSIBLE

-> NEW

-> PROPAGATED

set refresh timer

PROPAGATING

-> PROPAGATE_FAIL

set retry timer

 PROPAGATING

start propagation

 PROPAGATING

logically
IMPOSSIBLE

logically
IMPOSSIBLE

logically
IMPOSSIBLE

-> RELEASED
start revocation

cancel refresh timer

logically
IMPOSSIBLE

-> NEW

logically
IMPOSSIBLE

PROPAGATED

logically
IMPOSSIBLE

-> PROPAGATING

start propagation

 PROPAGATED

-> PROPAGATING

start propagation

logically
IMPOSSIBLE

logically
IMPOSSIBLE

-> RELEASED

cancel retry timer

logically
IMPOSSIBLE

-> NEW

logically
IMPOSSIBLE

PROPAGATE_FAIL

logically
IMPOSSIBLE

PROPAGATE_FAIL

PROPAGATE_FAIL

logically
IMPOSSIBLE

-> PROPAGATING

start propagation

-> NEW

logically
IMPOSSIBLE

RELEASED

RELEASED

RELEASED

start revocation

RELEASED

RELEASED

RELEASED

RELEASED

logically
IMPOSSIBLE

logically
IMPOSSIBLE

Figure 21: The transition table of propagated-entry state machine.

7.5.5 Configure Auto Prefix Propagator

When the RIB manager loads configurations from the rib section in the NFD configuration file, the Auto Prefix Propagator
will load its configurations from the sub section rib.auto prefix propagate.

Table 2 presents the common parameters shared by all propagations and which parameters are configurable.

7.6 Extending RIB Manager

The RIB Manager currently supports two commands (register and unregister), RIB dataset publishing, and the automatic
prefix propagation feature. However, the functionality of the RIB Manager can be extended by introducing more commands

60

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

7.6 Extending RIB Manager 7 RIB MANAGEMENT

Table 2: Shared parameters for prefix propagation

member variablea default setting configurableb

m controlParameters

Cost 15 YES

Origin ndn::nfd::ROUTE ORIGIN CLIENT NO

FaceId 0 NO

m commandOptions
Prefix /localhop/nfd NO

Timeout 10,000 (milliseconds) YES

m refreshIntervalc 25 (seconds) YES

m baseRetryWait 50 (seconds) YES

m maxRetryWait 3600 (seconds) YES

athese parameters are maintained in some member variables of AutoPrefixPropagator.
bindicates whether this parameter can be configured in the NFD config file.
cthis setting must be less than the idle time of UDP faces whose default setting is 3,600 seconds.

and features. For example, in the current implementation, if a node wants to announce a prefix, it needs to communicate
with a specific routing protocol. Once the RIB manager defines an interface for prefix announcement, e.g., advertise and
withdraw commands, the process of announcing and withdrawing prefixes in routing protocols could become more uniform
and simple.

61

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

8 SECURITY

8 Security

Security consideration of NFD involves two parts: interface control and trust models.

8.1 Interface Control

The default NFD configuration requires superuser privileges to access raw ethernet interfaces and the Unix socket location.
Due to the research nature of NFD, users should be aware of the security risks and consequences of running as the superuser.

It is also possible to configure NFD to run without elevated privileges, but this requires disabling ethernet faces and
changing the default Unix socket location15 (both in the NFD configuration file, see Section 9.1). However, such measures
may be undesirable (e.g. performing ethernet-related development). As a middle ground, users can also configure an
alternate effective user and group id for NFD to drop privileges to when they are not needed. This does not provide any real
security benefit over running exclusively as the superuser, but it could potentially buggy code from damaging the system
(see Section 9.1).

8.2 Trust Model

Different trust models are used to validate command Interests depending on the recipient. Among the four types of commands
in NFD, the commands of faces, fib, and strategy-choice are sent to NFD, while rib commands are sent to the RIB
Manager.

8.2.1 Command Interest

Command Interests are a mechanism for issuing authenticated control commands. Signed commands are expressed in terms
of a command Interest’s name. These commands are defined to have five additional components after the management
namespace: command name, timestamp, random-value, SignatureInfo, and SignatureValue.

/signed/interest/name/<timestamp>/<nonce>/<signatureInfo>/<signatureValue>

The command Interest components have the following usages:

• timestamp is used to protect against replay attack.

• nonce is a random value (32 bits) which adds additional assurances that the command Interest will be unique.

• signatureInfo encodes a SignatureInfo TLV block.

• signatureValue encodes the a SignatureBlock TLV block.

A command interest will be treated as invalid in the following four cases:

• one of the four components above (SignatureValue, SignatureInfo, nonce, and Timestamp) is missing or cannot be
parsed correctly;

• the key, according to corresponding trust model, is not trusted for signing the control command;

• the signature cannot be verified with the public key pointed to by the KeyLocator in SignatureInfo;

• the producer has already received a valid signed Interest whose timestamp is equal or later than the timestamp of the
received one.

Note that in order to detect the fourth case, the producer needs to maintain a latest timestamp state for each trusted
public key16 For each trusted public key, the state is initialized as the timestamp of the first valid Interest signed by the key.
Afterwards, the state will be updated each time the producer receives a valid command Interest.

Note that there is no state for the first command Interest. To handle this special situation, the producer should check
the Interest’s timestamp against a proper interval (e.g., 120 seconds):

[current timestamp− interval/2, current timestamp + interval/2].

The first Interest is invalid if its timestamp is outside of the interval.

15libndn-cxx expects the default Unix socket location, but this can be changed in the library’s client.conf configuration file.
16Since public key cryptography is used, sharing private keys is not recommended. If private key sharing is inevitable, it is the key owner’s

responsibility to keep clock synchronized.

62

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

8.3 Local Key Management 8 SECURITY

8.2.2 NFD Trust Model

With the exception of the RIB Manager, NFD uses a simple trust model of associating privileges with NDN identity cer-
tificates. There are currently three privileges that can be directly granted to identities: faces, fib, and strategy-choice.
New managers can add additional privileges via the ManagerBase constructor.

A command Interest is unauthorized if the signer’s identity certificate is not associated with the command type. Note
that key retrievals are not permitted/performed by NFD for this trust model; an identity certificate is either associated with
a privilege (authorized) or not (unauthorized). For details about how to set privileges for each user, please see Section 9 and
Section 6.

8.2.3 NFD RIB manager Trust Model

RIB manager uses its own trust model to authenticate rib type command Interests. Applications that want to register a
prefix in NFD (i.e., receive Interests under a prefix) may need to send an appropriate rib command Interest. After RIB
manager authenticates the rib command Interest, RIB manager will issue fib command Interests to NFD to set up FIB
entries.

Trust model for NFD RIB manager defines the conditions for keys to be trusted to sign rib commands. Namely, the
trust model must answer two questions:

1. Who are trusted signers for rib command Interests?

2. How do we authenticate signers?

Trusted signers are identified by expressing the name of the signing key with a NDN Regular Expression [23]. If the signing
key’s name does not match the regular expression, the command Interest is considered to be invalid. Signers are authenticated
by a rule set that explicitly specifies how a signing key can be validated via a chain of trust back to a trust anchor Both
Signer identification and authentication can be specified in a configuration file that follows the Validator Configuration File
Format specification [24].

RIB manager supports two modes of prefix registration: localhost and localhop. In localhop mode, RIB manager
expects prefix registration requests from applications running on remote manchines, (i.e., NFD is running on an access
router). When localhop mode is enabled, rib command Interests are accepted if the signing key can be authenticated along
the naming hierarchy back to a (configurable) trust anchor. For example, the trust anchor could be the root key of the NDN
testbed, so that any user in the testbed can register prefixes through the RIB manager. Alternatively, the trust anchor could
be the key of a testbed site or instituion, thus limiting RIB manager’s prefix registration to users at that site/institution.

In localhost mode, RIB manager expects to receive prefix registration requests from local applications. By default, RIB
manager allows any local application to register prefixes However, the NFD administrator may also define their own access
control rules using the same configuration format as the trust model configuration for localhop mode.

8.3 Local Key Management

NFD runs as a user level application. Therefore, NFD will try to access the keys owned by the user who runs NFD. The
information about a user’s key storage can be found in a configuration file client.conf. NFD will search the configura-
tion file at three places (in order): user home directory (~/.ndn/client.conf), /usr/local/etc/ndn/client.conf, and
/etc/ndn/client.conf. Configuration file specify the locator of two modules: Public-key Information Base (PIB) and
Trusted Platform Module (TPM). The two modules are paired up. TPM is a secure storage for private keys, while PIB is
provide public information about signing keys in the corresponding TPM. NFD will lookup available keys in the database
pointed by PIB locator, and send packet signing request to the TPM pointed by TPM locator.

63

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

9 COMMON SERVICES

9 Common Services

NFD contains several common services to support forwarding and management operations. These services are an essential
part of the source code, but are logically separated and placed into the core/ folder.

In addition to core services, NFD also relies extensively on libndn-cxx support, which provides many basic functions such
as: packet format encoding/decoding, data structures for management protocol, and security framework. The latter, within
the context of NFD, is described in more detail in Section 8.

9.1 Configuration File

Many aspects of NFD are configurable through a configuration file, which adopts the Boost INFO format [20]. This format
is very flexible and allows any combination of nested configuration structures.

9.1.1 User Info

Currently, NFD defines 6 top level configuration sections: general, tables, log, face system, security, and rib.

• general: The general section defines various parameters affecting the overall behavior of NFD. Currently, the imple-
mentation only allows user and group parameter settings. These parameters define the effective user and effective
group that NFD will run as. Note that using an effective user and/or group is different from just dropping privileges.
Namely, it allows NFD to regain superuser privileges at any time. By default, NFD must be initially run with and
be allowed to regain superuser privileges in orde to access raw ethernet interfaces (Ethernet face support) and create
a socket file in the system folder (Unix face support). Temporarily dropping privileges by setting the effective user
and group id provides minimal security risk mitigation, but it can also prevent well intentioned, but buggy, code from
harming the underlying system. It is also possible to run NFD without superuser privileges, but it requires the dis-
abling of ethernet faces (or proper configuration to allow non-root users to perform privileged operations on sockets)
and modification of the Unix socket path for NFD and all applications (see your installed nfd.conf configuration file or
nfd.conf.sample for more details). When applications are built using the ndn-cxx library, the Unix socket path for the
application can be changed using the client.conf file. The library will search for client.conf in three specific locations
and in the following order:

– ~/.ndn/client.conf

– /SYSCONFDIR/ndn/client.conf (by default, SYSCONFDIR is /usr/local/etc)

– /etc/ndn/client.conf

• tables: The tables section configures NFD’s tables: Content Store, PIT, FIB, Strategy Choice, Measurements, and
Network Region. NFD currently supports configuring the maximum Content Store size, per-prefix strategy choices,
and network region names:

– cs_max_packets: Content Store size limit in number of packets. Default is 65536, which corresponds to about
500 MB, assuming maximum size if 8 KB per Data packet.

– strategy_choice: This subsection selects the initial forwarding strategy for each specified prefix. Entries are
listed as <namespace> <strategy-name> pairs.

– network_region: This subsection contains a set of network regions used by the forwarder to determine if an
Interest carrying a Link object has reached the producer region. Entries are a list of <names>.

• log: The log section defines the logger configuration such as the default log level and individual NFD component log
level overrides. The log section is described in more detail in the Section 9.2.

• face system: The face system section fully controls allowed face protocols, channels and channel creation parameters,
and enabling multicast faces. Specific protocols may be disabled by commenting out or removing the corresponding
nested block in its entirety. Empty sections will result in enabling the corresponding protocol with its default parameters.

NFD supports the following face protocols:

– unix: Unix protocol

This section can contain the following parameter:

∗ path: sets the path for Unix socket (default is /var/run/nfd.sock)

64

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

9.1 Configuration File 9 COMMON SERVICES

Note that if the unix section is present, the created Unix channel will always be in a “listening” state. Commenting
out the unix section disables Unix channel creation.

– udp: UDP protocol

This section can contain the following parameters:

∗ port: sets UDP unicast port number (default is 6363)

∗ enable_v4: controls whether IPv4 UDP channels are enabled (enabled by default)

∗ enable_v6: controls whether IPv6 UDP channels are enabled (enabled by default)

∗ idle_timeout: sets the idle time in seconds before closing a UDP unicast face (default is 600 seconds)

∗ keep_alive_timeout: sets the interval (seconds) between keep-alive refreshes (default is 25 seconds)

∗ mcast: controls whether UDP multicast faces need to be created (enabled by default)

∗ mcast_port: sets UDP multicast port number (default is 56363)

∗ mcast_group: UDP IPv4 multicast group (default is 224.0.23.170)

Note that if the udp section is present, the created UDP channel will always be in a “listening” state as UDP is
a session-less protocol and “listening” is necessary for all types of face operations.

– tcp: TCP protocol

This section can contain the following parameters:

∗ listen: controls whether the created TCP channel is in listening mode and creates TCP faces when an
incoming connection is received (enabled by default)

∗ port: sets the TCP listener port number (default is 6363)

∗ enable_v4: controls whether IPv4 TCP channels are enabled (enabled by default)

∗ enable_v6: controls whether IPv6 TCP channels are enabled (enabled by default)

– ether: Ethernet protocol (NDN directly on top of Ethernet, without requiring IP protocol)

This section can contain the following parameters:

∗ mcast: controls whether Ethernet multicast faces need to be created (enabled by default)

∗ mcast_group: sets the Ethernet multicast group (default is 01:00:5E:00:17:AA)

Note that the Ethernet protocol only supports multicast mode at this time. Unicast mode will be implemented in
future versions of NFD.

– websocket: The WebSocket protocol (tunnels to connect from JavaScript applications running in a web browser)

This section can contain the following parameters:

∗ listen: controls whether the created WebSocket channel is in listening mode and creates WebSocket faces
when incoming connections are received (enabled by default)

∗ port 9696 ; WebSocket listener port number

∗ enable_v4: controls whether IPv4 WebSocket channels are enabled (enabled by default)

∗ enable_v6: controls whether IPv6 WebSocket channels are enabled (enabled by default)

• authorizations: The authorizations section provides a fine-grained control for management operations. As described
in Section 6, NFD has several managers, the use of which can be authorized to specific NDN users. For example, the
creation and destruction of faces can be authorized to one user, management of FIB to another, and control over
strategy choice to a third user.

To simplify the initial bootstrapping of NFD, the sample configuration file does not restrict local NFD management
operations: any user can send management commands to NFD and NFD will authorize them. However, such config-
uration should not be used in a production environment and only designated users should be authorized to perform
specific management operations.

The basic syntax for the authorizations section is as follows. It consists of zero or more authorize blocks. Each
authorize block associates a single NDN identity certificate, specified by the certfile parameter, with privileges

blocks. The privileges block defines a list of permissions/managers (one permission per line) that are granted to the
user identified by certfile defines a file name (relative to the configuration file format) of the NDN certificate. As a
special case, primarily for demo purposes, certfile accepts value ”any”, which denotes any certificate possessed by any
user. Note that all managers controlled by the authorizations section are local. In other words, all commands start
with /localhost, which are possible only through local faces (Unix face and TCP face to 127.0.0.1).

65

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

9.1 Configuration File 9 COMMON SERVICES

Note for developers:

The privileges block can be extended to support additional permissions with the creation of new managers (see
Section 6). This is achieved by deriving the new manager from the ManagerBase class. The second argument to the
ManagerBase constructor specifies the desired permission name.

• rib: The rib section controls behavior and security parameters for NFD RIB manager. This section can contain three
subsections: localhost_security, localhop_security, and auto_prefix_propagate. localhost_security controls
authorizations for registering and unregistering prefixes in RIB from local users (through local faces: Unix socket or
TCP tunnel to 127.0.0.1). localhop_security defines authorization rules for so called localhop prefix registrations:
registration of prefixes on the next hop routers. auto_prefix_propagate configures the behavior of the Auto Prefix
Propagator feature of the RIB manager (Section 7.5).

Unlike the main authorizations section, the rib security section uses a more advanced validator configuration, thus
allowing a greater level of flexibility in specifying authorizations. In particular, it is possible to specify not only specific
authorized certificates, but also indirectly authorized certificates. For more details about validator configuration and
its capabilities, refer to Section 8 and Validator Configuration File Format specification [24].

Similar to the authorizations section, the sample configuration file, allows any local user to send register and
unregister commands (localhost_security) and prohibits remote users from sending registration commands (the
localhop_security section is disabled). On NDN Testbed hubs, the latter is configured in a way to authorize any
valid NDN Testbed user (i.e., a user possessing valid NDN certificate obtained through ndncert website [25]) to send
registration requests for user namespace. For example, a user Alice with a valid certificate /ndn/site/alice/KEY/...

/ID-CERT/... would be allowed to register any prefixes started with /ndn/site/alice on NDN hub.

The auto_prefix_propagate subsection supports configuring the forwarding cost of remotely registered prefixes, the
timeout interval of a remote prefix registration command, how often propagations are refreshed, and the minimum and
maximum wait time before retrying a propagation:

– cost: The forwarding cost for prefixes registered on a remote router (default is 15).

– timeout: The timeout (in milliseconds) of prefix registration commands for propagation (default is 10000).

– refresh_interval: The interval (in seconds) before refreshing the propagation (default is 300). This setting
should be less than face_system.udp.idle_time, so that the face is kept alive on the remote router.

– base_retry_wait: The base wait time (in seconds) before retrying propagation (default is 50).

– max_retry_wait: maximum wait time (in seconds) before retrying propagation between consecutive retries (default
is 3600). The wait time before each retry is calculated based on the following back-off policy: initially, the wait time
is set to base_retry_wait. The wait time is then doubled for each retry unless it is greater than max_retry_wait,
in which case the wait time is set to max_retry_wait.

9.1.2 Developer Info

When creating a new management module, it is very easy to make use of the NFD configuration file framework.
Most heavy lifting is performed using the Boost.PropertyTree [20] library and NFD implements an additional wrapper
(ConfigFile) to simplify configuration file operations.

1. Define the format of the new configuration section. Reusing an existing configuration section could be problematic,
since a diagnostic error will be generated any time an unknown parameter is encountered.

2. The new module should define a callback with prototype void(*)(ConfigSection..., bool isDryRun) that
implements the actual processing of the newly defined section. The best guidance for this step is to take a look at
the existing source code of one of the managers and implement the processing in a similar manner. The callback
can support two modes: dry-run to check validity of the specified parameters, and actual run to apply the specified
parameters.

As a general guideline, the callback should be able to process the same section multiple times in actual run mode
without causing problems. This feature is necessary in order to provide functionality of reloading configuration
file during run-time. In some cases, this requirement may result in cleaning up data structures created during the
run. If it is hard or impossible to support configuration file reloading, the callback must detect the reloading event
and stop processing it.

66

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

9.2 Basic Logger 9 COMMON SERVICES

3. Update NFD initialization in daemon/nfd.hpp and daemon/nfd.cpp files. In particular, an instance of the new
management module needs to be created inside the initializeManagement method. Once module is created, it
should be added to ConfigFile class dispatch. Similar updates should be made to reloadConfigFile method.

As another general recommendation, do not forget to create proper test cases to check correctness of the new
config section processing. This is vital for providing longevity support for the implemented module, as it ensures
that parsing follows the specification, even after NFD or the supporting libraries are changed.

9.2 Basic Logger

One of the most important core services is the logger. NFD’s logger provides support for multiple log levels, which can be
configured in the configuration file individually for each module. The configuration file also includes a setting for the default
log level that applies to all modules, except explicitly listed.

9.2.1 User Info

Log level is configured in the log section of the configure file. The format for each configuration setting is a key-value pair,
where key is name of the specific module and value is the desired log level. Valid values for log level are:

• NONE: no messages

• ERROR: show only error messages

• WARN: show also warning messages

• INFO: show also informational messages (default)

• DEBUG: show also debugging messages

• TRACE: show also trace messages

• ALL: all messages for all log levels (most verbose)

Individual module names can be found in the source code by looking for NFD_LOG_INIT(<module name>) statements in
.cpp files, or using --modules command-line option for the nfd program. There is also a special default_level key, which
defines log level for all modules, except explicitly specified (if not specified, INFO log level is used).

9.2.2 Developer Info

To enable NFD logging in a new module, very few actions are required from the developer:

• include core/logger.hpp header file

• declare logging module using NFD_LOG_INIT(<module name>) macros

• use NFD_LOG_<LEVEL>(statement to log) in the source code

The effective log level for unit testing is defined in unit-tests.conf (see sample unit-tests.conf.sample file) rather
the normal nfd.conf. unit-tests.conf is expected under the top level NFD directory (i.e. same directory as the sample
file).

9.3 Hash Computation Routines

Common services also include several hash functions, based on city hash algorithm [12], to support fast name-based operations.
Since efficient hash table index size depends on the platform, NFD includes several versions, for 16-bit, 32-bit, 64-bit, and
128-bit hashing.17

Name tree implementation generalizes the platform-dependent use of hash functions using a template-based helper (see
computeHash function in daemon/tables/name-tree.cpp). Depending on the size of size_t type on the platform, the
compiler will automatically select the correct version of the hash function.

17Even though the performance is not a primary goal for the current implementation, we tried to be as much efficient as possible within the
developed framework.

67

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

9.4 Global Scheduler 9 COMMON SERVICES

Other hash functions may be included in the future to provide tailored implementations for specific usage patterns. In
other words, since the quality of the hash function is usually not the sole property of the algorithm, but also relies on the
hashed source (hash functions need to hash uniformly into the hash space), depending on which Interest and Data names
are used, other hash functions may be more appropriate. Cryptographic hash functions are also an option, however they are
usually prohibitively expensive.

9.4 Global Scheduler

The ndn-cxx library includes a scheduler class that provides a simple way to schedule arbitrary events (callbacks) at arbitrary
time points. Normally, each module/class creates its own scheduler object. An implication of this is that a scheduled object,
when necessary, must be cancelled in a specific scheduler, otherwise the behavior is undefined.

NFD packet forwarding has a number of events with shared ownership of events. To simplify this and other event
operations, common services include a global scheduler. To use this scheduler, one needs to include core/scheduler.hpp,
after which new events can be scheduled using the scheduler::schedule free function. The scheduled event can then
be cancelled at any time by calling the scheduler::cancel function with the event id that was originally returned by
scheduler::schedule.

9.5 Global IO Service

The NFD packet forwarding implementation is based on Boost.Asio [26], which provides efficient asynchronous operations.
The main feature of this is the io_service abstraction. io_service implements the dispatch of any scheduled events in an
asynchronous manner, such as sending packets through Berkeley sockets, processing received packets and connections, and
many others including arbitrary function calls (e.g., scheduler class in ndn-cxx library is fully based on io_service).

Logically, io_service is just a queue of callbacks (explicitly or implicitly added). In order to actually execute any of these
callback functions, at least one processing thread should be created. This is accomplished by calling the io_service::run

method. The execution thread that called the run method then becomes such an execution thread and starts processing
enqueued callbacks in an application-defined manner. Note that any exceptions that will be thrown inside the enqueued
callbacks can be intercepted in the processing thread that called the run method on io_service object.

The current implementation of NFD uses a single global instance of io_service object with a single processing thread.
This thread is initiated from the main function (i.e., main function calls run method on the global io_service instance).

In some implementations of new NFD services, it may be required to specify a io_service object. For example, when
implementing TCP face, it is necessary to provide an io_service object as a constructor parameter to boost::asio::ip::

tcp::socket. In such cases, it is enough to include core/global-io.hpp header file and supply getGlobalIoService() as
the argument. The remainder will be handled by the existing NFD framework.

9.6 Privilege Helper

When NFD is run as a super user (may be necessary to support Ethernet faces, enabling TCP/UDP/WebSocket faces on
privileged ports, or enabling Unix socket face in a root-only-writeable location), it is possible to run most of the operations
in unprivileged mode. In order to do so, NFD includes a PrivilegeHelper that can be configured through configuration file
to drop privileges as soon as NFD initialization finishes. When necessary, NFD can temporarily regain privileges to do
additional tasks, e.g., (re-)create multicast faces.

68

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

10 TESTING

10 Testing

In general, software testing consists of multiple testing levels. The levels that have been majorly supported during the NFD
development process include unit and integration tests.

At the unit test level, individual units of source code (usually defined in a single .cpp file) are tested for functional
correctness. Some of the developed unit tests in NFD involve multiple modules and interaction between modules (e.g.,
testing of forwarding strategies). However, even in these cases, all testing is performed internally to the module, without any
external interaction.

NFD also employs integration testing, where NFD software and its components is evaluated as a whole in a controlled
networking environment.

10.1 Unit Tests

NFD uses Boost Test Library [27] to support development and execution of unit testing.

10.1.1 Test Structure

Each unit test consists of one or more test suites, which may contain one or more locally defined classes and/or attributes
and a number of test cases. A specific test case should test a number of the functionalities implemented by a NFD module.
In order to reuse common functions among the test suites of a test file or even among multiple test files, one can make use
of the fixture model provided by the Boost Test Library.

For example, the tests/daemon/face/face.t.cpp file, which tests the correctness of the daemon/face/face.hpp file,
contains a single test suite with a number of test cases and a class that extends the DummyFace class. The test cases check
the correctness of the functionalities implemented by the daemon/face/face.hpp file.

10.1.2 Running Tests

In order to run the unit tests, one has to configure and compile NFD with the --with-tests parameter. Once the compilation
is done, one can run all the unit tests by typing:

./build/unit-tests

One can run a specific test case of a specific test suite by typing:

./build/unit-tests -t <TestSuite>/<TestCase>

10.1.3 Test Helpers

ndn-cxx library provides a number of helper tools to facilitate development of unit tests:

• DummyClientFace <ndn-cxx/util/dummy-client-face.hpp>: a socket-independent Face abstraction to be used
during the unit testing process;

• UnitTestSystemClock and UnitTestSteadyClock (<util/time-unit-test-clock.hpp>): abstractions to mock
system and steady clocks used inside ndn-cxx and NFD implementation.

In addition to library tools, NFD unit test environment also includes a few NFD-specific common testing elements:

• LimitedIo (tests/limited-io.hpp): class to start/stop IO operations, including operation count and/or time limit
for unit testing;

• UnitTestTimeFixture (tests/test-common.hpp): a base test fixture that overrides steady clock and system clock;

• IdentityManagementFixture (tests/identity-management-fixture.hpp): a test suite level fixture that can be
used fixture to create temporary identities. Identities added via IdentityManagementFixture::addIdentity method
are automatically deleted during test teardown.

• DummyTransport (tests/daemon/face/dummy-transport.hpp): a dummy Transport used in testing Faces and
LinkServices

• DummyReceiveLinkService (tests/daemon/face/dummy-receive-link-service.hpp): a dummy LinkService that
logs all received packets. Note that this LinkService does not allow sending of packets.

69

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

10.2 Integration Tests 10 TESTING

• StrategyTester (tests/daemon/fw/strategy-tester.hpp): a framework to test a forwarding strategy. This helper
extends the tested strategy to offer recording of its invoked actions, without passing them to the actual forwarder
implementation.

• TopologyTester (tests/daemon/fw/topology-tester.hpp): a framework to construct a virtual mock topology and
implement various network events (e.g., failing and recovering links). The purpose is to test the forwarder and an
implemented forwarding strategy across this virtual topology.

10.1.4 Test Code Guidelines and Naming Conventions

The current implementation of NFD unit tests uses the following naming convention:

• A test suite for the folder/module-name.hpp file should be placed in tests/folder/module-name.t.cpp. For exam-
ple, the test suite for the daemon/fw/forwarder.hpp file should be placed in tests/daemon/fw/forwarder.t.cpp.

• A test suite should be named as TestModuleName and nested under test suites named after directories. For example, the
test suite for the daemon/fw/forwarder.hpp file should be named Fw/TestForwarder (“daemon” part is not needed,
as daemon-related unit tests are separated into a separate unit tests module unit-tests-daemon).

• Test suite should be declared inside the same namespace of the tested type plus additional tests namespace. For
example, a test suite for the nfd::Forwarder class is declared in the namespace nfd::tests and a test suite for
the nfd::cs::Cs class is declared in the nfd::cs::tests namespace. If needed, parent tests sub-namespace can be
imported with using namespace directive.

• A test suite should use the nfd::tests::BaseFixture fixture to get automatic setup and teardown of global io_service.
If a custom fixture is defined for a test suite or a test case, this custom fixture should derive from the BaseFixture.
If a test case needs to sign data, it should use IdentityManagementFixture or fixture that extends it. When feasible,
UnitTestTimeFixture should be used to mock clocks.

10.2 Integration Tests

NFD team has developed a number of integrated test cases (http://gerrit.named-data.net/#/admin/projects/NFD/
integration-tests) that can be run in a dedicated test environment.

The easiest way to run the integration tests is to use Vagrant (https://www.vagrantup.com/) to automate creation and
running of VirtualBox virtual machines. Note that the test machine will need at least 9Gb of RAM and at least 5 CPU
threads.

• Install VirtualBox and Vagrant on the test system

• Clone integration tests repository:

git clone http://gerrit.named-data.net/NFD/integration-tests

cd integration-tests

• Run run-vagrant-tests.sh script that will create necessary virtual machines and run all the integration tests.

• Resulting logs can be collected using collect-logs.sh script.

70

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

REFERENCES REFERENCES

References

[1] NDN Project Team, “NDN packet format specification (version 0.1),” http://named-data.net/doc/ndn-tlv/, 2014.

[2] ——, “NFD - Named Data Networking Forwarding Daemon,” http://named-data.net/doc/NFD/current/, 2014.

[3] ——, “NFD management protocol,” http://redmine.named-data.net/projects/nfd/wiki/Management, 2014.

[4] ——, “Control command,” http://redmine.named-data.net/projects/nfd/wiki/ControlCommand, 2014.

[5] J. Shi, “Ndnlpv2,” http://redmine.named-data.net/projects/nfd/wiki/NDNLPv2.

[6] D. Katz and D. Ward, “Bidirectional Forwarding Detection (BFD),” RFC 5880 (Proposed Standard), Internet
Engineering Task Force, Jun. 2010. [Online]. Available: http://www.ietf.org/rfc/rfc5880.txt

[7] B. Adamson, C. Bormann, M. Handley, and J. Macker, “Multicast Negative-Acknowledgment (NACK) Building
Blocks,” RFC 5401 (Proposed Standard), Internet Engineering Task Force, Nov. 2008. [Online]. Available:
http://www.ietf.org/rfc/rfc5401.txt

[8] J. Shi and B. Zhang, “Ndnlp: A link protocol for ndn,” NDN, NDN Technical Report NDN-0006, Jul 2012.

[9] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Braynard, “Networking
named content,” in Proceedings of the 5th International Conference on Emerging Networking Experiments
and Technologies, ser. CoNEXT ’09. New York, NY, USA: ACM, 2009, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1658939.1658941

[10] J. Shi, “Namespace-based scope control,” http://redmine.named-data.net/projects/nfd/wiki/ScopeControl.

[11] NDN Project Team, “NFD Local Control Header,” http://redmine.named-data.net/projects/nfd/wiki/
LocalControlHeader, 2014.

[12] Google, “The CityHash family of hash functions,” https://code.google.com/p/cityhash/, 2011.

[13] J. Shi, “ccnd 0.7.2 forwarding strategy,” http://redmine.named-data.net/projects/nfd/wiki/CcndStrategy, University
of Arizona, Tech. Rep., 2014.

[14] Y. Yu, A. Afanasyev, Z. Zhu, and L. Zhang, “Ndn technical memo: Naming conventions,” NDN, NDN Memo, Technical
Report NDN-0023, Jul 2014.

[15] P. Gusev and J. Burke, “Ndn-rtc: Real-time videoconferencing over named data networking,” NDN, NDN Technical
Report NDN-0033, Jul 2015.

[16] NDN Project Team, “Ndn protocol design principles,” http://named-data.net/project/ndn-design-principles/.

[17] V. Lehman, A. Gawande, B. Zhang, L. Zhang, R. Aldecoa, D. Krioukov, and L. Wang, “An experimental investigation
of hyperbolic routing with a smart forwarding plane in ndn,” NDN, NDN Technical Report NDN-0042, Jul 2016.

[18] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A case for stateful forwarding
plane,” Computer Communications, vol. 36, no. 7, pp. 779–791, 2013, iSSN 0140-3664. [Online]. Available:
http://dx.doi.org/10.1016/j.comcom.2013.01.005

[19] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang, “Interest flooding attack and
countermeasures in Named Data Networking,” in Proc. of IFIP Networking 2013, May 2013. [Online]. Available:
http://networking2013.poly.edu/program-2/

[20] M. Kalicinski, “Boost.PropertyTree,” http://www.boost.org/doc/libs/1 48 0/doc/html/property tree.html, 2008.

[21] A. Afanasyev, J. Shi, Y. Yu, and S. DiBenedetto, ndn-cxx: NDN C++ library with eXperimental eXtensions: Library
and Applications Developer’s Guide. NDN Project (named-data.net), 2015.

[22] NDN Project Team, “Rib management,” http://redmine.named-data.net/projects/nfd/wiki/RibMgmt.

[23] Y. Yu, “NDN regular expression,” http://redmine.named-data.net/projects/ndn-cxx/wiki/Regex, 2014.

[24] ——, “Validator configuration file format,” http://redmine.named-data.net/projects/ndn-cxx/wiki/
CommandValidatorConf, 2014.

71

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

REFERENCES REFERENCES

[25] NDN Project Team, “NDN-Cert,” https://github.com/named-data/ndncert, 2014.

[26] C. Kohlhoff, “Boost.Asio,” http://www.boost.org/doc/libs/1 48 0/doc/html/boost asio.html, 2003–2013.

[27] G. Rozental, “Boost test library,” http://www.boost.org/doc/libs/1 48 0/libs/test/doc/html/index.html, 2007.

72

T
h
is

re
v
is
io
n
is
O
U
T
D
A
T
E
D

an
d
p
re
se
rv
ed

fo
r
h
is
to
ri
ca
l
p
u
rp
o
se
s
o
n
ly
.
C
h
ec
k
fo
r
th
e

m
os
t
re
ce
n
t
re
v
is
io
n
at

h
t
t
p
s
:
/
/
n
a
m
e
d
-
d
a
t
a
.
n
e
t
/
p
u
b
l
i
c
a
t
i
o
n
s
/
t
e
c
h
r
e
p
o
r
t
s
/

https://named-data.net/publications/techreports/

