NDNoT
A Framework for Named Data
Network of Things

Zhiyi Zhang, Yanbiao Li, Edward Lu, Tianyuan Yu,
Alex Afanasyev, Lixia Zhang
NDNcomm
Sept 2018

NDN fits loT ideally

» Securing data directly instead of relying on secured sessions.

e Secure loT system with local trust anchors instead of remote cloud
servers

* Naming Convention -> An open environment for applications and
services to cooperate and function together.

* By naming data instead of IP address, NDN enables host multihoming
and seamlessly utilizes all communication interfaces

* Content multicast and in-network caching.
e Simpler application development

Motivations of NDNoT

* Providing a integrate and modularized open-source library with well-
documented APIs for developers and users to easily develop loT
applications with NDN.

A community for loT developers that are interested in applying NDN
In loT scenarios.
* Some pre-defined naming convention for different services to cooperate

* Encouraging developers to give comments or to add new functionality
modules into the framework to make the framework better

Goals of NDNoT Library

Providing integrated and lightweight NDN support in loT scenario:
e Basic NDN protocol stack and content-centric features

* Pure NDN running over link layer

e Security bootstrapping

 Service discovery

* Schematized Trust

* Access Control for constrained devices

* NDN Sync support

The Framework

A simple story

* You bought a smart home temperature sensor with a loT board that
only has 32k RAM and 48MHz

e What’s next?

Bootstrapping

Goal

* The loT device (e.g., Temperature Sensor) learns the trust anchor of
the system and obtain an identity certificate issued by the system
controller (e.g., Android Phone)

Assumptions

* The loT device and the controller have shared secret through out-of-
band means, e.g., The user scans the QR code on sensor with phone

* The pre-shared secret is a crypto public key (BK), e.g., ECC/RSA public
key

Bootstrapping

|dentify each other by verifying the possession of shared secret.
* Negotiate a symmetric key for better performance
e Utilize uniqueness to prevent replay attack

Use Interest parameter to save bandwidth

loT Device / ndn/ si gn-on/ <Par am Di gest >
- <Secr et D gest >; <Token- 1>; <Si gnat ur e- BK>
3 Generate Symmetric Key (TSK) with DH
A= = e e e e e e e e e e e e e e e e e e = e e = = —— —— -
@ <Anchor Cer t >, <KeyedHashMAC>, <Token- 2>, <HVAC- TSK>

Generate Communication Key (CK)

/| <HomePr ef i x>/ cert/ <Param Di gest >
<Secr et Di gest >; <CKPubKey>; <HMAC- TSK> » m

% Sign device’s CK and generate cert

<Devi ceCertifi cat e>, <HVAC- TSK>, <Avai | abl eServi ce>

Bootstrapping Assessment and Performance

Assessment

* One asymmetric signature signing and verification (I1)
* One Diffie Hellman Process

* Three HMAC signing and verification (D1, 12, D3)

Performance:

Time Consumption: 1.3s (including network and system 10) for Xpro (with
RIOT) board (32K RAM, 48MHz)

* Details: ECC key size 160 bits; DH key size 256 bits

Bandwidth Consumption: around 300 bits less by utilizing Interest
parameters

Service Discovery

* Learning existing services from the controller in the last step of bootstrapping
* Advertising services by broadcasting advertisements after bootstrapping

* Broadcasting again when services change or restart (soft state)

* Query meta data before using a service

loT Device Periodically broadcast advertisement for some time after

F the bootstrapping
/ <HomePr ef i x>/ SO/ <Devi cel denti ty>/ LI ST/ <Ser vi ceNanes>

Another |I0T Device

/ <HomePr ef i x>/ <Devi cel denti t y>/ <Ser vi ceNanme>/ QUERY

| -
('

<Met al nfo of the Service>, <Si gnat ure- CK>

Schematized Trust

e Control your loT device’s trust relationship with other devices in
different scenarios

Example:

* The AC (/home/living/AC) should only trust the temp data
(/home/living/temp) under the same prefix

* The AC should only obey the command signed by the device with
controller prefix (/home/control) or with specific format
(/home/living/remote-<>)

Lightweight Access Control

* Existing NDN access control systems don’t fit constrained devices
* All symmetric key encryption/decryption
* Use Interest parameter to save bandwidth

Producer | <HormePr ef i x>/ AC/ <Pr ol dent i t y>/ <Par anD> Access consumer
<Type>; <Keyl| D>; <DHPubKey>; <CKSI g>

F |-- - - -"—-"“"—-"—""“"-“"-—-—-“"—~—— - —— >
Negotiate Content Q

Encryption Key with DH

L

| -
r

=== == === === === === —
Q <DHPubKey>; <AKSi g>

Negotiate Key Encryption Key with DH

________________________ o

<EncCont ent Key>; <DHPubKey>; <AKSi g>

Adaptation Layer

* The adaptation layer abstracts different link-layer protocols and wraps
the NDN Interest and Data packets into link-layer frames.

* Name Prefix <-> Interface mapping

* A separate process and communicates with NDN applications using
Inter-Process Communication (IPC) or other equivalent mechanism.

NDN App

e I
—® | NDN Forwarding NDN Forwarding
o« — Process | Process

— |

NDN App

NDN App

Hardware

|IOT devices
e Atmel Xpro (RIOT OS): 802.15.4
e ESP32: WiFi, BLE, Bluetooth

Controller

* Raspberry Pi

* Android Phone
e Linux/MacOS

Current status and future plan

* Finished with unit tests: * Next stage
* NDNoT for RIOT: Bootstrapping e NDNoT for RIOT: schematized trust
 NDNoT for RIOT: Service Discovery NDNoT for RIOT: sync
* NDNoT for RIOT: Access Control NDNoT for RIOT: integrate test

e NDNoT for ESP32

* [n Progress
e Adaptation Layer
 Specification
* Tutorial

Thank You!

zhiyi@cs.ucla.edu

