
NDNoT
A Framework for Named Data

Network of Things
Zhiyi Zhang, Yanbiao Li, Edward Lu, Tianyuan Yu,

Alex Afanasyev, Lixia Zhang

NDNcomm

Sept 2018

NDN fits IoT ideally

• Securing data directly instead of relying on secured sessions.

• Secure IoT system with local trust anchors instead of remote cloud
servers

• Naming Convention -> An open environment for applications and
services to cooperate and function together.

• By naming data instead of IP address, NDN enables host multihoming
and seamlessly utilizes all communication interfaces

• Content multicast and in-network caching.

• Simpler application development

2

Motivations of NDNoT

• Providing a integrate and modularized open-source library with well-
documented APIs for developers and users to easily develop IoT
applications with NDN.

• A community for IoT developers that are interested in applying NDN
in IoT scenarios.
• Some pre-defined naming convention for different services to cooperate

• Encouraging developers to give comments or to add new functionality
modules into the framework to make the framework better

3

Goals of NDNoT Library

Providing integrated and lightweight NDN support in IoT scenario:

• Basic NDN protocol stack and content-centric features

• Pure NDN running over link layer

• Security bootstrapping

• Service discovery

• Schematized Trust

• Access Control for constrained devices

• NDN Sync support

4

The Framework

5

A simple story

• You bought a smart home temperature sensor with a IoT board that
only has 32k RAM and 48MHz

• What’s next?

6

Bootstrapping

7

Goal

• The IoT device (e.g., Temperature Sensor) learns the trust anchor of
the system and obtain an identity certificate issued by the system
controller (e.g., Android Phone)

Assumptions

• The IoT device and the controller have shared secret through out-of-
band means, e.g., The user scans the QR code on sensor with phone

• The pre-shared secret is a crypto public key (BK), e.g., ECC/RSA public
key

Bootstrapping

8

Generate Symmetric Key (TSK) with DH

/ ndn/ si gn- on/ <Par am Di gest >
<Secr et Di gest >; <Token- 1>; <Si gnat ur e- BK>

<Anchor Cer t >, <KeyedHashMAC>, <Token- 2>, <HMAC- TSK>

/ <HomePr ef i x>/ cer t / <Par am Di gest >
<Secr et Di gest >; <CKPubKey>; <HMAC- TSK>

Sign device’s CK and generate cert

<Devi ceCer t i f i cat e>, <HMAC- TSK>, <Avai l abl eSer vi ce>

Generate Communication Key (CK)

IoT Device Controller

• Identify each other by verifying the possession of shared secret.
• Negotiate a symmetric key for better performance
• Utilize uniqueness to prevent replay attack
• Use Interest parameter to save bandwidth

Bootstrapping Assessment and Performance

Assessment
• One asymmetric signature signing and verification (I1)
• One Diffie Hellman Process
• Three HMAC signing and verification (D1, I2, D3)

Performance:
Time Consumption: 1.3s (including network and system IO) for Xpro (with
RIOT) board (32K RAM, 48MHz)
• Details: ECC key size 160 bits; DH key size 256 bits
Bandwidth Consumption: around 300 bits less by utilizing Interest
parameters

9

Service Discovery

10

/ <HomePr ef i x>/ SD/ <Devi ceI dent i t y>/ LI ST/ <Ser vi ceNames>

/ <HomePr ef i x>/ <Devi ceI dent i t y>/ <Ser vi ceName>/ QUERY

Periodically broadcast advertisement for some time after

the bootstrapping

<Met aI nf o of t he Ser vi ce>, <Si gnat ur e- CK>

IoT Device

Another IoT Device

• Learning existing services from the controller in the last step of bootstrapping

• Advertising services by broadcasting advertisements after bootstrapping

• Broadcasting again when services change or restart (soft state)

• Query meta data before using a service

Schematized Trust

• Control your IoT device’s trust relationship with other devices in
different scenarios

Example:

• The AC (/home/living/AC) should only trust the temp data
(/home/living/temp) under the same prefix

• The AC should only obey the command signed by the device with
controller prefix (/home/control) or with specific format
(/home/living/remote-<>)

11

Lightweight Access Control

12

/ <HomePr ef i x>/ AC/ <Pr oI dent i t y>/ <Par amD>
<Type>; <KeyI D>; <DHPubKey>; <CKSi g>

Negotiate Content

Encryption Key with DH

Negotiate Key Encryption Key with DH

<DHPubKey>; <AKSi g>

<EncCont ent Key>; <DHPubKey>; <AKSi g>

/ <HomePr ef i x>/ AC/ <ConI dent i t y>/ <Par amD>
<Type>; <Namespace>; <DHPubKey>; <CKSi g>

Access

Controller
Producer Consumer

• Existing NDN access control systems don’t fit constrained devices

• All symmetric key encryption/decryption

• Use Interest parameter to save bandwidth

Adaptation Layer

• The adaptation layer abstracts different link-layer protocols and wraps
the NDN Interest and Data packets into link-layer frames.

• Name Prefix <-> Interface mapping

• A separate process and communicates with NDN applications using
Inter-Process Communication (IPC) or other equivalent mechanism.

13

Hardware

IOT devices

• Atmel Xpro (RIOT OS): 802.15.4

• ESP32: WiFi, BLE, Bluetooth

Controller

• Raspberry Pi

• Android Phone

• Linux/MacOS

14

Current status and future plan

• Finished with unit tests:
• NDNoT for RIOT: Bootstrapping

• NDNoT for RIOT: Service Discovery

• NDNoT for RIOT: Access Control

• In Progress
• Adaptation Layer

• Specification

• Tutorial

15

• Next stage
• NDNoT for RIOT: schematized trust

• NDNoT for RIOT: sync

• NDNoT for RIOT: integrate test

• NDNoT for ESP32

Thank You!
zhiyi@cs.ucla.edu

16

