A New Way of Traffic Engineering in Named Data Networking

Klaus Schneider¹, Beichuan Zhang¹, Lotfi Benmohamed² September 20, 2018

¹The University of Arizona, ²NIST

"A New Way of Traffic Engineering using NDN"

Any mechanism that manipulates the traffic flow (other than shortest path routing)

Any mechanism that manipulates the traffic flow (other than shortest path routing)

Aka "optimal" routing

Why do we need Traffic Engineering?

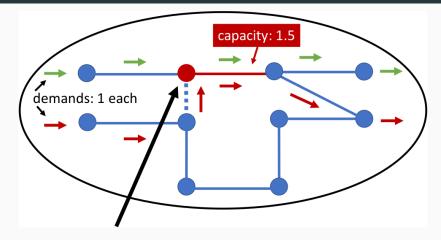


Figure from "On low-latency-capable topologies" [1]

Why do we need Traffic Engineering?

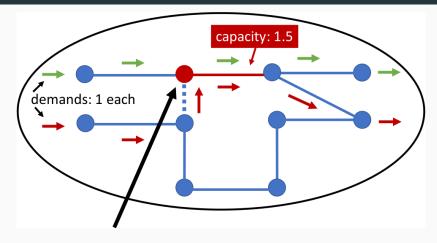
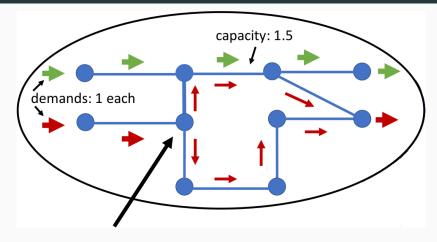
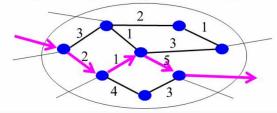


Figure from "On low-latency-capable topologies" [1]

SP Routing: Congestion + unused BW on non-SP

Why do we need Traffic Engineering?

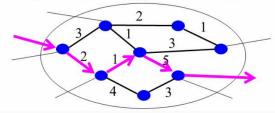



Figure from "On low-latency-capable topologies" [1]

\Rightarrow Split traffic to non-shortest path!

The Current Way of Traffic Engineering

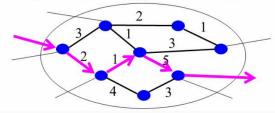
1. SP Routing + Link-weight Tuning


- ◆ Weights configured by the AS's network operator
 - Simple heuristics: link capacity or physical distance
 - Traffic engineering: tuning the link weights to the traffic

Jennifer Rexford - "MIRED: Managing IP Routing is Extremely Difficult"

1. SP Routing + Link-weight Tuning

- ◆ Weights configured by the AS's network operator
 - Simple heuristics: link capacity or physical distance
 - Traffic engineering: tuning the link weights to the traffic


Jennifer Rexford - "MIRED: Managing IP Routing is Extremely Difficult"

Problems:

1. Quite imprecise tool

1. SP Routing + Link-weight Tuning

- ◆ Weights configured by the AS's network operator
 - Simple heuristics: link capacity or physical distance
 - Traffic engineering: tuning the link weights to the traffic

Jennifer Rexford - "MIRED: Managing IP Routing is Extremely Difficult"

Problems:

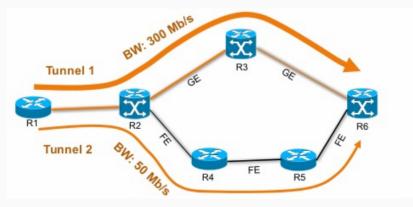
- 1. Quite imprecise tool
- 2. **Global Side-effects** (changing weights can cause cong. in other network areas)

- Input: Traffic Matrix (flows between endpoints)
- Output: Routing that minimizes the Max. Link Utilization

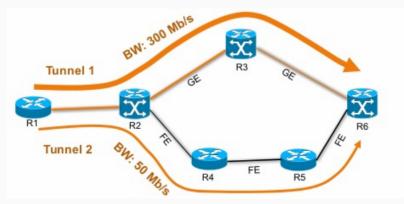
- Input: Traffic Matrix (flows between endpoints)
- Output: Routing that minimizes the Max. Link Utilization
- \Rightarrow Allows headroom to deal with traffic fluctuations

- Input: Traffic Matrix (flows between endpoints)
- Output: Routing that minimizes the Max. Link Utilization
- \Rightarrow Allows headroom to deal with traffic fluctuations

Problems:

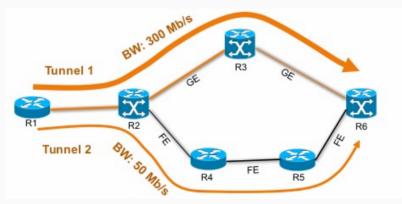

• MLU metric susceptible to outliers (small link capacity)

- Input: Traffic Matrix (flows between endpoints)
- Output: Routing that minimizes the Max. Link Utilization
- \Rightarrow Allows headroom to deal with traffic fluctuations

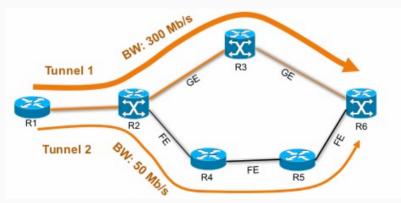

Problems:

- MLU metric susceptible to outliers (small link capacity)
- Doesn't consider link propagation delay!
- \Rightarrow Unnecessarily long paths

MPLS, RSVP-TE, Segment Routing, B4 [2], SWAN [3]



MPLS, RSVP-TE, Segment Routing, B4 [2], SWAN [3]


1. New flow: Find path that satisfies BW req. (CSPF)

MPLS, RSVP-TE, Segment Routing, B4 [2], SWAN [3]

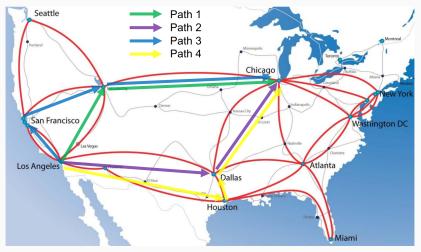
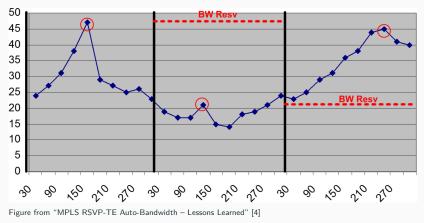
- 1. New flow: Find path that satisfies BW req. (CSPF)
- 2. Reserve Bandwidth

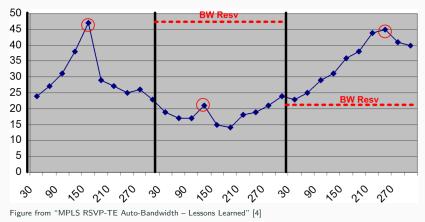
MPLS, RSVP-TE, Segment Routing, B4 [2], SWAN [3]

- 1. New flow: Find path that satisfies BW req. (CSPF)
- 2. Reserve Bandwidth
- 3. Periodically re-evaluate BW assignments (AutoBW)

1. Granularity: Large tunnels don't fit into small pipes

2. Manual setup of LSPs (number & which ones)


Figure from "MPLS RSVP-TE Auto-Bandwidth - Lessons Learned" [4]

3. Fluctuating link utilization & slow adjustment

\Rightarrow Risks underutilization or congestion!

4. AutoBW doesn't see actual congestion (packet loss)

 \Rightarrow Endpoints slow down without AutoBW noticing

All in all: MPLS-TE quite complex approach ⇒ Lots of manual work; reliance on operator and/or proprietary software

+ Routing & Congestion Control are separated

Goals: Combine MP Routing & Congestion Control

1. Simplify Configuration

- No manual configuration
- No pre-established tunnels

Goals: Combine MP Routing & Congestion Control

1. Simplify Configuration

- No manual configuration
- No pre-established tunnels

2. Improve Performance

• Use network resources more efficiently

Goals: Combine MP Routing & Congestion Control

1. Simplify Configuration

- No manual configuration
- No pre-established tunnels

2. Improve Performance

- Use network resources more efficiently
- React quickly to changing network conditions

Goals: Combine MP Routing & Congestion Control

1. Simplify Configuration

- No manual configuration
- No pre-established tunnels

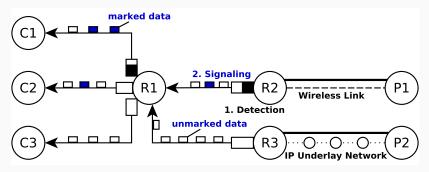
2. Improve Performance

- Use network resources more efficiently
- React quickly to changing network conditions
- Consider both path cost & congestion:
- \Rightarrow Trade-off between shorter and less congested paths

Goals: Combine MP Routing & Congestion Control

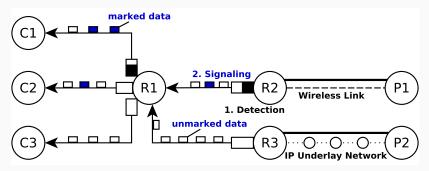
1. Simplify Configuration

- No manual configuration
- No pre-established tunnels


2. Improve Performance

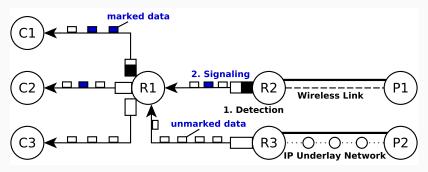
- Use network resources more efficiently
- React quickly to changing network conditions
- Consider both path cost & congestion:
- \Rightarrow Trade-off between shorter and less congested paths

+ Support all NDN features (e.g. caching & multi-producer)


Design Principles: Explicit Congestion Notification

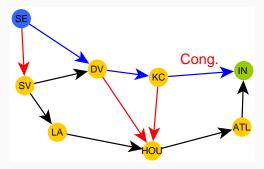
BW Estimation \Rightarrow Congestion marks

Design Principles: Explicit Congestion Notification


BW Estimation \Rightarrow Congestion marks

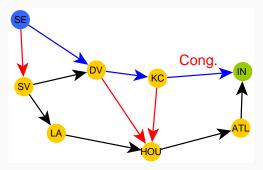
• Works on wireless links, without BW estimation

Design Principles: Explicit Congestion Notification


BW Estimation \Rightarrow Congestion marks

- Works on wireless links, without BW estimation
- Possible to leave headroom, by signaling congestion early (e.g. virtual queue)

Design Principles: Independent HBH Decision


E2E Tunnels \Rightarrow In-network nexthop choices

MP Routing: Routers have many NH that won't cause loops[5]

Design Principles: Independent HBH Decision

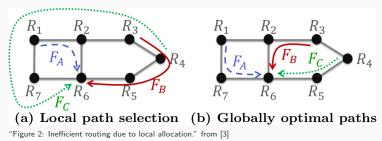
E2E Tunnels \Rightarrow In-network nexthop choices

MP Routing: Routers have many NH that won't cause loops[5]

 \Rightarrow Exponential # of possible paths, without any path establishment overhead

Design Principles: Use Path Cost & Congestion

Topology and path cost known through routing protocol.

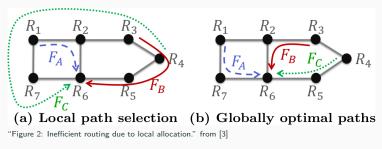

- 1. Start at shortest path
- 2. Split to longer paths when necessary (cong.)

Design Principles: Use Path Cost & Congestion

Topology and path cost known through routing protocol.

- 1. Start at shortest path
- 2. Split to longer paths when necessary (cong.)

Cost-awareness + fine-grained split avoids some MPLS issues:



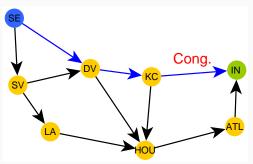
Design Principles: Use Path Cost & Congestion

Topology and path cost known through routing protocol.

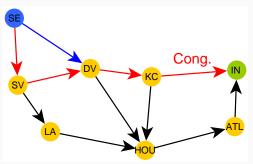
- 1. Start at shortest path
- 2. Split to longer paths when necessary (cong.)

Cost-awareness + fine-grained split avoids some MPLS issues:

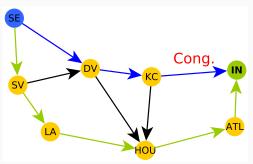
Problem is MPLS granularity, not local knowledge!


Design Principles: Coordinate who Splits

Split only at "best" location:



- Closest to congestion? (KC)
- Lowest Δ in path cost? (DV)


Avoid shared bottlenecks:

Avoid shared bottlenecks:

Avoid shared bottlenecks:

How does it work exactly?

Paper & Code in roughly 3-6 months :)

Current Traffic Engineering has **drawbacks** e.g.:

- Granularity, global side-effects
- Ignores propagation delay
- Complex + manual operator work required

Current Traffic Engineering has **drawbacks** e.g.:

- Granularity, global side-effects
- Ignores propagation delay
- Complex + manual operator work required

\Rightarrow Use NDN forwarding plane to build better TE

- Couple HBH Routing & Congestion Control
- Let's see if it works :)

Thank you for your attention!

Klaus Schneider

References i

 Nikola Gvozdiev, Stefano Vissicchio, Brad Karp, and Mark Handley. On low-latency-capable topologies, and their impact on the design of intra-domain routing.

In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, pages 88–102. ACM, 2018.

[2] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4: Experience with a globally-deployed software defined wan.

In ACM SIGCOMM Computer Communication Review, volume 43, pages 3-14. ACM, 2013.

- [3] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan Nanduri, and Roger Wattenhofer. Achieving high utilization with software-driven wan. In ACM SIGCOMM Computer Communication Review, volume 43, pages 15–26. ACM, 2013.
- [4] Richard Steenbergen. Mpls rsvp-te auto-bandwidth-lessons learned. NANOG, 2013.
- [5] Klaus Schneider and Beichuan Zhang. How to establish loop-free multipath routes in named data networking. Technical report, NDN Technical Report NDN-0044, 2017.

[6] Atul Khanna and John Zinky. The revised arpanet routing metric.

ACM SIGCOMM Computer Communication Review, 19(4):45-56, 1989.