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What is Traffic Engineering?

Any mechanism that manipulates the traffic flow
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= Split traffic to non-shortest path!



The Current Way of Traffic Engineering



1. SP Routing + Link-weight Tuning

& Weights configured by the AS’s network operator
— Simple heuristics: link capacity or physical distance

— Traffic engineering: tuning the link weights to the traffic
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1. SP Routing + Link-weight Tuning

& Weights configured by the AS’s network operator
— Simple heuristics: link capacity or physical distance

— Traffic engineering: tuning the link weights to the traffic

i w
Jennifer Rexford — “MIRED: Managing IP Routing is Extremely Difficult”

Problems:

1. Quite imprecise tool
2. Global Side-effects (changing weights can cause cong.
in other network areas) .
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2. MinMax Routing (e.g. MATE, TeXCP)

e Input: Traffic Matrix (flows between endpoints)

e Output: Routing that minimizes the Max. Link Utilization

= Allows headroom to deal with traffic fluctuations

Problems:

e MLU metric susceptible to outliers (small link capacity)
e Doesn't consider link propagation delay!

= Unnecessarily long paths



3. End-to-End Tunnels

MPLS, RSVP-TE, Segment Routing, B4 [2], SWAN 3]

R1

Tunnel 2



3. End-to-End Tunnels

MPLS, RSVP-TE, Segment Routing, B4 [2], SWAN 3]

R1

Tunnel 2

1. New flow: Find path that satisfies BW req. (CSPF)



3. End-to-End Tunnels

MPLS, RSVP-TE, Segment Routing, B4 [2], SWAN 3]

R1

Tunnel 2 G,;z’

o
%%
)

1. New flow: Find path that satisfies BW req. (CSPF)
2. Reserve Bandwidth



3. End-to-End Tunnels

MPLS, RSVP-TE, Segment Routing, B4 [2], SWAN 3]
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1. New flow: Find path that satisfies BW req. (CSPF)
2. Reserve Bandwidth
3. Periodically re-evaluate BW assignments (AutoBW) 8



Problems with End-to-End Tunnels

1. Granularity: Large tunnels don’t fit into small pipes

BW%& Threshold

Tunnel 4




Problems with End-to-End Tunnels

2. Manual setup of LSPs (number & which ones)
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Figure from “MPLS RSVP-TE Auto-Bandwidth — Lessons Learned” [4]



Problems with End-to-End Tunnels

3. Fluctuating link utilization & slow adjustment
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Figure from “MPLS RSVP-TE Auto-Bandwidth — Lessons Learned” [4]

= Risks underutilization or congestion!



Problems with End-to-End Tunnels

4. AutoBW doesn’t see actual congestion (packet loss)
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Figure from “MPLS RSVP-TE Auto-Bandwidth — Lessons Learned” [4]

= Endpoints slow down without AutoBW noticing



Problems with End-to-End Tunnels

All in all: MPLS-TE quite complex approach
= Lots of manual work; reliance on operator and/or
proprietary software

+ Routing & Congestion Control are separated



A New Way of Traffic Engineering
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A New Way of Traffic Engineering

Goals: Combine MP Routing & Congestion Control
1. Simplify Configuration

e No manual configuration
e No pre-established tunnels

2. Improve Performance

e Use network resources more efficiently
e React quickly to changing network conditions
e Consider both path cost & congestion:
= Trade-off between shorter and less congested paths

+ Support all NDN features (e.g. caching & multi-producer)
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Design Principles: Explicit Congestion Notification

BW Estimation = Congestion marks

marked data

1. Detection
unmarked data

IP Underlay Network
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Design Principles: Explicit Congestion Notification

BW Estimation = Congestion marks

marked data

1. Detection
unmarked data

IP Underlay Network

e Works on wireless links, without BW estimation
e Possible to leave headroom, by signaling congestion early
(e.g. virtual queue)
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Design Principles: Independent HBH Decision

E2E Tunnels = In-network nexthop choices
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Design Principles: Independent HBH Decision

E2E Tunnels = In-network nexthop choices

NN
s

MP Routing: Routers have many NH that won't cause loops|5]

= Exponential # of possible paths, without any path
establishment overhead

13



Design Principles: Use Path Cost & Congestion

Topology and path cost known through routing protocol.
1. Start at shortest path
2. Split to longer paths when necessary (cong.)
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Design Principles: Use Path Cost & Congestion

Topology and path cost known through routing protocol.
1. Start at shortest path
2. Split to longer paths when necessary (cong.)

Cost-awareness + fine-grained split avoids some MPLS issues:

ol FC
(a) Local path selection (b) Globally optimal paths

“Figure 2: Inefficient routing due to local allocation.” from [3]

Problem is MPLS granularity, not local knowledge!
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Design Principles: Coordinate who Splits

Split only at “best” location:

e Closest to congestion? (KC)
e Lowest A in path cost? (DV)

5



Design Principles: Probe New Paths Before Use

Avoid shared bottlenecks:
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Design Principles: Probe New Paths Before Use

Avoid shared bottlenecks:
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How does it work exactly?
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How does it work exactly?

Paper & Code in roughly 3-6 months :)
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Current Traffic Engineering has drawbacks e.g.:

e Granularity, global side-effects
e Ignores propagation delay

e Complex + manual operator work required
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Current Traffic Engineering has drawbacks e.g.:

e Granularity, global side-effects
e Ignores propagation delay

e Complex + manual operator work required

= Use NDN forwarding plane to build better TE
e Couple HBH Routing & Congestion Control

e Let's see if it works :)
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The End

Thank you for your attention!

Klaus Schneider
klaus@cs.arizona.edu
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