
NDN, Technical Report NDN-0043, 2016. http://named-data.net/techreports.html
Revision 1: July 16, 2016

The Design and Implementation of the NDN
Protocol Stack for RIOT-OS

Wentao Shang, Alex Afanasyev, and Lixia Zhang
Computer Science Department, UCLA
Email: {wentao,aa,lixia}@cs.ucla.edu

Abstract—The Named Data Networking (NDN) architecture
has been proposed as a promising solution for supporting
communications in IoT environments. An important class of IoT
platform is the constrained devices that have limited computing
resources and are connected by constrained networks. This paper
presents the design and implementation of the NDN protocol
stack for RIOT-OS, a popular operating system for constrained
IoT platforms. We succeeded in integrating the core NDN packet
forwarding logic into the RIOT-OS kernel together with a high-
level application interface with data security support. Our results
demonstrated the feasibility of using NDN protocol stack to
support applications on constrained devices with only 10s of KB
of RAM and flash memory.

I. INTRODUCTION

Recent years have witnessed a rapid development of the
Internet-of-Things (IoT) technologies, and the interest in
this area continues to grow from both the industry and the
academia. An IoT system may interconnect a large number of
sensors and actuators and allow users to access various types of
data and control functions remotely. Named Data Networking
(NDN) [1], [2] has been proposed as a promising solution
to support IoT semantics at the networking level [3], [4],
simplifying operations over heterogeneous networks, making
massive amounts of sensor data readily available to the ap-
plications, and enabling data-centric security for sensing data
and actuation commands.

An important class of IoT devices is the constrained devices
with limited memory, low processing capability, and low-
power network interfaces. These features make IoT technolo-
gies available at low cost and work with battery power for
years, but also raise the question of how well the NDN
protocol stack may fit into such constrained environments.
There is a perception that NDN’s forwarding logic is too
complex to be implemented on constrained devices, or that the
data-centric security mechanism too expensive for constrained
IoT applications.

This paper addresses the above issues by presenting the de-
sign and implementation of the NDN protocol stack on RIOT-
OS [5], a popular operating system designed for constrained
IoT platforms. RIOT-OS provides a uniform abstraction of the
hardware details across multiple constrained platforms with a
developer-friendly programming interface. It already supports
a number of popular IoT development boards with the built-
in drivers for many peripheral IoT sensors, including humidity
and temperature sensor, light sensor, gas meter, accelerometer,

etc. [6], that can be used to implement a lot of real-life
applications.

We dubbed our implementation NDN-RIOT, which inte-
grates the core NDN forwarding logic into the RIOT-OS
kernel and supports NDN communication directly over IEEE
802.15.4 low-rate wireless network interface that is widely
available on RIOT-OS-capable devices, as well as the tra-
ditional Ethernet. While having limitations imposed by the
constrained environment, NDN-RIOT still provides the essen-
tial for IoT data-centric security feature of data authentication
through a limited set of signature types (HMAC and ECDSA).
Our demo application can run on a 32-bit microcontroller
with 32 KB of RAM and require only about 40 KB of
flash memory for storing the whole program (including the
application code and the OS kernel). We made the NDN-RIOT
source code freely available on GitHub [7], and we highly
welcome comments, feature requests, and help from the broad
community.

The rest of the paper is organized as follows: Section II
gives a brief review of the NDN architecture and the RIOT-
OS system; Section III describes the software design of NDN-
RIOT; Section IV presents evaluation results that focus on
memory usage and performance of the system; Section V
reviews related works on the network stack implementation
for constrained devices; finally, Section VI concludes the paper
and addresses future work.

II. BACKGROUND

A. Named Data Networking

Named Data Networking (NDN) [1], [2] is a realization
of the Information-Centric Network (ICN) paradigm that
shifts the network communication model from host-centric
(in TCP/IP) to data-centric. In NDN, every piece of data has
a unique, hierarchically structured name that is used by the
applications to retrieve the data. A data consumer requests
desired data by sending an Interest packet carrying the data
name (or its prefix). The network forwards the Interest packet
according to the Interest name and using the Interest For-
warding Strategy. The Forwarding Strategy takes input from
the Forwarding Information Base (FIB) about the potential
locations of the data, and utilizes data-plane performance
measurement to adjust forwarding decisions [8]. As an Interest
is forwarded, each router along the path keeps track of the
interface the Interest came from in its Pending Interest Table
(PIT).

http://named-data.net/techreports.html

Once an Interest finds the requested data, either at the orig-
inal producer or a forwarder’s cache (called Content Store or
CS), the Data packet is returned to the consumer by reversing
the Interest forwarding path, using the trace left in the routers’
PIT. Each Data packet carries a cryptographic signature that
securely binds the name and content, allowing the consumer
to authenticate the data regardless of how and from where it is
retrieved. Consequently, an NDN network can utilize various
types of data storage (such as in-network cache and dedicated
repos) to improve the efficiency of communication.

B. RIOT-OS

RIOT-OS [5] is a cross-platform operating system designed
for constrained IoT devices with a minimum of 10s of KB
of RAM and flash memory. It provides a clean and uniform
abstraction over the details of various IoT hardware and a C
(C99-compatible) programming environment for the applica-
tion developers, with full support for the C standard library.
There is also a limited support for C++ and STL library. The
RIOT-OS micro-kernel provides core functionalities such as
multi-threading, priority-based scheduling, interrupt handling,
and Inter-Process Communication (IPC) interface. It currently
includes drivers for Ethernet and IEEE 802.15.4 network inter-
faces, as well as various peripheral IoT sensors and actuators.
It also has a built-in support for IoT-related network protocols
such as IPv6, UDP, 6LoWPAN, RPL, CoAP, etc. Since its
initial release in 2013, RIOT-OS has been ported to several IoT
platforms with different CPU architectures, including ARMv7,
ARM Cortex-M0+, MSP430, and is quickly gaining popularity
in the IoT community.

III. NDN-RIOT DESIGN

A. Objectives

The main objective for NDN-RIOT implementation is to
support the core NDN forwarding operations and compatibility
with the current protocol specification [9], targeting devices
with 10s of KB of RAM (for storing runtime data), 100s of
KB of flash memory (for storing binary executable code),
and low-power CPU running at a frequency of less than
100 MHz. This requires NDN-RIOT to implement simplified
versions of the underlying data structures (PIT, FIB, CS) to
fit within the constrained parameters, supporting most of the
core requirements for the forwarding mechanisms. The second
but not less important objective is to facilitate development of
secure NDN-based applications by providing a high-level API
with inherent support for data-centric security primitives.

B. Software Architecture

RIOT-OS uses a micro-kernel architecture where the net-
work protocol modules (e.g., IPv6 and UDP) are implemented
as kernel threads,1 and packet passing across layers is achieved
through IPC between different modules. The NDN-RIOT stack

1RIOT-OS does not support virtual memory so there is no difference
between processes and threads. Moreover, it does not provide separation of
user-space and kernel-space, making the kernel threads and application threads
have the same privilege of execution.

APP NDN
Net

Device
Driver

Sched Interrupt
HandlerIPC

CPU Timer NIC Peripherals

IPC IPCThreads

RIOT-OS Core

Hardware

Fig. 1: Software architecture of NDN-RIOT

is implemented in the same fashion, as illustrated in Fig. 1.
When the application wants to send an NDN packet, it passes
the packet to the NDN thread in an IPC call; the NDN thread
processes the packet and then passes it to the network device
driver thread for transmission. When the network device driver
receives a Layer-2 frame that contains an NDN packet, it
passes the packet to the NDN thread, which then notifies the
applications and/or further propagates the packet.

C. Packet Encoding and Decoding

In order to support constrained devices with extremely
limited memory resources, we carefully designed the packet
encoding and decoding routines to minimize the number of
copies of the packet in memory. An important design decision
we made is to store the NDN packet in the wire format form
throughout its lifetime in the system and access the underlying
elements on demand, e.g., access the name field to decide
where to forward the interest or access the signature field
during the data packet authentication. This way we saved
memory and CPU cycles by not using the deserialized packet,
paying the prices of additional CPU processing every time
a packet field is accessed. Fortunately, as we demonstrate in
Section IV, parsing the TLV-formatted NDN packet is usually
very efficient.

To simplify memory management and ownership tracking,
we implemented a lightweight shared memory block structure
(inspired by the shared pointer mechanism in C++11) for
storing the TLV-encoded NDN name, Interest, and Data. It
allows us to maximize the sharing of common data across
system modules without worrying about potential memory
leaks.

D. Security Support

Data security is one of the key requirements for IoT appli-
cations. However, because of the limited CPU and memory
resources, constrained IoT devices have limitations on which
cryptographic operations they can support. Nevertheless, with
the help of RIOT-OS-provided hash API and a third-party
micro-ecc library [10], we were able to implement two practi-
cal data signing methods: HMAC and ECDSA, both using the
SHA-256 hash function. Our implementation uses the standard
secp256r1 curve [11] for ECDSA with a signature length

of 64 bytes. RSA signature algorithm is not supported because
to its prohibitive computation cost.

One particular challenge we faced when implementing
ECDSA support was that a lot of constrained IoT devices
lack the hardware entropy source, which is necessary for
generating cryptographically secure random numbers used in
the ECDSA signing process. Using a pseudo-random number
generator (PRNG) without a strong source of entropy signif-
icantly impairs the strength of the ECDSA signatures. As a
current solution we adopted the use of deterministic ECDSA
signing [12], which does not use true random numbers when
generating the signatures. However, creating ECDSA key pairs
still requires cryptographically strong random numbers. One
way to achieve this is to let producer applications on RIOT-OS
use ECDSA keys created on other platforms and transported
to the IoT devices. The detailed mechanism of exporting and
configuring ECDSA keys is under development and will be
described in NDN-RIOT documentation.

E. Packet Forwarding

To support the NDN packet forwarding logic, NDN-RIOT
includes the simplified versions of PIT, FIB, and CS data
structures. In order to minimize memory overhead, all three
data structures are implemented as simple linked lists, as we
expect low numbers of entries (under 100) on constrained
devices. The current packet processing does not support In-
terest selectors and all lookups are performed only using
Interest and Data names. The implementation also does not
support retrieval of data using full names including the implicit
digest component, as IoT applications are primarily used for
retrieving data samples and processing commands, which are
not compatible with full-name data retrieval.

The PIT uses the exact match for the Interest name and any
prefix match for the data name (i.e., the Data packet will match
any PIT entry with name that is shorter or the same as the
data name). The simplified PIT entries record only incoming
faces for the Interests. During forwarding, PIT state is used to
prevent potential loops without using the nonce mechanism.

The FIB table implements the longest-prefix match using
Interest names and stores unranked arrays of faces, which
can be configured either through static configuration or using
a simple IPC-based mechanism at run time. The latter is
currently available only for local application prefix registra-
tion. Propagation of the routing information (proactive or
on-demand) to remote nodes, especially over wireless mesh
networks, is left for our future work. Additional IPC-based
mechanism for dynamic FIB configuration is also a part of
our future plan.

The CS uses a pre-configured maximum size (current
compile-time adjustable default is 24 KB) and implements a
simple FIFO cache eviction policy.

F. Layer-2 Communication

RIOT-OS currently supports two types of L2 protocols:
Ethernet (used by the emulator) and IEEE 802.15.4 (on real
devices). When sending NDN packets over Ethernet, the

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+
|1|0|M| SEQ | Identification |
+-+

Fig. 2: L2 fragmentation header in NDN-RIOT

network device driver sets the destination MAC address to the
broadcast address (FF:FF:FF:FF:FF:FF). The Ethernet header
also carries the IEEE 802 protocol number for NDN so that
the packet receiver can detect the packet type and dispatch
the packet to the NDN thread. When operating over IEEE
802.15.4 links, the devices tune into the selected wireless
channel (identified by the channel ID number, e.g., 26) and
Personal Area Network (PAN) (identified by the PAN ID, e.g.,
0x23) and use broadcast destination address (FF:FF).

Most constrained networks have a very limited MTU, typi-
cally less than 100 bytes. Although IoT applications optimized
for constrained environments should try to avoid using big
packets, it is too restrictive to require all applications to
always send NDN packets that can fit into the network MTU.
Therefore, we also designed a lightweight hop-by-hop L2
fragmentation and reassembly mechanism for NDN-RIOT.
Fig. 2 shows the format of the 3-byte fragmentation header
that is prepended to every fragment of an NDN packet if it
needs L2 fragmentation. The header format is optimized for
constrained environments by packing all information into 24
bits. The first bit of the header is set to 1 to indicate the
packet is fragmented. Unfragmented packet will start with the
type code for Interest (5) or Data (6) packet, whose highest-
order bit is always 0. The More-Fragment (MF) bit indicates
whether the current packet is the last fragment. The sequence
number (SEQ) and identification fields provide ordering of the
fragments, which are used by the receiver to reassemble the
original NDN packet.

G. Application Interface

We implemented a set of high-level application interface
that abstracts away the internal communication mechanism
between the application thread and the NDN stack. Those APIs
provide asynchronous communication model that is widely
adopted in existing NDN client libraries such as NDN.JS [13]
and ndn-cxx [14]. Under this model, an application runs an
event loop that dispatches I/O events (e.g., packet received,
timer expired, etc.) on a single thread and invokes the cor-
responding callbacks to handle those events. The application
may also create multiple run loops in different threads to
schedule different tasks. Table I shows the core APIs that are
frequently used in NDN applications.

We illustrate the usage of the APIs in Listings 1 and 2,
which show the code of skeleton consumer and producer
applications, respectively. Due to space limit, we omit all the
error checking code and the main function that starts the app.
The complete source code can be found at [7].

TABLE I: Application interface in NDN-RIOT

Function Description
ndn_app_create Create a handle for the NDN application and initialize resources
ndn_app_run Start the application’s run-loop and block until the application terminates
ndn_app_destroy Release the application’s handle and associated resources
ndn_app_schedule Schedule a callback function to be executed after the specified time interval
ndn_app_express_interest Send an Interest packet and register the callbacks for processing the retrieved Data packet and the Interest timeout

event
ndn_app_register_prefix Register the prefix in the local FIB and the callback for processing the received Interest packets that match the

registered prefix
ndn_app_put_data Send a Data packet to the NDN thread to satisfy some previously received Data packet (unsolicited Data will be

discarded)

static ndn_app_t* handle = NULL;

static int on_data(ndn_block_t* interest,
ndn_block_t* data) {

ndn_block_t content;
ndn_data_get_content(data, &content);
// do something with content...
return NDN_APP_STOP;

}

static int on_timeout(ndn_block_t* interest) {
ndn_block_t name;
ndn_interest_get_name(interest, &name);
ndn_name_print(&name);
return NDN_APP_STOP;

}

static int send_interest(void* context) {
const char* uri = (const char*)context;
ndn_shared_block_t* sn =

ndn_name_from_uri(uri, strlen(uri));
ndn_app_express_interest(handle, &sn->block,

NULL, 4000,
on_data, on_timeout);

ndn_shared_block_release(sn);
return NDN_APP_CONTINUE;

}

void run_consumer(const char* uri) {
handle = ndn_app_create();
ndn_app_schedule(handle, send_interest,

(void*)uri, 1000000);
ndn_app_run(handle);
ndn_app_destroy(handle);

}

Listing 1: Skeleton NDN consumer app for RIOT-OS

IV. EVALUATION

In this section we present the evaluation results we gathered
from real IoT devices. We focus on two major aspects, memory
usage and execution speed, both are critical for software
systems running on constrained devices. Our benchmark code
is compiled with the GCC ARM Embedded toolchain on
Ubuntu 16.04, which is based on GCC version 4.9.3. We
follow the default GCC settings from the RIOT-OS codebase,
which uses level-2 optimization (-O2).

We perform the evaluation on two different IoT platforms:
• SAMR21-XPRO [15]: an IoT evaluation board produced

by Atmel, which has a 32-bit ARM Cortex-M0+ 48 MHz

static ndn_app_t* handle = NULL;

static int on_interest(ndn_block_t* interest) {
ndn_block_t in;
ndn_interest_get_name(interest, &in);
ndn_shared_block_t* sdn =
ndn_name_append_uint8(&in, 0);

ndn_metainfo_t meta = {NDN_CONTENT_TYPE_BLOB, -1};
uint8_t buf[20] = {0x23};
ndn_block_t content = {buf, sizeof(buf)};
ndn_shared_block_t* sd =
ndn_data_create(&sdn->block, &meta, &content,

NDN_SIG_TYPE_ECDSA_SHA256, NULL,
ecc_key, sizeof(ecc_key));

ndn_shared_block_release(sdn);
ndn_app_put_data(handle, sd);
return NDN_APP_CONTINUE;

}

void run_producer(const char* prefix) {
handle = ndn_app_create();
ndn_shared_block_t* sp =
ndn_name_from_uri(prefix, strlen(prefix));

ndn_app_register_prefix(handle, sp, on_interest)
ndn_app_run(handle);
ndn_app_destroy(handle);

}

Listing 2: Skeleton NDN producer app for RIOT-OS

microcontroller (MCU) with 32KB embedded RAM and
256KB embedded Flash, and a 2.4 GHz IEEE 802.15.4
compliant radio interface.

• IoTLab-M3 [16]: an IoT board designed for the FIT
IoTLab [17], which has a 32-bit ARM Cortex-M3 72
MHz MCU with 64KB embedded RAM and 512KB
embedded Flash, and the same type of radio interface
as in SAMR21-XPRO.

A. Memory Usage

We measure the memory usage of the NDN apps for RIOT-
OS by inspecting the binary object code compiled for the
two platforms. We use the GNU readelf tool to obtain the
code size of each API function, and the GNU size tool to
obtain the total code size and the static memory usage from the
executables of the skeleton consumer and producer examples
shown in Section III-G.

Table II lists the object code size of the core APIs in
NDN-RIOT. The second column shows the size of the APIs

TABLE II: Object code size of the NDN-RIOT API (in bytes)

Function Name ARMv6-M ARMv7-M
ndn_name_from_uri 420 408
ndn_name_append 232 232
ndn_name_get_size_from_block 124 124
ndn_name_get_component_from_block 152 164
ndn_interest_create 196 192
ndn_interest_get_name 92 94
ndn_data_create 668 692
ndn_data_get_name 98 100
ndn_data_get_content 160 168
ndn_data_verify_signature 450 502
ndn_app_run 612 596
ndn_app_schedule 96 88
ndn_app_express_interest 160 168
ndn_app_register_prefix 180 180
ndn_app_put_data 60 56

TABLE III: Overall memory usage of the skeleton NDN
consumer and producer apps for RIOT-OS (in bytes)

ISA App text data bss Flash RAM
ARMv6-M Consumer 35,300 192 11,208 35,492 11,400

ARMv7-M Consumer 33,900 192 11,208 34,092 11,400

ARMv6-M Producer 35,212 192 11,208 35,404 11,400

ARMv7-M Producer 33,800 192 11,208 33,992 11,400

compiled for the ARM Cortex-M0+ MCU, which is based on
the ARMv6-M Instruction Set Architecture (ISA). The third
column shows the size of the APIs compiled for the ARM
Cortex-M3 MCU, which is based on the ARMv7-M ISA. Both
architectures support the Thumb instruction set with 16-bit/32-
bit encoding, which leads to similar sizes of the object code.

Table III shows the output from the GNU size command
for the skeleton consumer and producer examples sketched
out in Listings 1 and 2. The source code of both examples
have roughly the same structure, which therefore results in
similar code sizes after compilation. The last two columns in
the table show the total amount of static memory residing in
Flash and RAM. On a device with 32KB RAM, the static
data occupies about 11KB of the embedded RAM,2 leaving
21KB for dynamic allocation, such as creating PIT, FIB and
CS entries, creating shared memory blocks for NDN packets,
and storing dynamic user data generated at run-time.

B. Performance

To gauge the run-time performance of the system, we first
analyze the execution speed of individual APIs through a set
of benchmarks, and then show the application-level RTT as
an indicator for the performance of an integrated NDN-IoT
system. We did not measure the maximum network throughput
since most IoT applications running on constrained devices do
not require high throughput data transmission.

1) API execution speed: We measure the execution time of
the NDN APIs by calling the functions repeatedly and dividing
the total running time by the number of iterations. The results

2The static data in the .data and .bss sections includes fixed-size stack for
each thread and other pre-allocated global variables.

TABLE IV: Execution time of the NDN-RIOT APIs

Test Case SAMR21-XPRO IoTLab-M3
Time (µs) Cycles Time (µs) Cycles

URI to Name 184 8,832 282 20,304
Get Name size 13 624 11 792

Get Name component 8 384 7 504
Append to Name 28 1,344 29 2,088

Create Interest 25 1,200 23 1,656
Get Interest Name 2 96 2 144

Create Data (HMAC) 1,806 86,688 1,333 95,976
Create Data (ECDSA) 451,215 21,658,320 269,314 19,390,608
Verify Data (ECDSA) 500,115 24,005,520 294,225 21,184,200

Get Data Name 3 144 2 144
Get Data Content 4 192 4 288

TABLE V: RTT of Interest-Data exchange on RIOT-OS

Data Size Cached? Fragmented? RTT (ms)

100 bytes
No No 280

Remote No 11
Local No <1

196 bytes
No Yes 286

Remote Yes 16
Local No <1

are presented in Table IV in both real time and MCU cycles for
comparison across MCUs. Since the benchmark suites run as
a single-threaded application that takes over the whole MCU,
the measurement results are quite stable over different runs.

To summarize, on SAMR21-XPRO with a 48 MHz MCU,
NDN-RIOT is able to create 5,434 NDN names (from URI
strings), 40,000 Interests, or 553 HMAC-signed Data in one
second. The most expensive operations are creating and verify-
ing ECDSA-signed Data packets. SAMR21-XPRO can create
and verify about 2 Data packets with ECDSA signatures per
second. On IoTLab-M3 (72 MHz MCU) the performance
improves to 3.5–3.7 packets per second,3 although it is still
≈150 times slower than using HMAC.

2) Application-level RTT: Our final evaluation measures
the RTT of Interest-Data exchange between two RIOT-OS
devices. The experiments are carried out on the FIT IoTLab
testbed [17] in Paris with two IoTLab-M3 nodes communi-
cating over IEEE 802.15.4 radio. The testbed network has an
MTU of 102 bytes and a fixed data rate of 250 Kbps. The
measurement is performed under two scenarios with the Data
packet size of 100 bytes and 196 bytes. In each scenario, we
measure the RTTs of fetching new Data packets generated
by the producer upon request, fetching Data packets from
remote cache, and fetching Data packets from local cache.
Each experiment performs 100 Interest-Data exchange without
pipelining and the RTT is calculated as the total running time
divided by 100. All Data packets are signed by ECDSA.

Table V shows the RTT measurement results. When fetching
newly created data, the RTT is dominated by the ECDSA
signing operation (which takes about 270 ms). When fetching
Data packet of 196 bytes, the packet is fragmented into

3We noticed that the load/store instructions execute slower than expected on
IoTLab-M3, causing several “memory-bound” test cases to run much slower
than on SAMR21-XPRO. The reason for the slow memory access is unclear.

two pieces at the producer and reassembled at the consumer
node, and the RTT shows ≈6 ms additional delay due to the
fragmentation and reassembly operations. When fetching data
from local cache, no fragmentation is required in either case
and the response time is less than 1ms on average.

The average RTT of IP packets between two RIOT-OS
devices in the testbed environment ranges from 5 to 9 ms
as measured by the ping utility in the RIOT-OS kernel. Thus,
the Interest-Data RTT of our initial implementation, which
is yet to be fine tuned, is comparable to that of IP without
the data signing delay.However, we note that the former can
express a higher lever semantics and directly feed data to
applications, while an IP packet must go through additional
layers of protocol processing before reaching the application
as explained in [18].

V. RELATED WORKS

Traditional lightweight network stack implementations for
embedded systems are based on the TCP/IP architecture.
One of the most popular implementations is the lwIP [19]
package that provides full-featured standard-compliant TCP/IP
functionalities on devices with 10s of KB of RAM and Flash
memory. lwIP can run on different platforms, including RIOT-
OS-based IoT systems. RIOT-OS also has its own IPv6-based
network stack that supports IoT applications by incorporating
IoT-related protocols and frameworks such as CoAP, RPL, and
6LoWPAN. NDN-RIOT follows the same software architec-
ture of the IP stack in RIOT-OS in order to achieve good
integration with the RIOT-OS kernel.

CCN-lite [20] is a generic lightweight implementation of
CCN [1], which has been ported to RIOT-OS as a third-
party package [21]. CCN-lite is designed as a generic CCN
stack that can run on different platforms and support multiple
ICN protocol formats. Our NDN-RIOT implementation is an
optimized version of the NDN stack for IoT applications and
the RIOT-OS platform. Consequently, our implementation can
fully utilize the RIOT-OS internal APIs and remove the redun-
dant functionalities. More importantly, our NDN APIs provide
data security support which is critical for IoT applications but
currently missing in the CCN-lite implementation.

VI. CONCLUSION AND FUTURE WORK

Our implementation of NDN-RIOT, a lightweight NDN pro-
tocol stack for RIOT-OS demonstrates the feasibility of bring-
ing NDN’s data-centric communication and security model to
constrained IoT platforms, providing a solid foundation for
developing more comprehensive IoT applications than TCP/IP
protocol stack. However it is only a first step toward NDN-
enabled IoT applications, with several important areas yet to
be explored.

First, we need to fully investigate the energy consumption
associated with NDN protocol operations on RIOT-OS. Sec-
ond, we need to add to NDN-RIOT an interface to interact
with forwarding strategies, which can then be used by IoT
applications to implement energy-aware packet forwarding
strategies and other functions. Third, we also plan to carry out

multiple improvements to the current implementation that have
been identified, including extending the APIs with transport-
level functionalities such as Interest pipelining and automatic
retransmission, and performance optimization through micro-
benchmark. Furthermore, we plan to design high-level frame-
works, such as auto-configuration and discovery, on top of
NDN-RIOT to facilitate the IoT applications. We invite the
broader community to join us in exploring this exciting area
of IoT research.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” in Proc. of CoNEXT,
2009.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, Jul. 2014.

[3] W. Shang, A. Bannis, T. Liang, Z. Wang, Y. Yu, A. Afanasyev, J. Thomp-
son, J. Burke, B. Zhang, and L. Zhang, “Named Data Networking of
Things,” in Proc. of IoTDI, 2016.

[4] Y. Zhang, D. Raychadhuri, L. A. Grieco, E. Baccelli, J. Burke,
R. Ravindran, G. Wang, B. Ahlgren, and O. Schelen, “Requirements and
Challenges for IoT over ICN,” Internet-Draft draft-zhang-icnrg-icniot-
requirements-01, Apr. 2016.

[5] E. Baccelli, O. Hahm, M. Gunes, M. Wahlisch, and T. C. Schmidt,
“RIOT OS: Towards an OS for the Internet of Things,” in Proc. of
INFOCOM Comp. Comm. Workshops, 2013.

[6] RIOT-OS Project Team, “RIOT-OS homepage,” https://www.riot-os.org/.
[7] W. Shang, “NDN protocol stack for RIOT-OS,” https://github.com/

wentaoshang/RIOT/tree/ndn.
[8] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A

case for stateful forwarding plane,” Computer Communications, vol. 36,
no. 7, pp. 779–791, 2013.

[9] NDN Project Team, “NDN Packet Format Specification,” http://
named-data.net/doc/ndn-tlv/.

[10] K. MacKay, “micro-ecc: ECDH and ECDSA for 8-bit, 32-bit, and 64-bit
processors.” https://github.com/kmackay/micro-ecc.

[11] Certicom Research, “SEC 2: Recommended Elliptic Curve Domain Pa-
rameters (Version 2.0),” http://www.secg.org/sec2-v2.pdf, January 2010.

[12] T. Pornin, “Deterministic Usage of the Digital Signature Algorithm
(DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA),” RFC
6979, Oct. 2015.

[13] W. Shang, J. Thompson, M. Cherkaoui, J. Burkey, and L. Zhang,
“NDN.JS: A JavaScript Client Library for Named Data Networking,”
in Proc. of INFOCOM Comp. Comm. Workshops, 2013.

[14] NDN Project Team, “ndn-cxx overview,” http://named-data.net/doc/
ndn-cxx/current/README.html.

[15] Atmel Corporation, “SAM R21 Xplained Pro Evaluation Kit,” http://
www.atmel.com/tools/ATSAMR21-XPRO.aspx.

[16] FIT Consortium, “M3 Open Node,” https://www.iot-lab.info/hardware/
m3/.

[17] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel,
R. Pissard-Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele, and
T. Watteyne, “FIT IoT-LAB: A Large Scale Open Experimental IoT
Testbed,” in Proc. of IEEE WF-IoT, Dec 2015.

[18] W. Shang, Y. Yu, R. Droms, and L. Zhang, “Challenges in IoT
Networking via TCP/IP Architecture,” NDN, Technical Report NDN-
0038, 2016.

[19] A. Dunkels, “Design and Implementation of the lwIP TCP/IP Stack,”
Feburary 2001.

[20] CCN-lite, “CCN-lite homepage,” http://www.ccn-lite.net/.
[21] E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, and M. Wählisch,

“Information Centric Networking in the IoT: Experiments with NDN in
the Wild,” in Proce. of ICN, 2014.

https://www.riot-os.org/
https://github.com/wentaoshang/RIOT/tree/ndn
https://github.com/wentaoshang/RIOT/tree/ndn
http://named-data.net/doc/ndn-tlv/
http://named-data.net/doc/ndn-tlv/
https://github.com/kmackay/micro-ecc
http://www.secg.org/sec2-v2.pdf
http://named-data.net/doc/ndn-cxx/current/README.html
http://named-data.net/doc/ndn-cxx/current/README.html
http://www.atmel.com/tools/ATSAMR21-XPRO.aspx
http://www.atmel.com/tools/ATSAMR21-XPRO.aspx
https://www.iot-lab.info/hardware/m3/
https://www.iot-lab.info/hardware/m3/
http://www.ccn-lite.net/

	Introduction
	Background
	Named Data Networking
	RIOT-OS

	NDN-RIOT Design
	Objectives
	Software Architecture
	Packet Encoding and Decoding
	Security Support
	Packet Forwarding
	Layer-2 Communication
	Application Interface

	Evaluation
	Memory Usage
	Performance
	API execution speed
	Application-level RTT

	Related Works
	Conclusion and Future Work
	References

