Distributed Ledger over NDN for A Real-world Solar System

Zhiyi Zhang, Vishrant Vasavada, Randy King, Lixia Zhang

NDNcomm

Sept 2018

Operant Solar System based on NDN

- Roof-top mesh networking over low-energy broadcast radio
- Implemented using NDN with geo forwarding

• Operant Solar issues each node a NDN certificate; all the Data packets

are signed

Operant Solar:

http://www.operantsolar.com/

Distributed Ledger is needed

- Robust ledger system with the power of publicity: Unalterable, Undeniable, Monitored by the public
- Offers greatly improved security to commercial solar projects
 - Energy Production/Consumption data: business integrity
 - Detect abuse, outage, and intrusion

Notice: anonymity is not a big concern here (the company already knows their costumers)

Notice: common use case in many commercial projects, e.g., bank account, medical records

Background (1): Tangle

Tangle is a Directed Acyclic Graph (DAG) used by IOTA (cryptocurrency)

- Each block refers to (approves) two previous blocks
- A block gains weight when it is referred (approved) by later blocks
- A block that has not been referred yet is called a tip
- When a block gains enough weight, it's accepted by the system

Background (2): Markov Chain Monte Carlo

An algorithm used by IOTA for tip selection

- Random walk from an ancestor node to a tip
- Weighted random walk: is more likely to select a heavy block
 - Prevent "lazy" tip

NDN Distributed Ledger for Operant Solar

Design Overview

- Build over NDN instead of TCP/IP
- Use Data packet directly as Blocks
- Use Tangle instead of Blockchain
 - Better scalability
 - Ability to recover from Intermittent Connectivity
- Use Proof of Authentication (PoA) instead of Proof of Work (PoW)
 - A node signs the block instead of calculating a hashcash
 - PoA is already given by NDN's built-in security

NDN enables difference

- Simple and straightforward design and implementation: "what" instead of "where"
- Data packet as the block
 - Fetch a block directly with its name
 - Light nodes don't need to rely on full nodes
- Efficient content distribution
 - Broadcast Notification Interest to all peers
 - Data fetching Interest to fetch the new block

Each node periodically append a record block into the Tangle and at the same time, approve two existing tips. A block holds the recent energy production/consumption records

Run MCMC and select two tips

Each node periodically append a record block into the Tangle and at the same time, approve two existing tips. A block holds the recent energy production/consumption records

- Run MCMC and select two tips
- Verify two tips by checking the rules

Each node periodically append a record block into the Tangle and at the same time, approve two existing tips. A block holds the recent energy production/consumption records

- Run MCMC and select two tips
- Verify two tips by checking the rules
- Generate block and sign it

Each node periodically append a record block into the Tangle and at the same time, approve two existing tips. A block holds the recent energy

production/consumption records

- Run MCMC and select two tips
- Verify two tips by checking the rules
- Generate block and sign it
- Interest Broadcast

Node

Each node periodically append a record block into the Tangle and at the same time, approve two existing tips. A block holds the recent energy

production/consumption records

- Run MCMC and select two tips
- Verify two tips by checking the rules
- Generate block and sign it
- Interest Broadcast
- Block Fetching

Node

Challenge 1: After back online

A Sync Protocol based on Tip Comparison

For each different tip

Step 1: hash look up to find whether the tip is already in the tangle

Step 2: If yes: ignore the tip (A is outdated)

Step 3: If no (B is outdated): walk back from the tip and fetch all the missing by checking the pointer fields in each block

Challenge 2: Malicious Block Appending

How to prevent a node from adding large amount of blocks to make a invalid block get accepted?

- The frequency of appending blocks is monitored by the whole system
- New blocks should not be accepted by peers if the frequency is larger than a threshold

Current Status

- Initial design without enough implementation
- Any comments are welcome

Thank You!

zhiyi@cs.ucla.edu