Distributed Ledger over NDN for A Real-world Solar System

Zhiyi Zhang, Vishrant Vasavada, Randy King, Lixia Zhang
NDNcomm
Sept 2018
Operant Solar System based on NDN

• Roof-top mesh networking over low-energy broadcast radio
• Implemented using NDN with geo forwarding
• Operant Solar issues each node a NDN certificate; all the Data packets are signed

Operant Solar:
http://www.operantsolar.com/
Distributed Ledger is needed

• Robust ledger system with the power of publicity: Unalterable, Undeniable, Monitored by the public

• Offers greatly improved security to commercial solar projects
 • Energy Production/Consumption data: business integrity
 • Detect abuse, outage, and intrusion

Notice: anonymity is not a big concern here (the company already knows their costumers)

Notice: common use case in many commercial projects, e.g., bank account, medical records
Background (1): Tangle

Tangle is a Directed Acyclic Graph (DAG) used by IOTA (cryptocurrency)

- Each block refers to (approves) two previous blocks
- A block gains weight when it is referred (approved) by later blocks
- A block that has not been referred yet is called a tip
- When a block gains enough weight, it’s accepted by the system
Background (2): Markov Chain Monte Carlo

An algorithm used by IOTA for tip selection
• Random walk from an ancestor node to a tip
• Weighted random walk: is more likely to select a heavy block
 • Prevent “lazy” tip
NDN Distributed Ledger for Operant Solar
Design Overview

• Build over NDN instead of TCP/IP
• Use Data packet directly as Blocks
• Use Tangle instead of Blockchain
 • Better scalability
 • Ability to recover from Intermittent Connectivity
• Use Proof of Authentication (PoA) instead of Proof of Work (PoW)
 • A node signs the block instead of calculating a hashcash
 • PoA is already given by NDN’s built-in security
NDN enables difference

• Simple and straightforward design and implementation: “what” instead of “where”

• Data packet as the block
 • Fetch a block directly with its name
 • Light nodes don’t need to rely on full nodes

• Efficient content distribution
 • Broadcast Notification Interest to all peers
 • Data fetching Interest to fetch the new block
When a node wants to append a new Block

Each node periodically append a record block into the Tangle and at the same time, approve two existing tips. A block holds the recent energy production/consumption records

• Run MCMC and select two tips
When a node wants to append a new Block

Each node periodically append a record block into the Tangle and at the same time, approve two existing tips. A block holds the recent energy production/consumption records

• Run MCMC and select two tips

• **Verify two tips by checking the rules**

<table>
<thead>
<tr>
<th>Rule 1: Valid Signature?</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule 2: Reported Energy v.s. Certified Productivity?</td>
<td>✓</td>
</tr>
<tr>
<td>Rule 3: Node’s Block Appending Rate is too fast/slow?</td>
<td>✓</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
When a node wants to append a new Block

Each node periodically append a record block into the Tangle and at the same time, approve two existing tips. A block holds the recent energy production/consumption records

- Run MCMC and select two tips
- Verify two tips by checking the rules
- **Generate block and sign it**

<table>
<thead>
<tr>
<th>Name</th>
<th>/<ProducerPrefix>/Tangle/<Hash-Value></th>
</tr>
</thead>
<tbody>
<tr>
<td>Record Body</td>
<td></td>
</tr>
<tr>
<td>Pointer 1</td>
<td></td>
</tr>
<tr>
<td>Pointer 2</td>
<td></td>
</tr>
<tr>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>
When a node wants to append a new Block

Each node periodically append a record block into the Tangle and at the same time, approve two existing tips. A block holds the recent energy production/consumption records

• Run MCMC and select two tips
• Verify two tips by checking the rules
• Generate block and sign it
• Interest Broadcast
When a node wants to append a new Block

Each node periodically append a record block into the Tangle and at the same time, approve two existing tips. A block holds the recent energy production/consumption records

- Run MCMC and select two tips
- Verify two tips by checking the rules
- Generate block and sign it
- Interest Broadcast

- **Block Fetching**
Challenge 1: After back online

A Sync Protocol based on Tip Comparison

For each different tip:
Step 1: hash look up to find whether the tip is already in the tangle
Step 2: If yes: ignore the tip (A is outdated)
Step 3: If no (B is outdated): walk back from the tip and fetch all the missing by checking the pointer fields in each block
Challenge 2: Malicious Block Appending

How to prevent a node from adding large amount of blocks to make a invalid block get accepted?

• The frequency of appending blocks is monitored by the whole system
• New blocks should not be accepted by peers if the frequency is larger than a threshold
Current Status

• Initial design without enough implementation
• Any comments are welcome
Thank You!

zhiyi@cs.ucla.edu