
Blockchain-based Decentralized Public Key
Management for Named Data Networking

Kan Yang, Lan Wang
Dept. of Computer Science, University of Memphis, USA

Jobin J. Sunny
St. Jude Children's Research Hospital

1Paper in Proceedings of IEEE ICCCN 2018, Hangzhou, China

Outline

• Data-Centric Security in NDN
• Public Key Management and Compromised CA Problem
• BC-PKM: Blockchain-based Decentralized Public Key Management

• Framework
• Concrete Design
• Prototype

• Conclusion and Future Work

2

Named Data Networking

• Bind data with a name

• Retrieve data by its
name

• Forward data interest
directly on names

• Forward data along the
interest path

3

Named Data Networking

4

User
Publisher

Cached

Interest Packet

Content Name
Nonce

Guiders
(scope, lifetime)

Data Packet

Name
MetaInfo

Content

Signature

/NDN/Youtube/Video/123

Data

Data Centric Security

5

User
Publisher

Cached

Data Packet

Name
MetaInfo

Content

Signature

/NDN/Youtube/Video/123

Data

• All the content must be signed!

• Routers may verify the signature.

• Users must verify the signature.

Signature from Public Key Cryptography

• Data signature is usually generated by the secret key of the producer
! = #$%&((), +,-,)

• The signature can be validated by the public key of the producer
/01$23 4), +,-,, ! → #6770((/9,$:

6

Public Key Management (PKM)

• Data signature is usually generated by the secret key of the producer
! = #$%&((), +,-,)

• The signature can be validated by the public key of the producer
/01$23 4), +,-,, ! → #6770((/9,$:

(();<;, 4);<;)
Impersonate Alice by signing the data with his secret key:

!=>?@; = #$%&(();<;, +,-,)

/01$23 4);<;, +,-,, !=>?@; → #6770((/9,$:
and claiming that Alice’s public key is 4);<;.

Public Key Management is the foundation of the data-centric security!
7

Trust Schema: Current PKM in NDN
• Trust Relationship
• Recursively validate the signature until it reaches the trust anchor

Yingdi Yu, Alexander Afanasyev, David Clark, kc claffy, Van Jacobson, Lixia Zhang. “Schematizing and Automating
Trust in Named Data Networking”. ICN’2015, ACM, 2015, pp. 177– 186.

ProducerData
University of

Memphis
Trust

Anchor
…

The public key
of Trust Anchor
is wired into the

hardware or
preconfigured
in the software

Verified by
!"#$%&'()$!"'%*+ !",-

Verified by Verified by

8

Traditional CA-based PKI

• Certificate Authority (CA) issues a certificate to prove that the public
key is associated with a name.

CAroot

CAedu

Producer

Data

CAmemphis

CAorgCAcom …

CAucla

PK#$$%

PK&'(

PK)&)*+,-

PK*#$'(.&#

SK#$$%

SK&'(

SK)&)*+,-

SK*#$'(.&#

Sign

Sign

Sign

Sign
Verify

Verify

Verify

Verify
Compromised CA Problem

An attacker can compromise a CA
to bind a name to an unauthorized
public key and produce false data
using the fake certificate.

9

Compromised CA Incidents

10

Year Incidents
2001 • VeriSign issues Microsoft Corporation code signing certificate to a non-Microsoft employee.

2008 • Thawte issues certificate for Live.com to non-Microsoft employee

• Comodo issues mozilla.org certificate to Startcom

• Organization forges VeriSign RapidSSL certificates

2011 • Comodo issues nine counterfeit certificates (Google, Yahoo, Live, etc.) when registration

authority is compromised.

• StartSSL CA compromised

• DigiNotar compromised. 531 fraudulent certificates issued.

• Boeing CA compromised

2012 • Microsoft CA certificates forged by exploiting MD5 (Flame)

2013 • Fraudulent certificates on Google domains issued by the French Ministry of Finance CA (ANSSI)

2014 • Intermediate CA in India compromised

2015 • Dell notebooks with rogue root CA

2016 • One CA attacked another by attempting to trademark the brands used by the second CA

Sources: https://csrc.nist.gov/csrc/media/projects/forum/documents/2012/october-2012_fcsm_pturner.pdf

http://wiki.cacert.org/Risk/History

Attacks from Compromised CA
Once the CA has been compromised, the CA has superpower to

• Register public keys for illegitimate principals
• Update public keys for existing principals
• Revoke public keys for legitimate principals

11

Our Idea: Reduce the superpower of single CA
Once the CA has been compromised, the CA has superpower to

• Register public keys for illegitimate principals
• Update public keys for existing principals
• Revoke public keys for legitimate principals

Our idea: Replace single CA with a set of Validators with lower privileges
• do the name-principal validation
• follow the majority principle to implement the public key management functions

CAmemphis

Validators

Consensus MechanismTamper-Proof 12

Solution: Decentralize CAs and Publish Their Actions

• Replace the CA at each level with a set of Validators with lower privileges
• A validator can publish a public key record only if a majority agrees.

• Publish every public key record in a tamper-proof blockchain
• Majority rule à As long as the attacker cannot compromise half or more of the

validators, an invalid public key record will not be issued.
• Tamperproofness à Even if a validator misbehaves and publishes an invalid public key

record, this can be detected by other validators through the blockchain.

13

CAmemphis

Validators

Consensus MechanismTamper-Proof

Overview of Public Key Management in NDN

PKMiner	

Revoke	Register	 Query	 Validate	 Update	

Named	Data	Networking	

Public	Key	Management	

14

Name: /edu/pkchain

Name: /edu/memphis/pkchain

Name: /edu/memphis/alice/data
Content:
Signature:

KeyLocator:
/edu/memphis/pkchain/query/alice

(alice, pkalice)
(bob, pkbob)

(charlie, pkcharlie)

Merkle Root

Hash of Previous Block

Name-PK Records

Timestamp Nonce

Register Query Validate Update Revoke

APIs:

/edu/memphis/pkchain/query/alice

PKMiners

PKMiners

Framework of Blockchain-based PKM (BC-PKM)

CAroot

CAedu

Producer

Data

CAmemphis

PKI BC-PKM

Name: /root/pkchain
PKMiners

Name: /edu/memphis/kchain

pkchain

pkchain

pkchain

15

Producer

Name: /edu/memphis/pkchain

(alice, pkalice)

Merkle Root

Hash of Previous Block

Name-PK Records

Timestamp Nonce

Register API

/edu/memphis/pkchain/register/(alice, pkalice)

PKMiners

2. Name-Principal
Validation

3. Majority Accepted

4. Packet & Min

5. Broadcast
New Block

first find nonce

1. Broadcast (alice, pkalice)

PKChain: Register

16

Producer

Name: /edu/memphis/pkchain

(alice, pkalice)

Merkle Root

Hash of Previous Block

Name-PK Records

Timestamp Nonce

Query API

/edu/memphis/pkchain/query/alice (or pkalice)

PKMiners

3. Return the
first record
(the latest
record) or
NotFound

1. Send Query(alice, pkalice)
to a random PKMiner

PKChain: Query

By name or by public key

2. Search from the last block
towards the first block

17

Producer

Name: /edu/memphis/pkchain

(alice, pkalice)

Merkle Root

Hash of Previous Block

Name-PK Records

Timestamp Nonce

Validate API

/edu/memphis/pkchain/validate/(alice, pkalice)

PKMiners

3. Return the first
record (the latest
record) and
compare with the
submitted pair

1. Send Validate(alice, pkalice)
to a random PKMiner

PKChain: Validate (query and compare)

2. Search from the last block
towards the first block

18

Producer

Name: /edu/memphis/pkchain

(alice, pk*
alice)

Merkle Root

Hash of Previous Block

Name-PK Records

Timestamp Nonce

Update API

/edu/memphis/pkchain/update/(alice, pk*
alice)

PKMiners

2. Name-Principal
Validation

3. Majority Accepted

4. Packet & Min

5. Broadcast
New Block

first find nonce

1. Broadcast Update (alice, pk*
alice)

PKChain: Update (add a new block)

19

Producer

Name: /edu/memphis/pkchain

(alice, pkalice, revoked)

Merkle Root

Hash of Previous Block

Name-PK Records

Timestamp Nonce

Revoke API

/edu/memphis/pkchain/revoke/(alice, pkalice)

PKMiners

2. Name-Principal
Validation

3. Majority Accepted

4. Packet & Min

5. Broadcast
New Block

first find nonce

1. Broadcast Revoke(alice, pkalice)

PKChain: Revoke (add a revoking block)

20

Security Analysis

Theorem: BC-PKM can resist ! out of " (" > 2! − 1) compromised
PKMiners against

- registering public keys for fake principals
- illegally updating public keys for existing principals
- illegally revoking public keys for existing principals

as long as there are more than half PKMiners are honest.

Guaranteed by the majority principle of the name-principal validation.

Refer to the paper for more details.
21

Prototype

• Implement by the Node.js framework
• due to its asynchronous capabilities and

ability to handle peer-to-peer
communications well

• The framework’s event-driven, non-blocking
I/O model makes it a good fit for our
implementation.

• The command line interface was created
with the help of a library called Vorpal
(https://www.npmjs.com/package/vorpal)

• Note that, the main purpose of this
prototype is to validate the functions of our
BC-PKM system

22

Prototype: Register
PKMiner1 PKMiner2

PKMiner3

23

Prototype: Query
PKMiner1 PKMiner2

PKMiner3

then Update

24

Prototype: Updated View
PKMiner1 PKMiner2

PKMiner3

then Revoke

25

Prototype: Revoked View and Validate
PKMiner1

PKMiner2

PKMiner3

26

Conclusion and Future Work

• We proposed BC-PKM, a blockchain-based decentralized public key management
system, for Named Data Networking.

• The BC-PKM can solve the compromised CA problem existing in traditional PKM
systems and can tolerate less than half PKMiners are compromised by the
adversary while keeping the system stable and secure.

In our future work, we will solve the following design questions:

• Who can be the miners/validators?

• How to validate a public key? How to do the name-principal validation?

• Which consensus mechanism should we use?

27

Thank You!
kan.yang@memphis.edu

28

