Distributed Dataset Synchronization in Mobile Ad Hoc Networks over NDN

Tianxiang Li, Spyridon Mastorakis, Xin Xu, Haitao Zhang, Lixia Zhang UCLA

What is Sync

- Distributed applications require synchronized state
 - chatroom messaging
 - collaborative editing
 - routing protocol
- Key Idea
 - Reconcile set difference for a dataset shared among multiple parties
 - Each party has a local state (view) of shared dataset
 - Goal: All parties share the same state of the shared dataset

Sync in NDN

- NDN Sync
 - A way to implement data oriented multiparty communication protocol
- Multiparty communication synchronization of shared dataset
 - Define application-specific data units as items in a shared dataset
 - Synchronize namespace of data units
- Sync provides synchronization as a service to NDN applications
 - Keeps application up-to-date about newest dataset state
 - Individual applications fetches content based on need

- State Representation
 - Namespace design
 - how to name the chat messages
 - State encoding
 - how to encode each user's shared dataset state

C's shared dataset state

Message $1 \rightarrow /C/2$ Message $2 \rightarrow /C/3$ Message $3 \rightarrow /A/1$ Encoded state

- State Representation
 - Namespace design
 - how to name the chat messages
 - State encoding
 - how to encode each user's shared dataset state
- State change detection
 - discovering if any new chat data has been produced

- State Representation
 - Namespace design
 - how to name the chat messages
 - State encoding
 - how to encode each user's shared dataset state
- State change detection
 - discovering if any new chat data has been produced
- State difference identification
 - identify the difference in dataset state between nodes

A's encoded state

C's encoded state

- State Representation
 - Namespace design
 - how to name the chat messages
 - State encoding
 - how to encode each user's shared dataset state
- State change detection
 - discovering if any new chat data has been produced
- State difference identification
 - identify the difference in dataset state between nodes
- Fetching missing data
 - Receiver-driven data delivery reliability

State Representation (Namespace Design)

- Sequential Naming
 - Data name: unique producer prefix + sequence number
 - Dataset namespace: set of [producer prefix + latest data sequence number]
 - Sequential naming provides efficient namespace representation

State Encoding approach-1: State Digest

State Digest

- compress knowledge of dataset into crypto digest
- hashes each producer's name prefix and latest sequence number
- compare state digest to detect state inconsistency

hash of each [producer prefix + latest seq no]

Example of State Digest

State Encoding approach-2: Invertible Bloom Filter

- Invertible Bloom Filter (IBF)
 - Inserts hashes of each [stream prefix+latest seq no] into cells in IBF
 - IBF supports subtraction operation to identify state difference (IBF1-IBF2)

Example of IBF

State Encoding approach-3: State Vector

- State Vector directly lists the [producer prefix : latest seq no] in a version vector
- Nodes can compare State Vector directly to resolve any state mismatch
- Do not have assumption on underlined connectivity

State Change Detection

- Sync Interest
 - Contains sender's encoded state
 - Periodically multicasted to advertise sender's state and detect state change
 - Receiving nodes can identify state difference though encoded state comparison
- Sync Reply
 - Contains updated data names or sender's state vector

MANET Challenge 1

- Intermittent connectivity with mobility
 - Connectivity may be lost quickly
- State divergence is the norm
 - Network partitioned into different clusters
 - Nodes accumulate different state updates

Reconcile State Divergence

- State digest
 - node fetches complete dataset state information
- IBF
 - can deduce difference in dataset namespace (IBF1-IBF2)
 - IBF size limits the amount of state difference which can be recovered (False Positive of IBF)
 - In case of large state divergence only part of the state difference can be decoded
- State Vector
 - Directly expresses dataset state
 - Can resolve any degree of state divergence

MANET Challenge 2

- Decoupling state and dataset synchronization
 - Sync provides synchronization as a service to NDN applications
 - State Sync: synchronize knowledge about the latest dataset
 - Dataset Sync: application decides which data to fetch

MANET Challenge 2 (Cont)

- Decoupling state and dataset synchronization causes excessive transmission
 - State and dataset mismatch caused by intermittent connectivity
 - Results in nodes continuously fetching none existent data
 - Mismatched state gets propagated further in the network

MANET Challenge 2 (Cont)

- Decoupling state and dataset synchronization causes excessive transmission
 - State and dataset mismatch caused by intermittent connectivity
 - Results in nodes continuously fetching none existent data
 - Mismatched state gets propagated further in the network

MANET Challenge 2 (Cont)

- Decoupling state and dataset synchronization causes excessive transmission
 - State and dataset mismatch caused by intermittent connectivity
 - Results in nodes continuously fetching none existent data
 - Mismatched state gets propagated further in the network

MANET Challenge 3

- State Change Detection
 - Periodic transmission of Sync Interest creates unnecessary overhead in MANET
 - Nodes are unaware of the connectivity of neighbors
 - Nodes do not know if a node with newer state is reachable
 - Sync Interest carries encoded state which is costly to transmit frequently
 - Possible solutions
 - Using lightweight message for state change detection

State Change Detection (Layer 2 Beacons)

- Utilizing Layer 2 beacons (802.11 ad hoc)
 - Encoding state information (digest) into layer 2 frame
 - Detects neighbors with state difference
 - Trigger Sync Interest transmission
 - Issues
 - Requires interface for Network/MAC layer exchange
 - Existing MAC layer design/implementation is unusable by higher layer

Possible Solutions

- Couple state sync with data sync
 - nodes send State Vector based on its actual dataset
 - o nodes fetch data pieces in sequence, to support sequential namespace representation
- Increase data availability
 - o e.g. deploy distributed repos in the network

Conclusion

- NDN Sync facilitates distributed multiparty applications
- New insight from trying sync in MANET
 - State Vector offers resilient state divergence recovery under adverse conditions
 - Decoupling State and Dataset Sync causes large amount of excessive Interest
 - Simple, old soft-state works: Periodic notification of state offers most resiliency under adverse condition
- Existing MAC layer design/implementation is unusable by higher layer; a redesign may greatly improve the overall network performance

Thank You Q&A