NETCONF-Based Network Management System for NDN

Rajender Kumar, Alex Afanasyev Florida International University, Miami

NDNComm 2018

September 20, 2018

Contents

- Motivation
- NETCONF Overview
- Yang Overview
- NDNCONF Protocol Design
- Summary

Motivation

- Network Management protocols have traditionally been used for
 - Managing networks
 - Backup and restore configurations
 - Error checking to ensure consistent configuration
 - Reports generation and analysis
- Existing Network Management protocols include:
 - SNMP
 - Command Line Interface (CLI)
 - Ansible
 - Chef
 - NETCONF

NETCONF Overview

NETCONF is a network management protocol specifically designed to support network configuration management

- Distinction between configuration data and state data
- Network wide configurations instead of single devices
- Multiple configuration datastores (running, startup, . . .)
- Support for configuration change transactions
- Configuration testing and validation support
- Selective data retrieval with filtering
- Streaming and playback of event notifications
- Extensible remote procedure call mechanism

NETCONF Layering Model

Multiplicity of Configurations

NETCONF designed to support multiple complete sets of configuration information that is required to get a device from its initial default state into a desired operational state.

- <running>
- <startup>
- <candidate>

Overview of NETCONF Protocol Actions

Some Data model

- urn:onf:params:xml:ns:yang:core-model
- urn:onf:params:xml:ns:yang:ltp-path
- urn:onf:params:xml:ns:yang:g.874.1-model

Remote Procedure Call

YANG Overview

- Extensible data modeling language designed specifically for network management
- Ability to model configuration data, state data, operations, and notifications
- Easy to create YANG model for any device or implementation
- Provide hierarchical data models
- YIN is XML representation of YANG

YANG Modules and Submodules


```
module acme-system {
   namespace "http://acme.example.com/system";
   prefix "acme";
   import "yang-types" {
     prefix "yang";
   include "interface-node";
   revision 2007-11-05 { description "Initial revision."; }
   container system {
     leaf host-name {
       type string;
       description "Hostname for this system";
     leaf-list domain-search {
       type string:
       description "List of domain names to search";
     list interface {
       key "name";
       description "List of interfaces in the system";
       leaf name {
         type string;
       leaf type {
         type string;
       leaf mtu {
         type int32:
```

NDNCONF Protocol

YANG effectively defines naming hierarchy

NDNCONF use it to issue commands and request data

NDN can directly operate on YANG hierarchy

- Interests to retrieve "readable"
- Command interests to write
- Command interests and responses leverage NDN security
- Leverage NDN trust schema
 - per-command
 - per (sub-)namespace granularity

Overview of NDNCONF Protocol Actions

- NDNCONF manager request capabilities, and the supported data models of agent.
- NDNCONF manager perform configuration operation by sending interest packets.
- Signature verification is performed on each end.

NDN Core Models

Core System Data Model

- [existing] System Identification
- [existing] System Time Mgmt

Core NDN Data model

- Faces, RIB, FIB, CS,
 Measurements
 - Effectively a generalization of our current NDN management protocol

Some Data model

- refix>/ndnconf/NDNCore/rib
- fix>/ndnconf/NDNCore/ContentStor
 e
- <pre/style="list-style-type: square;">prefix>/ndconf/NDNCore/FIB
- prefix>/ndconf/NDNCore/face

Core NDN Data Model: Construction of Interest Packet

Interest Packet Format for NDNCONF

NDNCONF Interest Packet:

<prefix>/NDNCONF/<operation>/<datastore>/<module>/container>/<
.../Parameters:<leaf>=<value>/<params-sha256>

• fix>

Name of the server/device

<operation>

 get-config, set-config, edit-config, get, set, etc.

<datastore>

Running, Candidate, Start-up

<Module>

 Name of yang module. For example, NDNCore.yang

<container>

Face, RIB, ContentStore, FIB, etc.

<subcontainer>

Command like create(face), Show(face list), and etc.

Parameters: <leaf>=<value>

 Parameter names and corresponding values for the command

Signature

Signature of the requester

Example: Interest Packet to Create a Face

Example: Create a face with the specified remote FaceUri, local FaceUri, and persistency.

NDNCONF Interest Packet:

fix>/ndnconf/edit-config/running/faces/face/create/remoteUri=ether//:[08:0
0:27:01:01] &localUri=dev://eth2&persistency=permanent/<signature>

Command Interests And Responses Leverage NDN Security

- Command interests and responses leverage NDN security
 - Each command interest and data packet are directly secured,
 independent of session security
- Relation between command/data names and keys can manage control granularity

NDNCONF Control Granularity

fix>/ndnconf/edit-config/KEY/23

Authorized to configure any parameters of the network device identified by cprefix>

fix>/ndnconf/edit-config/running/KEY/11

Only running configuration of the network device identified by cprefix>

<prefix>/ndnconf/edit-config/running/faces/KEY/54

Only running configuration of the faces of the network device identified by creation

Summary

- Formulated an initial Yang Data model for NDN Management Module
 - https://github.com/rkuma013/NDNCONF-Yang/blob/master/NDNCore.yang
- Designed the format of Interest and Data Packets for NDNCONF
 - https://github.com/rkuma013/NDNCONF-Yang

Future Work

- Explore the security aspect of NDNCONF in more details
- Finalize design of NDNCONF
- Implement and test
- Prepare formal documentation of NDNCONF protocol

Thank you