NETCONF-Based Network Management System for NDN

Rajender Kumar, Alex Afanasyev
Florida International University, Miami

NDNComm 2018
September 20, 2018
Contents

- Motivation
- NETCONF Overview
- Yang Overview
- NDNCONF Protocol Design
- Summary
Motivation

- Network Management protocols have traditionally been used for
 - Managing networks
 - Backup and restore configurations
 - Error checking to ensure consistent configuration
 - Reports generation and analysis
- Existing Network Management protocols include:
 - SNMP
 - Command Line Interface (CLI)
 - Ansible
 - Chef
 - NETCONF
NETCONF Overview

NETCONF is a network management protocol specifically designed to support network configuration management.

- Distinction between configuration data and state data
- Network wide configurations instead of single devices
- Multiple configuration datastores (running, startup, ...)
- Support for configuration change transactions
- Configuration testing and validation support
- Selective data retrieval with filtering
- Streaming and playback of event notifications
- Extensible remote procedure call mechanism
NETCONF Layering Model

Layers
- Content
- Operations
- RPC
- Secure Transport Protocol

Example
- Configuration Data
 - <get-config>, <edit-config>
- Notification Data
 - <notification>

- SSH, TLS, BEEP, SSL, SOAP/HTTP/TLS, Console
NETCONF designed to support multiple complete sets of configuration information that is required to get a device from its initial default state into a desired operational state.

- <running>
- <startup>
- <candidate>
Overview of NETCONF Protocol Actions

Manager

Agent

Session Setup

ACK

Hello(capability, data model)

Hello(capability, data model, Session-id)

Retrieval of Module

Module

RPC(<get>, <edit-config>,...)

RPC-Reply

Some Data model

- urn:onf:params:xml:ns:yang:ltp-path
- urn:onf:params:xml:ns:yang:g.874.1-model
Remote Procedure Call

Netconf Manager

<rpc message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 </get-config>
</rpc>

Netconf Agent

<rpc-reply message-id="101"
xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data><!-- ...contents here... --></data>
</rpc-reply>
YANG Overview

- Extensible data modeling language designed specifically for network management
- Ability to model configuration data, state data, operations, and notifications
- Easy to create YANG model for any device or implementation
- Provide hierarchical data models
- YIN is XML representation of YANG
YANG Modules and Submodules

module acme-system {
 namespace "http://acme.example.com/system";
 prefix "acme";
 import "yang-types" {
 prefix "yang";
 }
 include "interface-node";
 ...
 revision 2007-11-05 { description "Initial revision."; }
 container system {
 leaf host-name {
 type string;
 description "Hostname for this system";
 }
 leaf-list domain-search {
 type string;
 description "List of domain names to search";
 }
 list interface {
 key "name";
 description "List of interfaces in the system";
 leaf name {
 type string;
 }
 leaf type {
 type string;
 }
 leaf mtu {
 type int32;
 }
 }
 }
}
NDNCONF Protocol

YANG effectively defines naming hierarchy
- NDNCONF use it to issue commands and request data

NDN can directly operate on YANG hierarchy
- Interests to retrieve “readable”
- Command interests to write
- Command interests and responses leverage NDN security
- Leverage NDN trust schema
 - per-command
 - per (sub-)namespace granularity
Overview of NDNCONF Protocol Actions

- NDNCONF manager request capabilities, and the supported data models of agent.
- NDNCONF manager perform configuration operation by sending interest packets.
- Signature verification is performed on each end.
NDN Core Models

Core System Data Model
- [existing] System Identification
- [existing] System Time Mgmt

Core NDN Data model
- Faces, RIB, FIB, CS, Measurements
 - Effectively a generalization of our current NDN management protocol

Some Data model
- <prefix>/ndnconf/NDNCore/rib
- <prefix>/ndnconf/NDNCore/ContentStore
- <prefix>/ndconf/NDNCore/FIB
- <prefix>/ndconf/NDNCore/face
Interest Packet Format for NDNCONF

NDNCONF Interest Packet:
<prefix>/NDNCONF/<operation>/<datastore>/<module>/container/<subcontainer>/
…/Parameters:<leaf>=<value>/<params-sha256>

- <prefix>
 ○ Name of the server/device
- <operation>
 ○ get-config, set-config, edit-config, get, set, etc.
- <datastore>
 ○ Running, Candidate, Start-up
- <Module>
 ○ Name of yang module. For example, NDNCore.yang
- <container>
 ○ Face, RIB, ContentStore, FIB, etc.
- <subcontainer>
 ○ Command like create(face), Show(face list), and etc.
- Parameters: <leaf>=<value>
 ○ Parameter names and corresponding values for the command
- Signature
 ○ Signature of the requester
Example: Interest Packet to Create a Face

Example: Create a face with the specified remote FaceUri, local FaceUri, and persistency.

- **NDNCONF Interest Packet:**

 `<prefix>/ndnconf/edit-config/running/faces/face/create/remoteUri=ether//:[08:00:27:01:01:01] &localUri=dev://eth2&persistence=permanent/<signature>`
Command Interests And Responses Leverage NDN Security

- Command interests and responses leverage NDN security
 - Each command interest and data packet are directly secured, independent of session security
- Relation between command/data names and keys can manage control granularity
NDNCONF Control Granularity

- Authorized to configure any parameters of the network device identified by `<prefix>`

- Only running configuration of the network device identified by `<prefix>`

- Only running configuration of the faces of the network device identified by `<prefix>`
Summary

● Formulated an initial Yang Data model for NDN Management Module

● Designed the format of Interest and Data Packets for NDNCONF
 ○ https://github.com/rkuma013/NDNCONF-Yang
Future Work

- Explore the security aspect of NDNCONF in more details
- Finalize design of NDNCONF
- Implement and test
- Prepare formal documentation of NDNCONF protocol
Thank you