
NDN, Technical Report NDN-0039, 2016. http://named-data.net/techreports.html
Revision 1: [6/9/16]

PartialSync: Efficient Synchronization of
a Partial Namespace in NDN

Minsheng Zhang
mzhang4@memphis.edu
University of Memphis

Vince Lehman
vslehman@memphis.edu
University of Memphis

Lan Wang
lanwang@memphis.edu
University of Memphis

Abstract—Named Data Networking (NDN) is an evolving
Future Internet Architecture where data is a first-class entity.
Data synchronization plays an important role in NDN similar to
transport protocols in IP. Some distributed applications, such as
news and weather services, require a synchronization protocol
where each consumer can subscribe to a different subset of a
producer’s data streams. In this paper, we propose PartialSync
which aims to efficiently address this synchronization problem.
We use names in PartialSync messages to carry producer’s
latest namespace information and each consumer’s subscription
information, which allows producers to maintain a single state
for all consumers and enables consumers to synchronize with any
producer that replicates the same data. We represent the latest
names in a producer’s data streams using an Invertible Bloom
Filter (IBF), which allows efficient computation of set differences.
By comparing the differences between its old IBF and new IBF,
the producer can generate a list of new data names that have
been produced in the period between the old and new IBF. Using
this list and a consumer’s subscription information, the producer
can notify the consumer if new data matching the subscription
has been produced. We have implemented PartialSync in the
NDN codebase and are using it to develop a prototype building
management system where users can subscribe to any subset of
data generated by the many sensors and actuators in buildings.

I. INTRODUCTION

Data synchronization is becoming a basic requirement for a
large number of applications such as Calendar and Dropbox.
Some applications require that everyone in a synchronization
group receive all the new data produced by everyone else.
For example, participants in a chat group typically receive
everyone’s chat messages. If we consider the data produced
by everyone as the full dataset, we can call this a full data
synchronization problem. In other applications, such as news
and weather subscription services, each user may be interested
in a subset of the produced data and receive new data only
related to their interests. For example, a consumer may only
wish to know the most up-to-date weather information for the
cities she and her relatives reside in. We call this a partial
data synchronization problem. In fact, it is a generalization of
the full data synchronization problem, as a user’ interests (or
subscriptions) can be anywhere from an empty set to a full set
of the data.

To further illustrate this demand for partial synchronization,
consider a smart-phone app store. Users of mobile devices of-
ten use app stores to download applications to their phone, but

This work was supported by NSF Grant 1344495 and a Cisco research
grant.

due to their mobile device’s limited storage capacity, the user
may only install a small portion of the applications available to
them. In such a scenario, whenever any installed application is
updated, the mobile device should receive notifications of the
update in order to fetch it. Since there can be a large number
of apps and millions of users for each popular app, a scalable
design for updating the apps needs to satisfy the following
requirements: (a) the app store should not have to keep track of
the users of each app in order to send proper notifications, (b)
the users should not have to check the app store periodically
for every installed app to get the updates, and (c) the users
should be able to synchronize with any app store that has the
same set of apps. These requirements are applicable to any
application that has the partial synchronization problem.

The above requirements essentially mean that the data
producers should avoid per-consumer state and consumers
should avoid per-producer and per-subscription state, which
is especially challenging in the current TCP/IP network ar-
chitecture where any communication between producers and
consumers requires end point identifiers (e.g., IP address) so
state information about each other is unavoidable.

We look at the partial synchronization problem from the
perspective of the Named Data Networking (NDN) archi-
tecture [11], which makes immutable data with hierarchical
names and producer signatures a common abstraction of both
the network layer and application layer. Producers publish data
under unique names, consumers use data names to request
data, and the network uses names to determine how to forward
consumers’ requests and cache returned data for any future
requests. This design is much more suitable and efficient for
today’s increasingly data-centric applications. Moreover, since
data is the focus of NDN, communication is no longer between
specific producer and consumer thus making it possible to
address the above requirements of partial synchronization.

In this paper, we propose a protocol called PartialSync for
synchronizing a partial namespace in NDN. PartialSync uses
Invertible Bloom Filters (IBF) [3] to represent the latest data
names in a namespace and utilizes the subtraction operation in
IBF to efficiently discover the list of new data names that have
been produced in the period between an old IBF and new IBF.
Using the list of new data names and subscription information
from consumers, a producer can notify a consumer if new data
matching the consumer’s subscription has been produced. Our
design satisfies the aforementioned requirements as follows:
(a) scalability under large number of consumers: a PartialSync

Interest message from each consumer carries the consumer’s
subscription information and previously received producer
state, so that the producer has all the information needed to
process the message without having to keep track of every
consumer. Moreover, the producer maintains a single IBF of
its state for all consumers rather than one IBF per consumer;
(b) scalability under large number of subscriptions: efficient
data representations such as Bloom Filters (BF) [2] and ranges
are used to efficiently encode consumers’ subscriptions so
only one PartialSync Interest message is sent from each
consumer regardless of how many name prefixes the consumer
subscribes to; and (c) robustness under producer failures: be-
cause producers are stateless with respect to consumers1, each
consumer can synchronize with any producer that replicates
the same data.

The paper is organized as follows. Section II gives an
introduction of the NDN architecture, bloom filters, and bloom
filter extensions. Sections III and IV present the design and
implementation of the proposed PartialSync protocol. In Sec-
tion V, we present results of our performance evaluation.
Section VI presents related work and Section VII proposes
future work and concludes the paper.

II. BACKGROUND

In this section, we briefly review the NDN architecture [11]
and Bloom Filters [2].

1) NDN architecture: Named Data Networking (NDN) [11]
is a new data-centric Internet architecture that naturally sup-
ports efficient and secure data distribution. NDN uses two
different types of packets, Interest packets and Data packets,
which are used to request and return named content, respec-
tively. NDN also binds a data packet’s name and content using
a producer’s key, so a receiver can verify the authenticity of
the data packet.

When an interest arrives at a router, if there is no cached
data matching the interest or the router has not forwarded
such an interest before, the router decides how to forward
the interest by looking up the interest name in its forwarding
information base (FIB). The router also maintains a pending
interest table (PIT) that records which interface the interest
arrived on and which interface it was forwarded to. When the
interest reaches the producer, the data matching the interest
will be sent back to the consumer on a symmetric return path
using the information recorded in the PIT. Data packets are
cached in the Content Store (CS) on each node on the return
path, which can be used to satisfy future interests that request
the same data.

2) Bloom filter and extensions: A Bloom Filter [2] is an
efficient data structure that uses a bit array to succinctly
represent a dataset. Bloom Filters allow for queries of whether
an element is in the dataset or not. Bloom Filters use a list
of hash functions to map each element in the set to certain
bits. To insert an element into the Bloom Filter, the element

1All the required state information for producers is carried in PartialSync
Interest messages.

Fig. 1. Data d is passed to each hash function which maps the data to a bit
position in the bloom filter.

is passed to each hash function to get a list of bit positions.
These bit positions are set to 1 to indicate that the element is a
member of the set (Figure 1). To perform a membership query
for an element, the element is passed to each hash function to
get a list of bit positions and each bit position is checked for
a 1. If each bit position is set to 1, the Bloom Filter shows the
element as a member of the set. But, due to the compactness of
the data structure, answers to membership queries may not be
correct, as elements may be hashed to some of the same bits.
It is important to note incorrect membership answers will only
be false positives (not false negatives). The false positive rate
(p) of a Bloom Filter is approximately (1− e−kn/m)k, where
m is the size of the bit array, k is the number of hashes, and n
is the number of elements inserted into the Bloom Filter [2].
This means that a larger bit array and a smaller element set
lead to lower false positive rate. Moreover, given n and m,
k = (m/n) ∗ ln2 produces the lowest false positive rate [2].

There are some drawbacks to using a Bloom filter. In par-
ticular, there is no removal operation, since multiple elements
may set the same bit to 1. If two elements set the same bit to 1
and one of the elements is removed, setting the bit to 0 would
make it appear as if the other non-removed element is also
not in the Bloom Filter. In order to support element deletion,
a count array is added to the regular Bloom Filter to record the
number of times that a bit is set by an insertion – such a data
structure is called a Counting Bloom Filter (CBF) [4]. Every
time an element is inserted, the bits in the bit array are set to 1
and the corresponding bits in the count array are incremented
by 1. When an element is removed, the corresponding bits in
the count array will decrease by 1. When a bit’s count is equal
to 0, the corresponding bit in the bit array can safely be set
to 0. The removal process for a CBF is shown in Figure 2.

Although a BF or CBF supports membership testing, one
cannot invert either one of them to determine the specific
elements that set the bits. Invertible Bloom Filters (IBF) [3]
introduce a new data structure to solve this problem. Instead of
maintaining a bit array to represent set membership, IBFs use
the hash functions to map the element to cells that maintain
keys, values, and a count for each element mapped to the cell.
Each cell maintains an idSum and a hashSum to track the
keys and data mapped to the cell, respectively. The idSum
tracks inserted elements’ values and hashSum tracks hashes
of inserted element’s values. The cell also maintains a count
similar to CBFs.

Fig. 2. Data d is removed from the Counting Bloom Filter. Note that although
d maps to three bit positions, only one of the bit positions is set to 0 due to
another element being mapped to two of the same positions.

Fig. 3. Data d is added to the Invertible Bloom Filter.

When an element is inserted, the hash functions are applied
to the element to get a list of cells to which the element
corresponds. For each corresponding cell, the cell’s idSum
is XOR’ed with the inserted element’s key, and the cell’s
hashSum is XOR’ed with the inserted element’s hash value;
the cell’s count is also incremented. The insertion process is
shown in Figure 3.

Using the XOR operation to maintain multiple elements’
combined keys and values allows elements to be removed
from cells. When an element is deleted, the operations are
similar to those for element insertion except that the count is
decremented in each cell the element corresponds to.

A list of elements can be retrieved from an IBF by looking
for pure cells. A pure cell is a cell that contains only one item,
and the hash value of the cell’s idSum equals the value of the
cell’s hashSum. When a pure cell is found, it is highly likely
that the cell’s idSum represents a single element. This element
can be added to the retrieval list and the element can be deleted
from all its corresponding cells. This deletion may remove a
collision from existing cells thus producing new pure cells.
This process continues until no more pure cells can be found
in the IBF. To use an IBF effectively, if there are d elements
in the IBF, 1.5 ∗ d cells are required to decode the IBF with a
low decoding failure probability [3].

IBFs also support a set difference operation through subtrac-

Fig. 4. Data Streams

tion – for each cell in two IBFs, the corresponding count bits
are subtracted and both the idSum and hashSum are XOR’ed.
Resulting pure cells will have a count of 1 or -1, and the
difference between the two sets can be determined as follows.
Suppose we calculate IBF1− IBF2, a pure cell with a count
of 1 means that it contains an element only in IBF1 while a
count of -1 indicates that the element is only in IBF2. Along
with the idSum and HashSum from the subtraction operation,
we can determine the specific different elements in the two
IBFs as well as to which IBF each different element belongs.

Since only fixed-length numbers (KeyID) can be insert into
an IBF, if we want to insert other types of elements such
as NDN names, we first need to hash each element into a
fixed-length number (KeyID) and then keep a mapping table
to associate each KeyID with the original element identifier.
After that we can do the normal IBF operations by using the
KeyIDs. Retrieving an element requires first getting the KeyID
from the IBF and then looking up the element identifier in the
mapping table using the KeyID.

III. DESIGN

In this section, we first give an overview of the PartialSync
design and then introduce how state information is encoded at
each consumer and producer. Next, we present our protocol
design and illustrate it in failure scenarios. Finally, we describe
our support of synchronization with multiple producers and
discuss simultaneous update generation in this scenario.

A. Overview

We assume that each producer produces a set of data streams
with different name prefixes and each consumer is interested in
a subset of the data streams – a data stream is set of data which
have the same name prefixes but different sequence number
(Figure 4). For example, a building management system may
have electricity data under 〈prefix〉 = /〈building〉/Electricity,
which contains data streams with name prefixes of the form
/〈prefix〉/〈panel〉/〈device〉. Suppose a consumer is interested
only in the data from the devices connected to Panel 2 in
Building 1, it can subscribe to those devices’ name prefixes,
e.g., /Building1/Electricity/Panel2/heater, through PartialSync
so that it will be informed whenever new data points are
generated under those name prefixes.

Each consumer sends Sync Interests to the producer in order
to learn about newly produced data in their subscribed data
streams (Step 1 in Figure 5). The Sync Interest contains the
consumer’s subscription list which is used by the producer
to check for updates to the subscribed data. If any data
stream in the consumer’s subscription list has new data items,

Fig. 5. Basic Design Concept of PartialSync

the producer will generate a Sync Reply to the consumer
containing a list of new data names (Step 2 in Figure 5).

Upon receiving the Sync Reply, for each new data name,
the consumer will further check whether the data name indeed
belongs to its own subscription list. If the data name is a
false positive, which means the producer returned a data name
to which the consumer has not subscribed, then the name is
ignored by the consumer. Otherwise, the consumer sends an
Interest to the producer to fetch the new data and the producer
or an intermediate cache will return the data (Step 3 and 4 in
Figure 5). If no new data matching the consumer’s subscription
list has been produced when the Sync Interest is received, the
Interest will stay pending for its lifetime and the producer will
respond immediately if any subscribed data stream has new
data before the Interest expires. When the interest expires, the
consumer will send a new Sync Interest.

B. Data Representation

PartialSync uses a number of representations including
Bloom Filters (BF) and ranges for consumers to express their
subscriptions, i.e, Subscription List, in their Sync Interests.
Moreover, it uses Invertible Bloom Filters (IBF) to represent
producers’ latest dataset, i.e., Producer State. Bloom Filters
and their extensions (Section II) are space efficient data
structures that enable consumers and producers to exchange
their information in a compact form, identify new data names
efficiently, and match those names with consumers’ subscrip-
tions quickly.

1) Subscription List: Suppose a producer has N data
streams with name prefixes P = {p1, p2, ...pn}, and a con-
sumer is interested in a subset of the data streams Q =
{q1, q2, ..., qj} ⊆ P . The set Q can be hashed into a Bloom
Filter f . Alternatively, if Q includes all the prefixes from
pi to pj in P (ordered alphabetically), then this set can be
simply represented as a range [pi, pj]. There are also other
special cases, e.g., |Q| = 1 or P = Q, that can be encoded
using simpler representations than Bloom Filters. When the
consumer sends a Sync Interest message, it selects the most
compact format for its subscription list and sends the format
information along with the encoded subscription list to the
producer so that the producer can decode correctly.

While a regular BF can be used to represent a subscription
list, the consumer should use a Counting Bloom Filter (CBF)
locally to support deletion of subscriptions efficiently (regular
BFs support only insertions). However, when sending its
subscription list to a producer (Figure 7), the consumer needs
to send only the regular BF (i.e., not including the count array
maintained in the CBF), since the producer only needs to
check whether a given data name prefix is subscribed to by
the consumer.

2) Producer State: PartialSync adopts ChronoSync’s ap-
proach of letting each producer name data sequentially [12].
The latest dataset can be represented by an IBF which contains
only one data name from each data stream, which is the data
stream’s name prefix plus its latest sequence number. When a
data stream with the name prefix p generates a new data item
and increases its sequence number from i to i+1, PartialSync
will remove the name p/i from the IBF and add p/(i+ 1) to
the IBF. In doing so, the IBF contains only N items, where
N is the number of data streams.

The producer sends its IBF information to every consumer
through its Sync Reply. Every time a consumer sends a Sync
Interest to a producer, it will add the last IBF it received from
the producer as an additional name component (Figure 7).
Upon receiving the Sync Interest, the producer can easily
determine names of new data that have been produced from
the difference between the IBF in the consumer’s Sync Interest
and its own IBF. The producer can then further check whether
these new data items are in the consumer’s subscription list.

C. Protocol Design

There are two phases in PartialSync. In the Initialization
Phase, a consumer needs to know what data streams to
subscribe to and also get the producer’s latest IBF (Sec-
tion III-C1). After receiving the producer’s state information,
the consumer enters the Sync Phase in which it subscribes
to new data in the data streams and synchronizes with the
producer (Section III-C2).

1) Initialization Phase: Assuming the producer is reach-
able via the name prefix 〈routable-prefix〉, the consumer
first sends a Hello Interest to the producer using the name
〈routable-prefix〉/psync-hello, as shown in Figure 6. Upon
receiving this Hello Interest, the producer will send a Hello
Reply with the latest names in its data streams. Based on the
Hello reply, the consumer then chooses the data streams to
subscribe to, retrieves their latest data items, and enters the
Sync Phase (Section III-C2).

To ensure that every consumer gets the latest producer state,
we set the cache policy of the Hello Reply to be NO CACHE.
If there is a failure in the transmission of the Hello Interest or
the Hello Reply, the consumer will send another Hello Interest
once the previous one expires.

2) Sync Phase: After the initialization phase, the consumer
will be able to send a Sync Interest to the producer – when a
new data item in the consumer’s subscription list is produced
on the producer, the consumer will receive a Sync Reply
containing this new data item’s name (Figure 7). As explained

Fig. 6. Initialization Phase in PartialSync

Fig. 7. Sync Phase in PartialSync (SL represents the consumer’s subscription
list; old-IBF and new-IBF represent the producer’s old state and current state
encoded in IBF.)

below, there are three situations that would trigger the producer
to send a Sync Reply to consumer, depending on the IBF value
in the Sync Interest.

First, as illustrated in Figure 8(a), if the IBF in the Sync
Interest from the consumer is different from the producer’s
current IBF, the producer tries to retrieve all new data names
between the two IBFs.2 If any of these new data names is in
the consumer’s Subscription List, producer will immediately
send a Sync Reply with these new data names that match the
consumer’s subscription.

Second, as shown in Figure 8(b), if the old IBF and new IBF
are same, the producer keeps the Sync Interest in a Pending
Interest table. Whenever new data is produced, the producer
uses each Interest in the Pending Interest table to determine
whether this new data is in the consumer’s Subscription List
and if so sends a Sync Reply.

Third, if the number of new data names has exceeded a
pre-configured maximum in this period and even if none of
them are in the consumer’s Subscription List, the producer
generates a Sync Reply to notify the consumer of its latest IBF
(this situation is illustrated in Figure 8(a) and 8(b)). This Sync
Reply will give the consumer update-to-date knowledge of the
producer’s IBF, which ensures that the difference between this
IBF and producer’s future IBF is small enough to be decoded.

2If not all names can be retrieved from the differences of the two IBFs,
then producer sends back a NACK Reply to ask the consumer to restart the
PartialSync process again as it cannot figure out the actual differences in the
certain period.

Fig. 8. Producer’s Sync Phase Flow Chart

Whenever a consumer receives Sync Reply, for each new
data name, the consumer checks whether it is in the sub-
scription list (due to the false positive possibility of BFs)
and whether its sequence number is indeed new . If so, the
consumer will send an Interest to fetch the data. It will also
send another Sync Interest, which will either trigger a Sync
Reply immediately or stay pending at the producer’s side.

D. Failure Handling

Since NDN has two different kinds of packets, there should
be two different failure scenarios: (a) failure in transmitting
a Sync Interest; and (b) failure in transmitting a Sync Reply.
Both types of failure have the same result – the consumer
will experience a delay in learning any new data matching its
Subscription List.

1) Sync Interest Transmission Failure: If a Sync Interest
fails to be delivered, the producer will not receive the con-
sumer’s Sync Interest and will not send notifications of new
data. After the Sync Interest’s lifetime expires, the consumer
will send another Sync Interest. Upon receiving this Sync
Interest, the producer will process the Interest using the regular
procedures discussed earlier. Therefore, if one Sync Interest is
lost, the notification is delayed for up to the lifetime of a Sync
Interest. The lifetime setting thus needs to take into account
the loss rate and the application’s tolerance of delay.

2) Sync Reply Transmission Failure: Figure 9 illustrates
a failure in transmitting a Sync Reply. After the first Sync
Interest expires, the consumer will send another sync Interest.
This Sync Interest may be satisfied by data in an intermediate
node’s the content store (from a previous Sync Reply) or reach
the producer which can then return any new data names. Again
in this case, the consumer is able to synchronize with the
producer after some delay.

E. Synchronization with Multiple Producers

Since NDN is data-centric, not host-centric as in IP, we
want our protocol to be able to synchronize with multiple
producers which produce the same data. For example, in

Fig. 9. Failure of One Sync Reply

Figure 10(a), consumer A can reach two producers, B and
C, which synchronize full datasets with one another using a
dataset synchronization protocol (e.g. ChronoSync [12]). In
most cases, A sends Sync Interests to D which are forwarded
to B, but due to congestion or link failure, D may forward
A’s Sync Interest to C. Our design ensures that A receives
subscribed data regardless of which producer receives A’s Sync
Interest.

Fig. 10. Synchronization with Multiple Producers

Consider the following scenario in Figure 10(b), A sends a
Sync Interest to B. After new data is produced at B, B responds
to A’s Sync Interest because this data matches A’s Subscription
List. However, the link between B and D goes down and A
fails to receive the Sync Reply sent from B. Meanwhile, B and
C synchronize their dataset. After the previous Sync Interest
expires, A sends another Sync Interest which D forwards to
C (Figure 10(c)). Upon receiving the Sync Interest from A,
C finds that A’s knowledge of the IBF and its own IBF are
different, because of the new data produced at B. It generates
a Sync Reply with the new data name and sends it to A along
with its IBF. After receiving the Sync Reply and fetching the
new data, A is synchronized.

F. Simultaneous Updates on Multiple Producers

If simultaneous updates occur on multiple producers and
all of them have received the same Sync Interest from one
consumer, they may all respond to the Sync Interest. In NDN,
since consumers receive only one data packet for each Interest,
the consumer will only receive one Sync Reply. Thus, the
network is partitioned into different groups where each group
has different knowledge of the producers’ IBF and data.

This situation is illustrated in Figure 11 where A and B
are consumers who subscribe to the same dataset produced by
both C and D. At the beginning (Figure 11(a)), A and B have
the same knowledge about the producers’ IBF (IBF1), and C

and D are synchronized and have the same IBF (IBF1). By
chance, C and D simultaneously produce new data to which
A and B are both subscribed. Then C’s IBF changes to IBF2

and D’s IBF to IBF3. C and D will respond to A and B’s
Sync Interests. Suppose D’s Sync Reply reaches B while C’s
Sync Reply reaches A (Figure 11(b)), then A and B will now
have different producer IBF, i.e., IBF2 for A and IBF3 for
B.

Fig. 11. Handling Simultaneous Updates

Our protocol handles this situation without any special
provision. As previously illustrated, A and B first synchronize
with C and D, respectively, so A receives C’s new data and B
receives D’s new data. Meanwhile, C and D synchronize with
each other (Figure 11(c)), so they should have each other’s
new data as well as the same IBF (IBF4). Upon receiving
the new Sync Interest from A and B, C and D generate Sync
Reply according to the difference between the IBF in the Sync
Interest and their own IBF. In this case, the Sync Reply from
C to A will contain the name of D’s new data and the Sync
Reply from D to B will contain the name of C’s new data.
Upon receiving the Sync Reply message, A and B fetch the
new data accordingly. In the end, they both receive the new
data produced by C and D, as well as the producers’ latest
IBF (IBF4) (Figure 11(d)).

IV. IMPLEMENTATION

We implemented the proposed PartialSync protocol in C++
using the ndn-cxx [8] library to ensure compatibility with the
NDN Forwarding Daemon (NFD [9]). Both the initialization
phase and the sync phase were implemented, and we evaluated
the protocol in Mini-NDN [7], an NDN emulator.

Since IBFs handle only fixed-length KeyIDs (Section II), we
need to do efficient encoding and decoding between variable
length data names and KeyIDs in the IBF. After comparing
different hash functions, we chose Murmurhash 3 for hashing
data names into element IDs. Compared with other hashing
methods, it has the advantages of supporting different hash
sizes, fast hashing speed and fast lookup speed.

We use 32-bit integers for idSum, hashSum and Count in
IBF and allow applications to configure the IBF size. To make
sure that the Sync Interest and Reply packet will not exceed
the maximum NDN packet size, we use Compressed Bloom
Filter [6] to represent the Subscription List if needed, which
may slightly increase in the computational cost and the false
positive rate of the Bloom Filter.

V. EVALUATION

TODO: evaluation results will be added in the next revision.

VI. RELATED WORK

Data synchronization is a fundamental building block in
NDN to bridge the gap between the unreliable network layer
and the needs of the applications. The design of PartialSync
has some similarity with existing synchronization protocols
in NDN. For example, it makes use of naming conventions
to keep the number of data items in IBF as low as possible
similar to ChronoSync [12], and it makes use of IBF to easily
detect multiple updates in one sync step, as does iSync [5].
However, ChronoSync and iSync are intended to synchronize
full data sets but not to synchronize subscriptions to subsets of
data, as PartialSync does. Because of the different objectives,
PartialSync uses Bloom Filters and other data structures to
express subscriptions, so that producers only inform a con-
sumer the updates on the data the consumer is interested
in. Furthermore, It encodes the consumer state in PartialSync
interests, which frees producers from keeping consumer state
and allows consumers to sync with any of the producers that
replicate the same data set.

VII. CONCLUSION

We have developed the PartialSync Protocol to solve the
partial synchronization problem in NDN where a consumer’s
Subscription List can be anything from an empty set to a full
set of the data. It utilizes Bloom Filter and its extensions to
identify new data names at the producer’s side. This protocol is
designed to scale well with large subscription lists, large num-
ber of consumers and multiple producers. We have evaluated
our protocol using a prototype building management system
in Mini-NDN. Our next step is to explore the possibility
of reducing the Sync Interest/Reply message size as well as
evaluating the protocol using more real applications.

REFERENCES

[1] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu,
W. Shang, Y. Li, S. Mastorakis, Y. Huang, J. P. Abraham,
S. DiBenedetto, C. Fan, C. Papadopoulos, D. Pesavento, G. Grassi,
G. Pau, H. Zhang, T. Song, H. Yuan, H. B. Abraham, P. Crowley, S. O.
Amin, V. Lehman, , and L. Wang. NFD developer’s guide. Technical
report, Technical Report NDN-0021 (revision 6), NDN Project, 2016.

[2] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422–426, 1970.

[3] D. Eppstein, M. T. Goodich, F. Uyeda, and G. Varghese. What’s
the difference: Efficient set reconciliation without prior context. In
Proceedings of ACM SIGCOMM, 2011.

[4] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a
scalable wide-area web cache sharing protocol. IEEE/ACM Transactions
on Networking, 8(3):281–293, Jun 2000.

[5] W. Fu, H. Ben Abraham, and P. Crowley. Synchronizing namespaces
with Invertible Bloom Filters. In Proceedings of the Eleventh ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems, ANCS ’15, 2015.

[6] M. Mitzenmacher. Compressed bloom filters. IEEE/ACM Transactions
on Networking (TON), 10(5):604–612, 2002.

[7] NDN Project Team. Mini-NDN GitHub. https://github.com/named-data/
mini-ndn.

[8] NDN Project Team. ndn-cxx. http://named-data.net/doc/ndn-cxx/.
[9] NDN Project Team. NFD - NDN forwarding daemon. http://named-data.

net/doc/nfd/.
[10] A. Partow. General purpose hash function algorithms (open Bloom Filter

source code (c++)). http://www.partow.net/programming/hashfunctions/.
[11] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,

C. Papadopoulos, L. Wang, and B. Zhang. Named Data Networking.
ACM SIGCOMM Computer Communication Review (CCR), 44(3):66–
73, Jul 2014.

[12] Z. Zhu and A. Afanasyev. Let’s ChronoSync: Decentralized dataset state
synchronization in Named Data Networking. In Proceedings of IEEE
ICNP, 2013.

