
NDN Technical Report NDN-0038, 2016. http://named-data.net/techreports.html

Revision 1: February 10, 2016

Challenges in IoT Networking via TCP/IP Architecture

Wentao Shang
UCLA

Los Angeles, CA
wentao@cs.ucla.edu

Yingdi Yu
UCLA

Los Angeles, CA
yingdi@cs.ucla.edu

Ralph Droms
Cisco Systems
Cambridge, MA

rdroms@cisco.com
Lixia Zhang

UCLA
Los Angeles, CA

lixia@cs.ucla.edu

ABSTRACT
“Internet of Things” (IoT), networking (potentially) a large
number of resource-constrained devices, is gaining popular-
ity in recent years. Today’s IoT systems are largely based
on the use of the TCP/IP protocols (IPv6 in particular).
However, the observations so far suggest that the TCP/IP
protocol stack, as originally designed, is not a good fit to the
IoT environment. Over the last several years the IETF has
spent significant amount of effort in modifying the protocol
stack to fit IoT deployment scenarios. These efforts have
resulted in extensions to existing protocols in the TCP/IP
protocol suite as well as development of multiple new pro-
tocols. Yet new problems continuously occur. In this paper
we analyze the technical challenges in applying TCP/IP to
the IoT environment and review various solutions proposed
by the IETF. We argue that existing IP-based solutions are
either inefficient or insufficient in supporting IoT applica-
tions, and that a more effective solution would embrace the
Information Centric Network architecture.

Keywords
Internet of Things; TCP/IP; network architecture

1. OVERVIEW
“Internet of Things” (IoT) generally refers to the intercon-

nection of different types of computing devices to support
various kinds of monitoring and control applications. To
accommodate the heterogeneity of devices and applications
from different venders, modern IoT systems have adopted
the open standards of TCP/IP protocol suite, which was
developed for the wired global Internet several decades ago,
as the networking solution. However, IoT networks differ
from traditional wired computer networks in fundamental
ways as we elaborate below. Those differences pose signifi-
cant challenges in applying TCP/IP technologies to the IoT
environment, and addressing these challenges will make a
far-reaching impact on the network architecture. This pa-
per aims to systematically identify the challenges posed by
the IoT environment, and to articulate the future direction
to tackle the challenges.

IoT networks often contain a large number of low-end,
resource-constrained devices. The design of those devices
are mostly driven by low manufacturing and operational
cost. As a result, the IoT devices are typically equipped with
limited computing power and required to operate over long

time periods (e.g., a year) on battery. Due to the power con-
straints, the IoT networks often employ low-energy Layer-2
technologies, such as IEEE 802.15.4, Bluetooth LE and low-
power Wi-Fi, which usually operate with much smaller MTU
and lower transmission rate compared to traditional Ether-
net links. Therefore an immediate challenge for the IoT
network protocol design is to adapt the packet size to the
constrained links (discussed in Section 2.1). To save energy,
IoT nodes may not be always on as in wired networks. More-
over, an IoT system may be deployed in environments with-
out wired network infrastructure (e.g., forests, underwater,
battle fields) and consequently has to rely on wireless mesh
technologies to communicate. This brings more challenges
to the TCP/IP protocol architecture: first, mesh networks
typically adopt the multi-link subnet model which is not sup-
ported by the original IP addressing architecture (discussed
in Section 2.2); second, broadcast and multicast are expen-
sive on a battery powered network as a single multicast will
involve a series of multi-hop forwarding and potentially wake
up many sleeping nodes (discussed in Section 2.3); third, a
scalable routing mechanism is now necessary for IP commu-
nications to happen over the mesh networks (discussed in
Section 2.4); and lastly, the TCP-style reliable and in-order
byte stream delivery is often ill-suited for applications that
require customized control and prioritization of their data
(discussed in Section 3).

Most IoT applications interact with lots of sensors and
actuators to perform various monitoring and control tasks
on the ambient environment. Their design patterns intrinsi-
cally require efficient and scalable support for naming con-
figuration and discovery, security protection on the data ac-
quisition and actuation operations, and a resource-oriented
communication interface such as Representational State Trans-
fer (REST). Unfortunately, existing solutions to those prob-
lems, many of which are widely used by today’s Web tech-
nologies, do not satisfy the constraints of the IoT environ-
ments. For example, the traditional DNS-based naming ser-
vices are unsuitable in many IoT deployment scenarios that
lack infrastructural support for dedicated servers (see Sec-
tion 4.1). The application-layer content caches and proxies
are often inefficient in dynamic network environments with
intermittent connectivity (discussed in Section 4.2). In ad-
dition, the channel-based security protocols such as TLS
and DTLS, which are used to secure the REST communica-
tions, impose high overhead on the IoT devices in terms of
protocol operations and resource consumption (discussed in



Section 4.3).
The rest of this paper discusses each of the aforemen-

tioned issues in detail. We seek to identify the architectural
reason that causes the difficulties when applying TCP/IP
to the IoT world. We also survey the current solutions to
those issues that have been standardized or under active
development at the IETF, and analyze why they are often
insufficient to solve the targeted problems. The goal of this
paper is to offer insights and point out directions for the
design of future IoT network architectures.

2. PROBLEMS AT NETWORK LAYER
IP, especially IPv6, is engineered for today’s Internet en-

vironment with desktops and laptops as end devices com-
municating with wire-connected servers. In this section we
discuss which properties of the hosts and the networks cur-
rently assumed by IP no longer exist in the IoT world, and
what have been done to tailor IP and its companion proto-
cols to fit them into the IoT environment.

2.1 Small MTU
The constrained low-energy links in IoT networks often

have very small MTUs. For example, the maximum phys-
ical layer frame size for IEEE 802.15.4-2006 [14] is merely
127 bytes. This is in clear contrast with today’s IP networks
which typically assume a minimum MTU of 1500 bytes or
higher. Developed for the traditional Internet during 1990s
(long before the perception of IoT), the IPv6 specification [7]
includes two design decisions that are problematic for small-
MTU links. First, IPv6 uses a 40-byte fixed length header
with optional extension headers, which cause a big protocol
overhead for small packets. Second, the IPv6 specification
requires that all IPv6-capable networks support a minimum
MTU size of 1280 bytes, which is unrealistic for the con-
strained links.

To fit IPv6 into 802.15.4 networks, 6LoWPAN [19] in-
troduces, between the link layer and the network layer, an
adaptation layer that implements two mechanisms to tackle
the above mentioned issues: header compression and link-
layer fragmentation [13,20]. Header compression allows the
removal of unused fields (e.g., flow label and traffic class)
and redundant information (e.g., the interface identifier in
the IPv6 address can be derived from L2 MAC address and
hence elided). It also defines the compression scheme for
extension headers and UDP header, both of which are fre-
quently used in IoT (see Sections 2.4 and 3), in order to
leave more room for application payload. Link-layer frag-
mentation hides the real MTU size of 802.15.4 and gives the
network layer the illusion that it is running over a standard-
compliant link capable of supporting 1280-byte MTU. How-
ever, few IoT applications are expected to send packets that
reach the MTU limit.

The main purpose of having fixed length header in IPv6
is to improve protocol processing speed. Setting a mini-
mum MTU is to avoid in-network fragmentation (which is
widely believed to cause performance issues [17]) and re-
duce the router’s workload. Both of them are intended for
performance optimization in the current Internet, without
the consideration of constrained IoT environment with small
MTU sizes. The addition of the adaptation layer patches
up the mismatch between the old design and the new usage
requirement, which inevitably introduces extra complexity
and overhead.

2.2 Multi-link subnet
The current subnet model of IPv4 and IPv6 considers two

types of Layer-2 networks: multi-access link, where multiple
nodes share the same access medium, and point-to-point
link, where there are exactly two nodes on the same link.
Both of them assume that the nodes in the same subnet can
reach each other within one hop. An IoT mesh network, on
the other hand, contains a collection of Layer-2 links joined
together without any Layer-3 device (i.e., IP routers) in be-
tween. This essentially creates a multi-link subnet model
that is not anticipated by the original IP addressing archi-
tecture [11].

RFC 4903, “Multi-Link Subnet Issues” [29], documents
the reasons why the IETF community decided to abandon
the multi-link subnet model in favor of 1:1 mapping between
Layer-2 links and IP subnets. The main concerns are around
the “one-hop” reachability model that many existing pro-
tocols already depend on. First, forwarding across multi-
ple links within the subnet creates trouble with TTL/Hop-
Limit handling. In IP networks it is common practice to
limit the scope of communication to a single subnet by set-
ting the TTL/Hop-Limit to 1 or 255 and verify that the
value stays the same upon receipt. The multi-link subnet
model will break any protocol that follows such practice be-
cause the nodes who perform IP forwarding across multiple
links will necessarily decrement the TTL/Hop-Limit value.
The second issue is that link-scoped multicast does not work
on multi-link subnets without proper support for multicast
routing (which is often disabled even in today’s Internet).
Consequently, legacy protocols that depend on link-scoped
multicast (e.g., ARP, DHCP, Neighbor Discovery, and many
routing protocols) will also be broken on multi-link subnets.

Fundamentally, the issues above are caused by the mis-
match between the old IP subnet model and the new IoT
mesh networks. To avoid those technical issues, one has to
either rely on Layer-2 mechanisms to glue multiple links into
a single network transparently (similar to bridging of multi-
ple Ethernet segments), or partition the mesh network into
multiple subnets with different prefixes. The first approach
requires some form of intra-subnet routing capability, which
will be discussed in Section 2.4. The second approach intro-
duces new complexity in network configuration as the pre-
fix allocation has to be propagated over the mesh network
(e.g., via prefix delegation) and the formation of the links in
a mesh may change over time in a dynamic environment.

2.3 Multicast efficiency
A lot of IP-based protocols make heavy use of IP multi-

cast to achieve one of the two functionalities: notifying all
the members in a group and making a query without know-
ing exactly whom to ask. However, supporting multicast
packet delivery is a big challenge for constrained IoT mesh
networks. First, most wireless MAC protocols disable link-
layer ACK for multicast; consequently lost packets are not
recovered at link-layer. Second, multicast recipients may
experience different data transmission rate due to the co-
existence of multiple MAC protocols (e.g., different versions
of Wi-Fi) and/or the link-layer rate adaptation; therefore
the sender has to transmit at the lowest common link speed
among all receivers. Third, IoT nodes may switch to sleep-
ing mode from time to time to conserve energy, thus may
miss some multicast packets. Lastly, when nodes are con-
nected through a mesh network, a multicast packet needs to



be forwarded over multiple hops along many paths, poten-
tially waking up many sleeping nodes and overloading the
already-scarce network resource.

To get around the difficulties in multicast support, the
legacy protocols have to be redesigned to minimize the use
of IP multicast before they can be applied to constrained IoT
environments. When IoT nodes need to send out notifica-
tions to multiple recipients, instead of multicasting the pack-
ets, they can buffer those packets temporarily at some well-
known location and wait for the recipients to pull the packets
over unicast on-demand (based on their sleeping schedule).
When they want to make queries to a group, instead of flood-
ing the network with multicast, they can send the queries
to some designated nodes who are pre-configured to answer
queries by collecting the information a prori. These new ap-
proaches replace multicast with on-demand unicast pulling,
to get around the difficulties in supporting multicast and
also to accommodate sleeping nodes.

One example of such protocol adaptation is the IPv6 Neigh-
bor Discovery (ND) optimization for 6LoWPAN [24]. The
original IPv6 ND [21] relies on multicast to learn default
gateway routers, resolve neighbor’s IPs to MAC addresses,
and perform duplicate address detection. When adapting
ND functionalities to 6LoWPAN, instead of having the routers
multicast Router Advertisements periodically (which will
either wake up the sleeping nodes or be missed by those
nodes), the optimized protocol allows the constrained nodes
to refresh Router Advertisement information on demand
with Router Solicitation messages.1 Another extension is to
maintain a registry of host addresses on the routers, making
the routers capable of answering address resolution and du-
plicate address detection requests on behalf of the end hosts,
so that the querying nodes simply send their queries to the
default routers via unicast messages.

An alternative solution called MPL, proposed by the IETF
roll WG, fundamentally changes the forwarding semantics
of multicast over constrained networks [12]. MPL dissemi-
nates multicast packets across the entire multicast domain
through synchronization among MPL forwarders (i.e., nodes
that participate in MPL) using controlled flooding, without
requiring any multicast routing protocol to maintain the
topology information. Every multicast packet is identified
by the packet generator id and a sequence number in or-
der to allow duplication detection. Also, recent packets are
buffered by the MPL forwarders in a sliding-window fashion
(i.e., FIFO buffer), which can be used for retransmission in
the future. This new multicast forwarding protocol has been
adopted by the current ZigBee IP specification [2].

2.4 Mesh network routing
The topologies of typical IoT networks fall into two cat-

egories, as is explained in [14]: star topology and peer-to-
peer (a.k.a., mesh) topology. The routing configuration is
straightforward on a star network where the hub node (e.g.,
a Bluetooth master node) can act as the default gateway
for the peripheral nodes. However, the deployment scale of
the start topology is limited by the signal coverage of a sin-
gle hub node, making it unsuitable for application scenarios
that cover a wide area. The mesh topology enables larger
coverages by having the nodes relay the packets for each

1Note that the Router Solicitation is still a multicast packet,
but with an “all-routers” destination address and is only
processed by the 6LoWPAN routers.

other. Since flooding the whole network is too expensive,
a routing mechanism is necessary for implementing efficient
packet forwarding inside the mesh.

Mesh network routing can be supported at either the link
layer or the network layer. The link-layer approach, called
mesh-under in the IETF terminology [18], relies on Layer-2
forwarders to join multiple links into a single “one-IP-hop”
subnet. The network-layer approach, called route-over, in-
stead relies on IP routers to forward packets across multiple
hops. In the rest of this subsection, we describe the existing
solution in each of these two categories.

The IEEE has produced the 802.15.5 standard [15] to sup-
port link-layer routing for mesh networks formed by IEEE
802.15.4 links. The basic approach is to first construct a
spanning tree across the mesh network for L2 address as-
signment: the root of the spanning tree allocates continu-
ous link-layer address blocks to its children, which further
allocate sub-blocks to its descendents. Such addressing ap-
proach guarantees that the link-layer address of nodes un-
der the same ancestor fall into the same range. Once the
addresses are assigned, the nodes start to exchange local
link-state information with their immediate neighbors and
each of them builds its own 2-hop neighbor table contain-
ing the neighbors’ address block range, tree level and hop
distance. When forwarding packets to a destination beyond
2-hop distance, the sending node applies a simple heuristic
to pick a next hop that is close to the spanning tree root (and
hence knows more about the network topology) but not too
far away from the sending node. One drawback in this so-
lution is that, as new nodes dynamically join the network,
the address allocation process may have to be re-performed
in order to adapt to the topological changes.

The IETF tackles the mesh network routing problem via
the route-over approach and has developed RPL (IPv6 Rout-
ing Protocol for Low-Power and Lossy Networks) [30] as
the current standard solution. RPL shares the same spirit
with IEEE 802.15.5 in that it models a cluster of nodes as a
spanning tree called Destination-Oriented DAGs (DODAG),
with all directed paths terminating at the root. When two
nodes inside a DODAG communicate with each other, their
packets traverse up to either the root node or a common an-
cestor, then follow a Down Link to the destination. However,
unlike IEEE 802.15.5 which allocates topology-dependent
L2 address, RPL does not make any assumption about IP
address allocation. This effectively prohibits routing entry
aggregation beyond the sharing of common prefixes. Main-
taining such a routing table becomes quite challenging at the
nodes near the root, which in the worst case have to keep
routing entries for every device in the subnet. RPL also pro-
vides an alternative “Non-Storing” mode, where only the
root node maintains the routing table. When forwarding
packets along Down Link paths, the root node needs to in-
sert full source route information into the packet headers.
While it reduces memory usage on the non-root nodes, the
“Non-Storing” mode increases the header size of the down-
ward packets, which is problematic for small-MTU networks
(see Section 2.1).

We should note that the fundamental challenge of rout-
ing in IoT mesh networks comes from the requirement of
maintaining routing information for each host in a multi-
link environment. This is not a issue in traditional IP net-
works where routers or self-learning bridges can be deployed
to provide infrastructural support for routing and forward-



ing. However, in constrained IoT environments, the per-host
routes are either maintained by every node in the mesh using
routing protocols, which consumes lots of memory, or car-
ried with the IP packet as source routes during forwarding,
which conflicts with the small MTU restriction from the link
layer. Due to IP’s host-oriented communication semantics,
routing will remain a major challenge in IP-based IoT mesh
technologies.

3. PROBLEMS AT TRANSPORT LAYER
The transport layer in the TCP/IP architecture provides

congestion control and reliable delivery, both of which are
implemented by TCP, the dominant transport layer proto-
col on the Internet. TCP has been engineered for many
years to efficiently deliver a large bulk of data over a long-
lived point-to-point connection without stringent latency re-
quirement. It models the communication as a byte stream
between sender and receiver, and enforces reliable in-order
delivery of every single byte in the stream.

However, IoT applications usually face a variety of com-
munication patterns which TCP cannot support efficiently.
First, due to the energy constraints, devices may frequently
go into sleep mode, thus it is infeasible to maintain a long-
lived connection in IoT applications. Second, a lot of IoT
communication involves only a small amount of data, mak-
ing the overhead of establishing a connection unacceptable.
Third, some applications (e.g., device actuation) may have
low-latency requirement, which may not tolerate the delay
caused by TCP handshaking. When working within lossy
wireless networks, the in-order delivery and retransmission
mechanism of TCP may also cause head-of-line blocking,
which introduces unnecessary delay. Moreover, most wire-
less MAC protocols also implement link-layer automatic re-
peat request (ARQ), which may further impair the perfor-
mance of TCP if the L2 retransmission delay is longer than
the TCP RTO [9].

While some industrial IoT standards (e.g., ZigBee IP [2])
still mandate the TCP support, more and more IoT pro-
tocols (such as BACnet/IP [1] and CoAP [25]) decided to
build transport functionalities into the application layer and
chose UDP as the transport layer protocol, which essen-
tially turns the transport layer to a multiplexing module.
Such trends highlighted the need for the application level
framing [6]. With application level framing, network can
identify individual application data units (ADUs), thus en-
abling more flexible transport support, e.g., apply different
retransmission strategies for different types of ADUs, dis-
tributing data more efficiently with in-network caching, etc.
Unfortunately, current TCP/IP architecture does not allow
applications to embed application semantics into network
level packets, thus failing to provide sufficient support for
application level framing.

4. PROBLEMS AT APPLICATION LAYER
Most IoT applications implement the resource-oriented

request-response communication model. For example, mon-
itoring applications request data generated by the sensors;
and control applications request operations on the physical
objects through the actuators. These applications resembles
today’s Web services that have adopted REST (REpresenta-
tional State Transfer) architecture [10] for application-layer
communication. Influenced by the huge success of Web, the

IoT community has been working on bringing the REST
architecture into IoT applications. For example, the IETF
core WG has defined “Constrained Application Protocol”
(CoAP) standard [25], a UDP-based data transfer protocol
customized for constrained environment, to power REST-
style communication for IoT applications. The need for
implementing REST at the application layer highlights the
missing support of important functionalities at the lower
layers of the TCP/IP architecture, including resource dis-
covery, caching, and security. In this section, we examine
how current IoT applications bridge those gaps and the lim-
itation of their solutions.

4.1 Resource discovery
The resource-oriented communication model usually re-

quires a resource discovery mechanism, whereby the appli-
cations can request or invoke operations on the resources.
The solution for resource discovery in traditional IP net-
works is DNS-based Service Discovery (DNS-SD) [4]. How-
ever, this solution has several limitations in supporting IoT
applications.

First of all, DNS-SD aims to support service discovery,
where the service usually refers to a running program (e.g.,
a printing service running on some printer). In contrast,
the resources in the context of IoT covers a broader scope:
besides services, it may also refer to IoT devices, sensor
data, etc.. Therefore, the IoT resource discovery requires a
more general approach to identify heterogeneous resources.
For example, instead of using DNS records, CoAP adopts a
URI-based naming scheme to identify the resources (like in
HTTP). Based on that, the IETF core WG has developed
CoRE-RD [26], a CoAP-based resource discovery mecha-
nism that relies on less constrained resource directory (RD)
servers to store the metainfo about the resources hosted on
other devices.

Secondly, traditional service discovery often relies on mul-
ticast when dedicated services such as DNS and CoRE-RD
are not available in the local environment. For example,
DNS-SD uses Multicast DNS (mDNS) [5] as the carrier of
communications for service discovery and name resolution
within the local network. However, as we analyzed in Sec-
tion 2.3, link-local multicast has efficiency issues in IoT en-
vironments. An alternative solution to using multicast is
to synchronize the resource metainfo across the network
in a peer-to-peer fashion (which is similar in spirit to the
MPL multicast forwarding protocol we discussed in Sec-
tion 2.3). For example, the IETF homenet WG is develop-
ing the Home Networking Control Protocol (HNCP) [28] to
distribute home network configurations using a synchroniza-
tion mechanism defined by the Distributed Node Consensus
Protocol (DNCP) [27].

It is worthwhile to note that the necessity of those solu-
tions is due to the fact that the network and transport lay-
ers in TCP/IP are unable to discover the resources defined
by the application-layer names. For example, the Neighbor
Discovery protocol for IPv6 can only discover configurations
at the network layer and below; while the SRV records in
DNS-SD typically identify the services by the IP addresses
and port numbers. Given the universal demand for resource
discovery in the IoT applications, an efficient IoT network
architecture should include that as one of its core functional-
ities and free the applications from implementing their own
custom solutions.



4.2 Caching
The TCP/IP communication model requires that both the

client (resource requester) and the server (resource holder)
are online at the same time. However, in IoT scenarios, the
constrained devices may frequently go into sleeping mode for
energy saving. Moreover, the dynamic and/or intermittent
network environment usually makes it difficult to maintain
stable connections between communicating parties. Con-
sequently, the IoT applications often rely on caching and
proxying to achieve efficient data dissemination. The se-
lected proxy node can request the resources on behalf of the
sleeping nodes and store the response data temporarily un-
til the requesting nodes wake up. The cached contents can
also be used to serve similar requests from other nodes who
share the same proxy, which saves network bandwidth and
reduces response latency. The resource origin server may
also appoint some proxy nodes to handle the requests on its
behalf (called reverse-proxy) so that it can reduce the client
traffic and may go offline when it need to.

While it is helpful, the application-level caching imple-
mented by CoAP and HTTP has several limitations in the
IoT environment. First, the clients need to explicitly choose
a forward- or reverse-proxy node in order to utilize the con-
tent caching capability. Those pre-configured caching points
may not be optimal for all the client nodes. The clients
may utilize the resource discovery mechanism to find nearby
proxies on demand. But such solution introduces extra com-
plexity to the whole system. Second, in dynamic network
environments where the connectivity is intermittent, the
pre-selected proxy point may become totally unreachable.
When the network topology changes, the clients need to re-
configure or re-discover the proxies, or otherwise stop using
caches and proxies at all. Third, the caches and proxies
break the end-to-end connections assumed by the current
security protocols (which we will discuss in Section 4.3),
making it even harder to protect the application data.

To make the caching functionality efficient and flexible
in the IoT environment, the network architecture need to
provide opportunistic caches pervasively inside the network
and allow the applications to utilize them without incurring
configuration and communication overhead. This further
requires the network layer to be aware of the application-
layer resources and integrate the caching into the forwarding
process so that each network packet can explore the caches
as it traverse the network. It also requires a fundamental
change to the security model in order to make the in-network
caches secure and trustworthy.

4.3 Security
Security is critical to IoT applications due to their close

interaction with the physical world. The mainstream secu-
rity model of IP-based applications is channel-based security
(e.g., TLS [8] and its datagram variant DTLS [22]), which
provides a secure communication channel between the re-
source server and the client. The secured-channel solutions,
however, do not fit into the IoT environments for several
reasons.

The first issue with channel-based security is the over-
head of establishing a secure channel. Both TLS and DTLS
requires two or more rounds of security handshake to au-
thenticate a channel and negotiate the security parameters,
before the first application data is sent out.

The second issue is that both ends of a channel have to

maintain the states of the channel until it is closed. This
may impose a high pressure on memory usage when a de-
vice needs to communicate with many peers simultaneously
in a densely-meshed network. Note that this issue, together
with the first one, leads to a difficult tradeoff. The effort of
mitigating one issue (e.g., reducing memory usage by estab-
lishing short-lived channels on-demand) may deteriorate the
other (e.g., each new short-lived channel will have its own
handshake overhead).

Last but not the least, channel-based security does not
guarantee the security of request-response once the appli-
cation data get out of the channel. This is most trouble-
some when the middleboxes (e.g., caches and proxies) are
deployed to cache the application data. The resource owners
need to trust the middleboxes to enforce the access control
policies correctly, while the resource requestors need to trust
the middleboxes to provide authentic data without tamper-
ing.

The limitations above highlight the need for a different
security model for IoT applications. An alternative model
that has been proposed at the IETF is object-based secu-
rity [23], which secures the application data unit directly
rather than the channel through which the data is transmit-
ted. Each data object should carry necessary authentication
information (e.g., digital signatures) so that anyone receiv-
ing the data can verify its validity regardless of how the data
is retrieved. When data confidentiality is the concern, the
originator of the data can encrypt the content so that only
the intended recipients can decrypt the data. Similar ideas
using the object-based security have also appeared outside
the IoT area, such as the ongoing efforts at the IETF jose
WG to secure JSON objects [3].

5. RETHINKING THE ARCHITECTURE
The famous principle of indirection says that “all problems

in computer science can be solved by another level of indi-
rection”. But one problem it does not solve is the existence
of too many levels of indirection, which precisely describes
the situation of the current IoT network architecture.

Figure 1 shows the layered structure of an IP-based IoT
stack. To support the REST interface, IoT applications
usually adopt CoAP or HTTP as the messaging protocol.
Usually the applications also need to interact with common
services on top of the messaging layer (such as the CoAP Re-
source Directory and object security support). Right above
the transport layer, TLS and DTLS are added to secure the
communication channel. In addition, there are multiple in-
frastructural services that are necessary to facilitate the IP
network communications, such as ICMP, DHCP, Neighbor
Discovery (ND), DNS and RPL.

If we reexamine the network stack by focusing on the core
functionalities from the application’s perspective, we will
get a rather different picture shown in Figure 2. Instead of
“everything over IP”, the IoT applications have converged
on a different paradigm of “everything over REST”. At the
bottom, an IoT stack may use any data transport such as
UDP and 6LoWPAN. In the center of the stack, a RESTful
messaging protocol implements all the service components
that operate over a single abstraction of the application data
unit (ADU) defined by the IoT applications. The contrast
between this new perspective and the layered view of the
existing stack reflects the deep-rooted mismatch between the
expectations from the IoT applications and the architectural



Link Layer (Ethernet/WiFi/Bluetooth/802.15.4/…)
with optional adaptation sub-layer

IPv6

TCP UDP ICMPv6

RPLNDDHCPv6DNS/mDNS

CoAPHTTP

TLS DTLS

DNS-SD

IoT Apps and Services

Figure 1: A typical architecture for IoT systems

REST (CoAP/HTTP/…)

Data Channel (TCP/UDP/6LoWPAN/…)

URI-based
Communication Caching Object

Security
Congestion

Control

IoT Applications

Naming 
Configuration Discovery Sequencing Reliability

Figure 2: An IoT stack from the application’s per-
spective

reality of TCP/IP.
The REST layer contains several sub-modules that imple-

ment critical functionalities:

• a URI-based communication mechanism that can de-
liver application-layer data to network destinations;

• a caching mechanism for efficient data dissemination;

• an object security mechanism for protecting the in-
tegrity and confidentiality of individual ADUs;

• a congestion control module that may implement mul-
tiple algorithms for different network environments;

• naming configuration and resource discovery for assist-
ing the application operations;

• a sequencing mechanism for chopping large data that
cannot fit into a single ADU;

• a reliability mechanism that supports packet retrans-
mission and ordering according to the application’s de-
mand.

Currently all those functionalities (including the REST
interface itself) are implemented by the application layer
protocols. However, some of those functionalities could have
been more effective if moved into the core network. For ex-
ample, the congestion control could benefit from the feed-
backs of network and link layers to make wiser decisions.
Caching could be more efficient if the caches are ubiquitous
inside the network, rather than relying on dedicated caching

proxies. To utilize in-network caching, URI-based forward-
ing, REST interface and object security should also be sup-
ported at the network layer so that the cached content can
be easily located, retrieved and authenticated. This proto-
col stack optimization eventually lead to a simpler and more
efficient architecture that closely resembles the Information-
Centric Network (ICN) vision.

The ICN architectures such as NDN [16,31] not only pro-
vide native support for the functionalities that IoT applica-
tions intrinsically demand, but also address the lower-layer
network challenges. It applies the same ADU across layers
and gives the packet flow control back to the applications. It
does not have artificial requirements on minimum MTU; the
simplified stack actually reduces the size of packet headers.
It is inherently multicast friendly since pervasive caching al-
lows data to be reused by multiple consumers efficiently. Its
data oriented communication avoids the issue of addressing
and routing to a large number of sensor nodes and opens
the opportunity for scalable routing and forwarding over
application layer names. The data centric security avoids
the overhead entailed by the channel-based security solu-
tions and better suits the IoT devices with limited resources
and intermittent connectivity. The architectural simplicity
leads to smaller code size for the application software, lower
energy and memory footprint for the device, and better uti-
lization of the network resource compared to the current
IP-based IoT stack. The potentials of IoT over ICN have
already drawn attention at the IRTF icnrg [32] and we ex-
pect it to become an active research topic as the interest in
the IoT technologies continues to grow.

6. CONCLUSION
When the TCP/IP protocol stack was first developed in

the early 1980s, the goal was to connect mainframe comput-
ers through the wired connectivity. Although the protocol
stack kept evolving after the IP specification was published,
the fundamental assumption behind the architecture design
has not changed. IoT networks represent a new type of
applications where the IP architecture cannot easily fit in
without significant modification to the protocol stack.

In this paper, we discussed the challenges of applying
TCP/IP to IoT networks that arise from the network and
transport layers. We also discussed how the application
layer protocols like CoAP provide their own solutions for
the desired functionalities that the lower layers fail to sup-
port. The mismatch was made more evident by comparing
the current IoT stack with the desired architecture from the
application’s point of view. We proposed an architectural
change that moves the REST-related components into the
core network layer and eventually arrived at a more efficient
architecture to the existing application layer solutions. This
new IoT stack would embrace the ICN design and implement
the required functionalities natively and more efficiently in-
side the network.

7. REFERENCES
[1] BACnet - A Data Communication Protocol for

Building Automation and Control Networks, Mar.
2013.

[2] ZigBee IP Specification Revision 34. ZigBee
Document 095023r34, Mar. 2014.



[3] R. Barnes. Use Cases and Requirements for JSON
Object Signing and Encryption (JOSE). RFC 7165
(Informational), Apr. 2014.

[4] S. Cheshire and M. Krochmal. DNS-Based Service
Discovery. RFC 6763 (Proposed Standard), Feb. 2013.

[5] S. Cheshire and M. Krochmal. Multicast DNS. RFC
6762 (Proposed Standard), Feb. 2013.

[6] D. D. Clark and D. L. Tennenhouse. Architectural
Considerations for a New Generation of Protocols.
SIGCOMM Comput. Commun. Rev., 20(4):200–208,
Aug. 1990.

[7] S. Deering and R. Hinden. Internet Protocol, Version
6 (IPv6) Specification. RFC 2460 (Draft Standard),
Dec. 1998. Updated by RFCs 5095, 5722, 5871, 6437,
6564, 6935, 6946, 7045, 7112.

[8] T. Dierks and E. Rescorla. The Transport Layer
Security (TLS) Protocol Version 1.2. RFC 5246
(Proposed Standard), Aug. 2008. Updated by RFCs
5746, 5878, 6176.

[9] G. Fairhurst and L. Wood. Advice to link designers on
link Automatic Repeat reQuest (ARQ). RFC 3366
(Best Current Practice), Aug. 2002.

[10] R. T. Fielding. Architectural styles and the design of
network-based software architectures. PhD thesis,
University of California, Irvine, 2000.

[11] R. Hinden and S. Deering. IP Version 6 Addressing
Architecture. RFC 4291 (Draft Standard), Feb. 2006.
Updated by RFCs 5952, 6052, 7136, 7346, 7371.

[12] J. Hui and R. Kelsey. Multicast Protocol for Low
power and Lossy Networks (MPL).
draft-ietf-roll-trickle-mcast-12 (work in progress), June
2015.

[13] J. Hui and P. Thubert. Compression Format for IPv6
Datagrams over IEEE 802.15.4-Based Networks. RFC
6282 (Proposed Standard), Sept. 2011.

[14] IEEE. IEEE Standard for Local and metropolitan area
networks–Part 15.4: Wireless Medium Access Control
(MAC) and Physical Layer (PHY) Specifications for
Low-Rate Wireless Personal Area Networks (WPANs).
IEEE Std 802.15.4-2006, June 2006.

[15] IEEE. IEEE Recommended Practice for Information
technology-Telecommunications and information
exchange between systems-Local and metropolitan
area networks-Specific requirements Part 15.5: Mesh
Topology Capability in Wireless Personal Area
Networks (WPANs). IEEE Std 802.15.5-2009, pages
1–166, May 2009.

[16] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F.
Plass, N. H. Briggs, and R. L. Braynard. Networking
Named Content. In Proceedings of the 5th
International Conference on Emerging Networking
Experiments and Technologies, CoNEXT ’09, pages
1–12, New York, NY, USA, 2009. ACM.

[17] C. A. Kent and J. C. Mogul. Fragmentation
considered harmful. SIGCOMM Comput. Commun.
Rev., 25(1):75–87, Jan. 1995.

[18] E. Kim, D. Kaspar, C. Gomez, and C. Bormann.
Problem Statement and Requirements for IPv6 over
Low-Power Wireless Personal Area Network
(6LoWPAN) Routing. RFC 6606 (Informational), May
2012.

[19] N. Kushalnagar, G. Montenegro, and C. Schumacher.
IPv6 over Low-Power Wireless Personal Area
Networks (6LoWPANs): Overview, Assumptions,
Problem Statement, and Goals. RFC 4919
(Informational), Aug. 2007.

[20] G. Montenegro, N. Kushalnagar, J. Hui, and
D. Culler. Transmission of IPv6 Packets over IEEE
802.15.4 Networks. RFC 4944 (Proposed Standard),
Sept. 2007. Updated by RFCs 6282, 6775.

[21] T. Narten, E. Nordmark, W. Simpson, and
H. Soliman. Neighbor Discovery for IP version 6
(IPv6). RFC 4861 (Draft Standard), Sept. 2007.
Updated by RFCs 5942, 6980, 7048.

[22] E. Rescorla and N. Modadugu. Datagram Transport
Layer Security Version 1.2. RFC 6347 (Proposed
Standard), Jan. 2012.

[23] G. Selander, J. Mattsson, F. Palombini, and L. Seitz.
Object Security for CoAP.
draft-selander-ace-object-security-03 (work in
progress), Oct. 2015.

[24] Z. Shelby, S. Chakrabarti, E. Nordmark, and
C. Bormann. Neighbor Discovery Optimization for
IPv6 over Low-Power Wireless Personal Area
Networks (6LoWPANs). RFC 6775 (Proposed
Standard), Nov. 2012.

[25] Z. Shelby, K. Hartke, and C. Bormann. The
Constrained Application Protocol (CoAP). RFC 7252
(Proposed Standard), June 2014.

[26] Z. Shelby, M. Koster, C. Bormann, and P. van der
Stok. CoRE Resource Directory.
draft-ietf-core-resource-directory-05 (work in
progress), Oct. 2015.

[27] M. Stenberg and S. Barth. Distributed Node
Consensus Protocol. draft-ietf-homenet-dncp-12 (work
in progress), Nov. 2015.

[28] M. Stenberg, S. Barth, and P. Pfister. Home
Networking Control Protocol.
draft-ietf-homenet-hncp-10 (work in progress), Nov.
2015.

[29] D. Thaler. Multi-Link Subnet Issues. RFC 4903
(Informational), June 2007.

[30] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey,
P. Levis, K. Pister, R. Struik, J. Vasseur, and
R. Alexander. RPL: IPv6 Routing Protocol for
Low-Power and Lossy Networks. RFC 6550 (Proposed
Standard), Mar. 2012.

[31] L. Zhang, D. Estrin, J. Burke, V. Jacobson, J. D.
Thornton, D. K. Smetters, B. Zhang, G. Tsudik,
kc claffy, D. Krioukov, D. Massey, C. Papadopoulos,
T. Abdelzaher, L. Wang, P. Crowley, and E. Yeh.
Named Data Networking (NDN) Project. Technical
Report NDN-0001, October 2010.

[32] Y. Zhang, D. Raychadhuri, L. Grieco, E. Baccelli,
J. Burke, R. Ravindran, and G. Wang. ICN based
Architecture for IoT - Requirements and Challenges.
draft-zhang-iot-icn-challenges-02 (work in progress),
Aug. 2015.


