
NDN Technical Report NDN-0036, 2015. http://named-data.net/techreports.html
Revision 1: December 21, 2015

1

NDN-ACE: Access Control for Constrained
Environments over Named Data Networking

Wentao Shang∗, Yingdi Yu∗, Teng Liang†, Beichuan Zhang† Lixia Zhang∗

∗University of California Los Angeles
{wentao, yingdi, lixia}@cs.ucla.edu

†University of Arizona
{philoliang, bzhang}@cs.arizona.edu

Abstract—The access control problem, including authentica-
tion and authorization, is critical to the security and privacy
of the IoT networks. In this paper we present NDN-ACE, a
lightweight access control protocol for constrained environments
over Named Data Networking (NDN). NDN-ACE uses symmet-
ric cryptography to authenticate the actuation commands on
the constrained devices but offloads the key distribution and
management tasks to a more powerful trusted third party. It
utilizes hierarchical NDN names to express fine-grained access
control policies that bind the identity of the command senders to
the services they are authorized to access. The key management
protocol in NDN-ACE allows the senders to update their access
keys periodically without requiring tight synchronization among
the devices. The evaluation shows that NDN-ACE has fewer
message exchange and uses fewer components in the overall
network architecture compared to the IP-based alternatives. The
“proof-of-concept” prototype also demonstrates the feasibility
and efficiency of the NDN-ACE framework.

I. INTRODUCTION

Access control is a critical component in the “Internet-of-
Things” (IoT) systems for securing the access to critical and/or
sensitive resources. OWASP lists “insufficient authentication
& authorization” as one of the top 10 IoT vulnerabilities in
2014 [1]. In this paper, we focus on one specific aspect of
access control in IoT systems: actuation, where one sends
a command to a remote device to invoke certain actions on
the device. An actuation system has stringent requirements on
latency and authentication. It must deliver actuation command
from a sender to a receiver in a timely manner, and the
command receiver must authenticate the command correctly.
However, IoT’s constrained environment makes it difficult to
satisfy these two requirements. Packet losses become common
when low-power devices communicate with each other over
wireless channels. Devices may not be always online due
to energy saving. It is also infeasible to implement complex
authentication policy on IoT devices with limited computation
power. Moreover, a IoT system may involve a large number
of devices with constrained configuration interfaces, increasing
the difficulty of configuration updating.

Most existing solutions based on the IP architecture either
twist the network layer or build additional layers to address
these issues. On the other hand, some ongoing work [2], [3]
already suggested that the data-centric communication model

could be a better fit for IoT than IP’s channel-based commu-
nication model. In this paper, we present NDN-ACE, an IoT
actuation framework that is built directly over a data-centric
Internet Architecture: Named Data Networking (NDN) [4]–
[6]. NDN-ACE seals actuation command into a network-level
packet. The packet carries sufficient context for command
authentication and is protected through an HMAC chain [7],
so that a command receiver can immediately authenticate
the command in a packet regardless of where and how the
packet is delivered. As a result, NDN-ACE can achieve low
latency in command delivery and enforce least privilege in
command authentication with low overhead of computation
and communication.

This paper is organized as follows. Section II provides the
background about NDN and IoT environments. Section III
describes the application scenario where NDN-ACE can be
applied and design goals. Section IV describes the details of
the NDN-ACE protocol design. Section V analyzes the secu-
rity properties of the protocol. Section VI discusses miscella-
neous design and implementation issues. Section VII compares
NDN-ACE with two related proposals from the IETF ACE
WG. Section VIII presents our prototype implementation.
Section IX briefly reviews related works. In Section X we
conclude the paper and discuss the future work.

II. BACKGROUND

A. Internet of Things
“Internet of Things” (IoT) generally refers to the intercon-

nection of different types of computing devices to support
various kinds of monitoring and control applications. An IoT
network usually consists of a large number of devices commu-
nicating through wireless channels. Driven by the low manu-
facturing cost and large-scale deployment, the IoT devices are
typically equipped with limited computing power (i.e., 10s to
100s of MHz CPU, 10s to 100s of KB memory and flash
capacity [8]). The energy constraint on IoT devices also leads
to the wide adoption of low-energy radio technologies, these
low-power and lossy networks (LLN [9]) usually provide low
bandwidth (10s to 100s of kbps) and suffer from interference-
induced packet loss, which makes network communication an
expensive operation.

A major type of IoT applications is actuation systems. In
such systems, a device may receive a control command to

2

perform certain operation. Since many IoT devices have close
interaction with the ambient environment, and some of them
(e.g., smoke detectors and fire alarms) are even assigned life-
critical tasks, it is imperative to secure actuation system, so
that only control commands from authorized entities can be
executed. However, the resource-constrained nature of IoT
devices prohibits security solutions with high computation and
communication overhead. Moreover, the massive scale of the
IoT deployment also implies that a proper security solution
must be highly scalable.

Traditional IP-based IoT solutions often rely on a secure
channel (e.g., TLS [10] and its datagram variant DTLS [11]) to
protect the communications among the devices. However, such
channel-based security model cannot express the application-
specific privileges. Consequently the receiver side applications
need to implement separate command authentication logic on
top of the secured channels. But IoT device’s constrained
computation power restrict the complexity of logic needed to
provide fine-grained access control.

Maintaining a secure channel inevitably introduces energy
consumption, while communication pattern of actuation sys-
tem is usually intermittent and involves only a few packet
exchanges. Establishing a secure channel on demand does not
alleviate the problem either, due to the overhead of setting up
a channel, as well as the key negotiation which introduces
additional delays undesirable for certain actuation systems.
Moreover, channel-based communication performs poorly in
a lossy environment; packet loss detection and recovery may
significantly affect the latency and consume more computation
resources.

B. Named Data Networking

Named Data Networking (NDN) [4]–[6] is a new In-
ternet architecture that provides data-centric communication
semantics at the network layer. Communication in NDN is
modeled as retrieving individual piece of data. To enable this
communication model, NDN names each individual piece of
data under a hierarchical namespace. A data producer puts the
data and its name in a network level packet, called a Data
packet. A data consumer sends a request, called an Interest
packet, that carries the name of the desired data. Based on
the requested data name, the network forwards each Interest
packet toward the potential location of the corresponding data.

1) Content-based Security: NDN mandates producer’s dig-
ital signature on each Data packet, to make each Data packet
individually verifiable. As a result, the authenticity of the data
is independent from where and how the data is retrieved. To
facilitate the data authentication, each data packet contains a
SingatureInfo field indicating the name of the public key that
can verify the signature. A public key is just another type
of data with its own name, and since every Data packet has
a signature, a Data packet carrying a public key becomes a
certificate and can be retrieved and verified in the same way
as other Data packets.

To authenticate a Data packet, one needs a trust model that
defines which keys are authorized to sign which piece of data
and specifies one or more trusted keys to bootstrap the trust.

Naming both the data and the keys allows one to define a trust
model in terms of the relationship between the data name and
the key name [12]. The hierarchical structure makes NDN
names highly expressive and can provide sufficient context
for data authentication, and our earlier work has demonstrated
that one can use NDN name to easily specify privilege at any
desired granularity.

Besides authenticity, NDN also supports content-based con-
fidentiality by encrypting the Data packets directly. Data
producers encrypt the data at the time of production, and
distribute the corresponding decryption key to the authorized
consumers. In this way, the confidentiality of data does not
depend on the intermediate devices, achieving true end-to-end
confidentiality.

2) Actuation over NDN: The Interest/Data semantics of
NDN resembles the request/response semantics of the ac-
tuation systems. Burke et al. [13] proposed a framework
for supporting actuation commands over NDN’s Interest/Data
communication in the context of lighting control systems.
They use a special Signed Interest packet to carry the requested
command in the name. Unlike normal Interest packet, a
Signed Interest also carries a signature and meta information
about the signature, allowing the receiver of the command
to authenticate the command. Beside the digital signature,
a Signed Interest also includes a timestamp and a nonce to
prevent replay attacks. Note that to detect such attacks, either
the two communication ends have to synchronize their clocks
or the receiving end needs to keep per-sender state about the
most recently received timestamp.

III. APPLICATION SCENARIO

We target an application scenario where all devices are
interconnected via NDN. A constrained client (C) invokes
some privileged service offered by a constrained actuator (A)
using the Signed Interest mechanism [14] over the network.
For example, a smart switch may issue remote commands
to turn a smart lamp on and off. The client knows which
service it wants to access, while the actuator does not know
the identity of the client until it sees the request command.
Due to the resource limitation, the actuator delegates the
authentication and authorization tasks to a trust third party
called Authorization Server (AS), which typically runs on a
dedicated machine with much more computing power than
the constrained IoT devices. Both the client and the actuator
may be offline at any time due to scheduled hibernation, while
the AS is assumed to have enough power to stay online all
the time except when the network or the host fails.

Assumptions: We assume that the client and the actuator
have established trust relationships with the AS using some
bootstrapping process. The devices and the AS also exchange
their public keys which can be used to authenticate the
communications between them. The actuator trusts the AS to
follow the access control policies defined by the applications
and issue the access keys to the authorized clients on its
behalf. The access keys are derived from the pre-shared
secret established between the AS and the actuator. The client
trusts the AS to provide valid access keys for the services it

3

wants to access. We also assume that all devices and servers
on the network have synchronized clocks (e.g., by sharing
the same time source). This allows the actuator to detect
replayed commands without having to keep track of per-client
timestamp in the Signed Interests.

Attacker model: We consider an attacker who can eaves-
drop and tamper with packets transmitted over the network,
or inject malicious packets into the network. For example, the
attacker may record the actuation commands sent over the
network and try to extract the authentication information; the
attacker may perform man-in-the-middle attacks by intercept-
ing and modifying the content of the packets; the attacker may
also inject invalid actuation commands to trick the actuators
into performing unauthorized operations. However, we do
not consider DDoS attacks such as jamming the physical
communication channel or overwhelming the IoT devices with
Interest flooding. Neither do we consider any physical attacks
on the devices or the network, such as destroying, removing or
shutting down the IoT devices or network routers. Nor do we
consider the case where the attacker breaks into an authorized
device and takes over the control of the IoT applications
running on that device.

IV. PROTOCOL DESIGN

In this section we describe the design of the NDN-ACE
protocol. We start with an overview of the protocol operations.
Then we describe the details of authorization and command
authentication in NDN-ACE. In the end we discuss the issues
in key management such as key distribution and update.

Here is a list of design goals that we want to achieve in
order to make NDN-ACE applicable to the IoT environments:

• Authentication and authorization for actuation commands
between the client and the actuator.

• Fine-grain access control policies.
• Low overhead in the communication messages and the

in-memory state on the constrained nodes.
• Low computational cost on cryptographic operations.

A. Overview

The NDN-ACE protocol consists of three major parts of
information flow between different devices as is depicted in
Figure 1:

A–AS The actuator delegates the access control tasks to the
trusted AS by sharing a per-service secret key (seed) with
the AS. The AS obtains new seeds periodically from the
actuator to replace the old seed and extend the delegation
relation. The seed is always encrypted when distributed
over the network.

C–AS When the client requests for access to a service, the
AS authenticates its identity and generates an access key
for the client using the corresponding service seed. The
client obtains new access keys periodically from the AS
to replace the old key and refresh its access privilege. The
access key is always encrypted when distributed over the
network.

AS

A

C C C C

Seed

A
Seed

CMD/ACK

CMD/ACK
Access Key

Fig. 1: NDN-ACE architecture and information flow

C–A The client sends authenticated commands to the actuator
to access some service. The command Interest is HMAC-
signed with the sender’s access key for that service.
The signature proves the client’s ownership of a valid
access key and hence indicates that the client has been
authorized by the AS.

Every device (C, A and AS) on the network has a device
prefix, which is typically constructed by concatenating the
network prefix with the device identifier that is unique on the
local network. The device identifier can be a name assigned
by the network administrator, the serial number created by
the device manufacturer, or some random ID generated by the
device upon first use. A few examples are shown in Figure 2.
In this paper we assume all the devices are connected to the
same network and share a common prefix. The framework can
also be extended to support cross-domain authentication and
authorization as long as there exist trust relationships between
different domains.

/home/livingroom/light123

Device
ID

Network Prefix
Actuator:

Client:

/home/livingroom/as01

Device
ID

Network Prefix
AS:

/home/livingroom/switch01

Device
ID

Network Prefix

Fig. 2: Naming convention for the devices

The actuator offers some service over the NDN-based IoT
network by announcing its device prefix to the routing system
and waiting for incoming command Interests with the service
name. The service name usually comprises the routing prefix
followed by the service ID. Take the examples shown in
Figure 3: /home/livingroom/light123/setStatus command can
set light123 to either ON or OFF; /home/livingroom/light123/

4

readStatus command will return the current status of light123
to the client.

/home/livingroom/light123/setStatus

Service
IDNetwork Prefix Device

ID

/home/livingroom/light123/readStatus

Service
IDNetwork Prefix Device

ID

Fig. 3: Naming convention for the service

B. Authorization

The actuator generates a symmetric key as the per-service
seed and share that key with the AS in order to delegate
the access control tasks. Each seed has a sequence number
that gets incremented by the actuator every time the seed is
updated. The value of the seed can be computed by some
psuedo-random function (PRF) that takes the service name,
the seed sequence number and a master secret (or some other
source of entropy) as the input.

Before accessing the service, the client needs to obtain the
access key as the proof of authorization from the AS. The
access key is derived from the service seed and cryptograph-
ically bound to the service name and the client identity. The
access key also has a sequence number that is incremented by
the AS every time the key is updated.

To compute the access key, the AS first constructs an NDN
name that expresses the access control policy for the client
using the following naming convention (the words SEED
and KEY are special name components that are fixed for all
names):

/home/livingroom/light123/setStatus/SEED/456/switch01/KEY/789

Client
ID

Service Name Seed
Seq#

Access
Key Seq#

Fig. 4: Naming convention for the access key

The access key name in Figure 4 expresses the following
authorization information: the client switch01 is authorized to
access the setStatus service on the actuator light123 during
the validity period of the corresponding service seed whose
sequence number is 456; the sequence number of this access
key is 789.

The value of the access key is computed as the HMAC
over the access key name (binary encoded using the NDN
name wire format [15]), using the seed as the HMAC key.
The access key and the corresponding sequence numbers (of
both the access key and the seed) are returned to the client
using the key distribution mechanism that we will describe in
Section IV-D.

C. Command Authentication

The client accesses the services offered by the actuator
using Signed Interests [14]. The name of the Signed Interest
specifies the targeted service name (e.g., /home/livingroom/
light123/setStatus) and may contain additional components
to encode command parameters if necessary (e.g., /home/
livingroom/light123/setStatus/on). The Interest also carries an
HMAC signature signed with the client’s access key. Since the
actuator does not maintain per-client key material, the Interest
itself must carry enough information so that the actuator can
recompute the access key from the service seed. To achieve
that, we put the seed sequence number SS , the client identifier
and the access key sequence number SK in the SignatureInfo
component of the Signed Interest. By convention, we encode
these three pieces of information as an NDN name with three
components so that the actuator can easily extract each of
them.

When the actuator receives the Signed Interest, it extracts
the sequence numbers and client ID from the SignatureInfo.
The actuator checks that SS matches the current sequence
number of the local seed it is maintaining. Then it constructs
the access key name following the naming convention in
Figure 4 and computes the HMAC of the resulting name
using the local seed as the key, which returns the access key
associated with this command. Finally the actuator verifies the
HMAC signature of the Signed Interest using the computed
access key.

If the command authentication succeeds, the actuator will
execute the command and may reply to the client with an
acknowledgement (ACK). This ACK is HMAC-signed by the
same access key that is used to sign the command, which
allows the client to verify the authenticity of the ACK. If
the command authentication fails, the actuator may reply
with a negative acknowledgement (NACK). The NACK may
contain an error code and other relevant information that can
help the client recover from the failure. An example of the
authenticated command operation is illustrated in Figure 5.

D. Key Management

A common challenge in authentication and authorization
protocols is the key management, e.g., how to securely dis-
tribute the keys to all parties and how to refresh the keys peri-
odically. In this subsection, we describe the key management
mechanism in NDN-ACE. We first talk about how to refresh
the seed and the access keys. Then we discuss the protocol
for distributing those keys over NDN.

1) Key update: Updating the seeds and the access keys
periodically effectively protects the system from key compro-
mises that are hard to detect. In NDN-ACE, each access key is
associated with a timer and a usage counter that are maintained
by the recipient of the key. Whenever an access key is used to
compute a signature, the counter of that key is incremented.
The client may choose an upper bound on the number of times
that a key can be used and request a new key from the AS when
that upper bound is reached. At the same time, the application
may choose a upper limit on the lifetime of the key. If the key
has not been updated for that amount of time, the client may

5

Access Key for “setStatus”: Ka
Access Key Seq#: 789

Seed Seq#: 456
switch01

Signed Interest:
 Ns = /home/livingroom/light123/setStatue/on
 SignatureInfo = /456/switch01/789
 Nc = Ns/[timestamp]/[nonce]/[SignatureInfo]
 SignatureValue = HMAC(Ka, Nc)

Na = /home/livingroom/light123/setStatus/SEED/456/switch01/KEY/789

Seed for “setStatus”: Ks
Seed Seq#: 456

Ka’ = HMAC(Ks, Na)

Sig = HMAC(Ka’, Nc)
If Sig == SignatureValue, execute command and send ACK
Else, reject command and send NACK

Nc = Ns/[timstamp]/[nonce]/[SignatureInfo]

light123

Signed Interest

Signed Interest:
 Ns = /home/livingroom/light123/setStatus/on
 SignatureInfo = /456/switch01/789

ACK or NACK,
signed by Ka’

Time Time

Fig. 5: Command authentication in the light actuation example

request a new key regardless of the usage counter value. The
new key has the same name as the previous key, except the
sequence number is increased by one.

A similar mechanism is used by the AS to control the update
of the seeds generated by the actuator. However, unlike the
AS which is always online, the actuator often has to go to
hibernation periodically to save power. As a result, the counter-
based update is no longer feasible since the actuator may not
be available when the update is triggered. Consequently, the
AS only needs to update the seed periodically based on a timer
that is carefully aligned with the actuator’s sleeping schedule.

When the seed is updated, all the access keys derived from
the previous seed must also be updated regardless of their
current timers or counter values. This creates a “key rollover”
problem where the clients may be unaware of the seed update
and continue to use the old keys to issue commands.1 NDN-
ACE solves this problem by having the actuator keep the last
seed and its sequence number after a new one is generated.
If a client issues a Signed Interest that contains the sequence
number of the previous seed in the SignatureInfo, the actuator
will verify the command using the old seed. If the verification
succeeds, the actuator will execute the command and then
send back an acknowledgement (ACK) notifying the client
that its access key is outdated and also telling it the sequence
number of the current seed. The ACK serves as a feedback
that instructs the client to update its key immediately. As a
simple optimization, all sleeping clients should always update

1Having the AS send out immediate notifications to all affected clients does
not work in the constrained IoT environment as the clients may be sleeping
when the seed is updated.

their access keys after wake up, since it is very likely that the
seed has changed while they are sleeping.

2) Key distribution: When a seed or an access key is
updated, it needs to be securely distributed to the key recipient.
This is essentially the content distribution problem that has
been studied in many prior works [16], [17]. A common
solution is to encrypt the content so that only the recipients
who have the decryption key can access the content. NDN-
ACE uses the same technique for distributing the seed and the
access key over an untrusted network. Here we use the access
key distribution as an example to illustrate the process. The
distribution of the seed is mostly the same.

The key distribution process in NDN-ACE requires only
one round of Interest/Data message exchange. We use the
classic Diffie-Hellman key exchange algorithm [18] to derive
the encryption key. When the client requests a new access key,
it generates a Diffie-Hellman public key on the fly and sends
a Signed Interest to the AS including its DH public key as
the command parameter. The Interest is signed by the client’s
RSA/ECDSA private key to prevent impersonation attack.

Upon receiving the request, the AS performs the following
steps of operations:

1) It verifies the signature of the Signed Interest using the
client’s RSA/ECDSA public key.

2) If the verification succeeds, it generates its own Diffie-
Hellman public key, computes the shared secret from the
two DH public keys (the other one is contained in the
request), and derives a key encryption key (KEK) using
a standard key derivation function.

3) It then generates the new access key and updates the
sequence number as is described in Section IV-B.

6

switch01 as01

Time Time

Generate
Client_DH_pubkey

Interest

/home/livingroom/as01/keygen/[Client_DH_pubkey]
signed by client public key

Generate
AS_DH_pubkey

Compute DH
shared secret

Derive KEK
Compute

access key

Encrypt access
key with KEK

Data

Content = AS_DH_pubkey | Enc(access_key)
 | AccessKeySeq# | SeedSeq#

signed by AS public key

Compute DH
shared secret

Derive KEK

Decrypt access
key with KEK

Fig. 6: The distribution of access key from the AS to the client

4) Finally it encrypts the access key using the KEK and
returns the encrypted key, together with the sequence
numbers (of the new key and the seed) and its own DH
public key, to the client. The response is signed by the
RSA/ECDSA private key of the AS.

Once getting the response, the client verifies the signature
in it using the RSA/ECDSA public key of the AS, then derives
the same KEK from the two DH public keys (the other one
is contained in the response) and finally decrypts the new
access key. The process is illustrated in Figure 6. Note that
if the Interest and/or the Data packets get lost during this
process, the client must restart the process by generating a
fresh ephemeral DH public key and transmitting that key to
the AS using a newly-generated Signed Interest (with fresh
timestamp and nonce).

V. SECURITY ANALYSIS

In this section we discuss how the NDN-ACE protocol
design prevents several types of attacks. Here we assume the
natural security properties of the hash function used in the
HMAC operations, including:
Non-guessability: without the corresponding signing key, it is

computationally infeasible to produce the correct HMAC
signature on a given message.

Non-invertibility: given the message and the signature, it is
computationally infeasible to reverse the HMAC function
and obtain the signing key.

A. Impersonation Attack

An attacker cannot impersonate an authorized client by
extracting the victim’s access key from the network packets.
First, the access key distributed by the AS is encrypted with an
encryption key derived from the Diffie-Hellman key exchange
between the client and the AS, and the key exchange process
is protected from MITM attacks by having the client and the

AS sign their packets. Second, the commands do not contain
the access key itself, but only the HMAC signatures computed
with the access key.

Neither can the attacker impersonate an actuator in order
to trick the client or the AS into revealing the access key or
the seed to the attacker. First, the seed is generated by the
legitimate actuator and distributed to the AS, not vise versa.
Second, it is impossible to extract the access key or the seed
from the command signature due to the non-invertibility of the
HMAC.

NDN-ACE also prevents the attacker from impersonating
the AS and obtaining the seed from the actuator because the
key distribution process requires the AS to sign its request for
the seed. Assuming the actuator has already established trust
relationship with the real AS during the bootstrapping phase,
this attack can be easily detected by verifying the request
signature using the public key of the trusted AS.

B. Privilege Delegation

In NDN-ACE, the client who gets the access keys from
the AS are prohibited from further delegating its own access
privilege to other parties. This is guaranteed by deriving
the access key from the seed using a non-invertible HMAC
function. In this way, the client who obtains the access key
cannot extract the seed and therefore cannot produce new
access keys for other parties.

Technically one could modify NDN-ACE to let the client
extend the HMAC chain and produce third-level access keys
from its own keys. Doing so would allow the client to further
delegate its privilege independently without knowing the seed,
while retaining the stateless verifiability at the root of the del-
egation chain (i.e., the actuator). (There is indeed a framework
that implements this style of distributed authorization for cloud
applications [19].) However, we feel such chain delegation
complicates the simple trust model of NDN-ACE and therefore
choose to keep our design simple.

VI. DISCUSSION

In this section, we discuss the design and implementation
issues that are not covered in previous sections.

A. Applicability to CoAP

NDN-ACE is designed on top of Named Data Network-
ing and immediately benefits from many features of NDN
such as Interest-Data exchange, name-based forwarding and
data object security. However, since NDN-ACE can be seen
essentially an application-layer security solution, it is not
difficult to port NDN-ACE to an IP network by implementing
the NDN communication semantics on top of an application
layer protocol such as CoAP. CoAP is suitable for supporting
NDN-ACE because: first, CoAP is designed for constrained
environments; second, both CoAP and NDN supports the same
communication semantics that is intrinsic in IoT; third, it is
easy to extend CoAP to support object security [20].

In CoAP, the resource names are represented as URIs. The
host and port components are used to route the requests to the

7

resource server, while the path and query components identify
the resource under the scope of the connected resource server.
To distribute the access keys over CoAP, the client can send
CoAP requests to the AS with the path pointing to the key
distribution service (KDS). The query components contain the
parameter necessary for generating the access key:

coap://as1.livingroom.home:55555/kds?rid=light123&svc=
turnOn&sid=switch01&aseq=56789

The responses contain the keys encrypted and signed as in
NDN-ACE.

When sending commands, the client can encode the
authentication-related name components either in the path or
in the query. The command signature can be base64-encoded
to be compatible with the URI encoding:

coap://light123.livingroom.home:55555/turnOn?sseq=1234&
sid=switch01&aseq=56789&sig=QUJDMTIz

The actuator will simply parse the CoAP request and
authenticate the signature as before. Note that in this design
we do not use DTLS to protect the communication channel
because NDN-ACE is inherently based on object security.

B. Name Engineering

Naming is the center piece in the design of NDN-ACE. The
devices use names to express their identities and the services
they provide. The AS uses names to express the access control
policies from which the access keys are derived. Furthermore,
the versions of the keys are also expressed explicitly in the
names as sequence numbers. Given the importance of the
names, it is necessary that the naming scheme in NDN-ACE be
carefully designed in order to accommodate the requirements
from both the applications and the underlying networks.

There are two primary concerns with the NDN-ACE naming
scheme as described in this paper. The first one is the use of
verbose names in the constrained network. ASCII encoding
of human-readable components can lead to excessively long
names, which increase the processing cost on the network
nodes and result in large packet size. There are multiple ways
to address this “long name” issue. First of all, applications
can define efficient encodings for the name components that
do not have to be human-readable. Alternatively, if the devices
can afford some extra computational cost, they can compress
the name suffixes that are not related to routing and intended
to be interpreted only by the applications.

The second major concern with the NDN-ACE naming
scheme is privacy. In some application scenario, it may be
desirable to avoid exposing the interface or the semantics
of some services in the network packets. In NDN-ACE, the
service commands are encoded in cleartext in the names by
default. This may allow the attacker to sniff packets and
extract sensitive information about the services on the network.
The general solution is to apply encryption on the name
components that need to be protected.For example, the client
may encrypt the command name, the timestamp, the nonce
and the signature info into a single opaque component and
attach the signature after that.

C. AS Fault Tolerance

The authorization server (AS) in NDN-ACE is a key
component in the authentication and authorization process. It
maintains the service seeds for the actuators it serves. It also
has to stay online to answer the key update requests from the
client. The failure of the AS would paralyze the access control
framework and the application operations. To avoid this single-
point-of-failure issue, we can deploy backup servers to replace
the master AS when it fails. Note that the AS does not keep
any soft state except the seed information. Therefore when the
backup server takes over, it can simply request new seeds from
the actuators and use them to derive new access keys for the
clients.

To allow automatic hand-over during failure recovery, there
need to be pre-established trust relationships among all IoT
devices and authorization servers. This can be achieved by
adding a common trust anchor as one level of indirection.
When a new node (device or server) joins the network, the
bootstrap process will install the trust anchor on the new node
and also use the trust anchor to sign the identity certificate for
that node. This allows the new node to be trusted by all the
other nodes on the network who have the trust anchor installed
already.

VII. EVALUATION

In this section, we compare NDN-ACE with two access
control solutions proposed by the IETF ACE WG: DCAF [21]
and OAuth 2.0 IoT profile [3]. DCAF is a simple authentica-
tion and authorization framework that allows two constrained
nodes to establish DTLS connections by delegating the genera-
tion and distribution of DTLS pre-shared keys (PSK) to trusted
third parties. DCAF further divides the role of authorization
server (AS) into two parts: a Client Authorization Manager
(CAM) and a Server Authorization Manager (SAM) acting
on behalf of the client and server nodes, respectively. DCAF
assumes the existence of pre-established DTLS connections
between the client and its CAM, and between the server and
its SAM. To gain access to the resources on the server, the
client requests a DTLS PSK from the SAM via its CAM.
The PSK is wrapped by the SAM into an access ticket
which contains either the encrypted PSK or the information
to help the server to derive the PSK. Both the key and the
ticket are transferred back to the client through its CAM over
secured DTLS channels. During DTLS PSK exchange, the
client presents the ticket to the server who will derive the
PSK from the ticket and then set up the DTLS channel.

OAuth 2.0 IoT profile adapts the HTTP-based OAuth 2.0
protocol to the CoAP-based IoT environments. It uses OAuth
2.0 Proof-of-Possession (PoP) tokens [22] to carry authentica-
tion and authorization information. When the client requests
access privilege to the Resource Server (RS), the Authorization
Server (AS) creates a PoP token that is encrypted for the
RS and signed by the AS. The token contains authorization
information (privilege, validity period, etc.) and the access key
information (encrypted symmetric key or public key finger-
print). When issuing the resource request, the client includes
the PoP token in the request and uses the corresponding access

8

TABLE I: Protocol operations for establishing command com-
munication

Protocol NDN-ACE DCAF OAuth IoT
Profile

Messages CMD/ACK

DNS lookup
for server +
DTLS PSK
exchange +
CMD/ACK

DNS lookup
for RS +
CMD/ACK

Total RTT if
no packet loss 1 ≥ 4 ≥ 2

key to sign the request. Upon receiving the request, the RS can
verify the authenticity of the token, extract the access key from
the token, and then verify the signature of the request. If all
verification succeed, the RS will return the protected resource
to the client or carry out the requested actuation operation.

In the rest of this subsection, we compare the three authen-
tication and authorization protocols on two different aspects:
communication overhead and architecture complexity.

A. Communication Overhead

Table I shows the comparison of message exchanges re-
quired to start the actuation command communication (after
the sender obtains the authorization from the AS). Both DCAF
and OAuth IoT profile need to perform DNS lookup if they
use the URL instead of IP address to identify the command
receiver. This will take at least 1 RTT between the sender and
the DNS server. After that, DCAF requires 2 extra RTTs of
DTLS PSK exchange. Finally the command communication
(CMD/ACK) takes 1 more RTT. Assuming there is no packet
loss during network transmission, NDN-ACE is able to start
application-layer communication immediately, while DCAF
and OAuth profile have to take additional RTTs before sending
a single-RTT actuation command.

One might argue that the DNS resolution results can be
cached by the client for future use, and that the DTLS
connection in DCAF can be preserved and reused by future
actuation commands. However, maintaining these soft states
can be a challenging task on the resource-constrained IoT
devices. The device has to either limit the total number of
communicating peers (and hence sacrificing scalability) in
order to keep the size of those states within its storage capacity,
or drop those states according to some replacement policy and
reestablish them in the future if needed. NDN-ACE, on the
contrary, does not incur any of these overhead.

B. Architecture Complexity

The architectural complexity has significant impact on the
feasibility of the IoT solutions. Figure 7 compares the overall
protocol stacks that an IoT device needs to implement in
order to support NDN-ACE and the IP-based solutions (DCAF
and OAuth IoT profile). The NDN-based IoT stack is much
simpler because NDN inherently offers the communication
semantics that is intrinsic to the IoT environments. Therefore
it is possible to build IoT frameworks and applications directly
on top of the NDN layer. In contrast, the IP-based IoT protocol
stack has to integrate multiple dependent protocols on top

Link Layer

NDN

NDN-ACE

IoT Application

Link Layer

NDN IoT Stack

IPv6

UDP+DTLS ICMPv6

IPv6 Neighbor
DiscoveryDNSCoAP

DCAF/OAuth

IP IoT Stack

IoT Application

Fig. 7: Comparison of NDN-based and IP-based IoT stack

of IP, such as UDP, DTLS, IPv6 Neighbor Discovery, DNS
and CoAP, before it is possible to express the application
layer logics such as authentication, authorization and resource
access. This extra stack complexity not only leads to inflated
program size for each IoT node, but also introduces multiple
dependencies on the network infrastructure, such as the DNS
service. Both issues will create a significant burden on the
implementation and deployment of the IoT applications.

VIII. PROTOTYPE

We have implemented NDN-ACE in Python and deployed
the prototype on the Raspberry Pi 2 platform as a proof
of concept. The reason we choose Raspberry Pi instead of
more constrained devices is to benefit from fast prototyping,
easy testing and hardware extensibility. The device we are
using is equipped with a quad-core ARM Cortex-A7 CPU
and 1GB RAM. The CPU normally operates at 600MHz but
can be boosted to over 900MHz under high workload (thanks
to the automatic overclocking feature of Raspberry Pi). Each
Raspberry Pi has a WiFi adaptor connected through a USB
port, which is used to interconnect with other devices on the
network. All the peripheral sensors are connected through the
GPIO pins and can be accessed directly by the applications
on the Raspberry Pi.

As a demonstration of the functionality of NDN-ACE, we
implement a simple lighting control system that allows remote
devices to the LED lights attached to the Raspberry Pi. The test
environment comprises of 3 Raspberry Pi devices functioning
as the client, the actuator and the AS, respectively. To simplify
the network configuration, we connect all devices to the same
WiFi AP and use multicast to forward Interest packets among
those devices. We use the PyNDN2 [23] library to implement
the NDN-related operations. In our demo application, each
command Interest received by the actuator is passed to a
callback function that processes the command in 6 steps:

• Interest packet parsing: parsing the received command
Interest and reading various fields.

• Authentication and authorization: verifying the com-
mand signature using the access key.

9

TABLE II: Per-command CPU time break down for command
processing

Step CPU Time (ms) Percentage (%)
Interest parsing 11.876 58.79
Authentication 0.766 3.79

GPIO 0.139 0.69
ACK generation 6.352 31.44

ACK signing 0.355 1.76
ACK sending 0.714 3.53

Total 20.202 100

• GPIO access: executing the requested commands through
the GPIO interface.

• ACK packet generation: creating the ACK packet and
filling out various fields.

• ACK signing: signing the ACK packet using the access
key.

• ACK sending: pushing the ACK packet to the sending
queue.

Although our prototype is not optimized for performance,
we are still interested in how much CPU time is spent at each
step of the command processing pipeline. To evaluate that,
we program the client to send out 1000 command Interests
to the actuator and use a Python profiler to measure the fine-
grained CPU time usage on each statement of the command
processing function. The client sends its commands at a low
sending rate so that the actuator’s CPU is not overwhelmed
and keeps operating at 600MHz throughout the experiment.

Table II summarizes the measurement result. The total CPU
time of per-command processing at the actuator is 20.2 ms.
Surprisingly, about 90% of the CPU time is spent on Interest
parsing and ACK packet creation. The NDN-ACE command
verification and ACK signing only take about 5% of the total
CPU time, which shows the efficiency of the HMAC-based
authentication procedure. Using a different library or program-
ming language (C or C++) may improve the performance
of NDN-related operations (and the overall performance of
command processing). We leave that as future work.

IX. RELATED WORKS

The idea of using cryptography for authentication and
authorization in computer networks dates back to the 1970s,
about the same time when the public key crypto algorithms
were first published. Needham et al. [24] proposed a basic
framework that uses symmetric or asymmetric encryption
algorithms for authentication in distributed networks. The
symmetric encryption variant relies on an authorization server
(AS) that maintains shared secrets with both communicating
peers A and B. When A initiates the authentication, AS creates
a session key K for A and B, encrypts K with both A’s and
B’s secrets, and passes the encrypted key back to A. A further
passes the encrypted key to B (without knowing B’s secret)
and authenticate B’s identity by checking whether B is able
to decrypt K. After that the two parties can use K to start
secured communication.

Inspired by the Needham authentication protocol, Ker-
beros [25] is one of the oldest standardized authentication
protocols for computer networks. The current version (V5)

of Kerberos is defined in [26]. Kerberos implements the
same mechanism as the Needham protocol but extends the
framework to allow single sign-on and cross-domain authen-
tication. However, both protocols only support authentication:
the authorization semantics are left to the upper layers to
define.

OAuth is a widely-used authorization protocol that enables
third-party access to protected resources in Web applications.
It is defined on top of the HTTP semantics: the authorization
information is carried in the HTTP packets in the form of
tokens (similar to the HTTP Cookies). In OAuth 1.0 [27], each
token is coupled with a shared secret and the authenticated
HTTP requests contain an HMAC signature that proves the
ownership of the token to the resource server. In OAuth
2.0 [28], the requirement for using signatures in the requests
is removed from the base framework, which makes OAuth
2.0 completely dependent on the security protection of the
underlying channel (e.g., HTTPS [29]). Later the IETF OAuth
Working Group started to work on a new architecture that re-
places the bearer tokens in OAuth 2.0 with proof-of-possession
(PoP) tokens using a Kerberos-style key distribution mecha-
nism that do not rely on secured channels [22].

ACE [30] is a newly established working group at IETF
that focuses on developing authentication and authorization
solutions for constrained environments, assuming CoAP (with
DTLS protection) as the resource access protocol. Based on
the experience from existing standards such as Kerberos and
OAuth, the working group has established a general architec-
ture where the client (C) and the resource server (RS), both
running on constrained nodes, rely on authorization servers
(CAS and AS, respectively) for communicating authentication
and authorization information on their behalf [31]. NDN-ACE
can be viewed as an instantiation of this general framework
that combines the CAS and the AS into a single role. The
ACE-WG is currently working on two different proposals,
DCAF [21] and OAuth 2.0 profiling for IoT [3], which we
have already described in Section VII

OSCAR [32] is an object security architecture for content
distribution over constrained IoT devices. Its design philoso-
phy is greatly influenced by CCN/NDN: instead of securing
the communication channel, OSCAR secures the data object
directly by encrypting and signing the protected resource and
hence provides end-to-end security. Like many other related
works, OSCAR leverages a three-party authorization architec-
ture where the constrained devices trust the more powerful
authorization servers for access token management. However,
OSCAR is CoAP-based and still relies on DTLS channels for
key distribution. Unlike NDN-ACE, OSCAR does not consider
the access control under the semantics of device actuation
operations.

Macaroons [19] is a decentralized authorization protocol for
cloud environments. Although the design goals and the tar-
geted applications are different, Macaroons and NDN-ACE use
the same security structure: HMAC chaining. In Macaroons,
the access control policies are expressed using a construct
of layered caveats. Each layer is HMAC-signed using the
signature of the previous layer as the signing key, and the
final signature is attached to the macaroon. The first layer is

10

signed by the root key created by the original issuer. This
layered structure with HMAC chaining allows the recipient to
further delegate the privilege to other parties by adding more
caveats to the macaroon and extending the HMAC chain which
is highly useful for cloud applications. The key difference
between Macaroons and NDN-ACE is that NDN-ACE solely
leverages the NDN naming hierarchy to express the access
control policies and the delegation of authorization privilege,
instead of inventing an additional data structure for that
purpose. NDN-ACE also simplifies the authorization process
by allowing only one level of delegation (from AS to command
sender), which is sufficient for our targeted applications.

X. CONCLUSION

In this paper we describe NDN-ACE, an authentication
and authorization framework for device actuation in NDN-
based constrained environments. NDN-ACE expresses fine-
grained access control policies using hierarchical names and
cryptographically binds the access key to the policy. It offloads
the distribution of access keys to a trusted Authorization Server
in the network while still allows the command receiver to
verify the command signature without maintaining per-sender
access key information or contacting the AS for validation.
NDN-ACE achieves command communication with minimum
delay using a much simpler protocol architecture compared
to the IP-based alternatives. The microbenchmark based on a
prototype implementation indicates that the cost of authenti-
cation operations in NDN-ACE is negligible compared to that
of packet manipulation.

NDN-ACE currently only supports point-to-point command
communications. In the future, we plan to extend the NDN-
ACE framework to also support multipoint control applications
(e.g., a single command to turn on a group of lights). Multi-
point command communication requires an efficient command
delivery mechanism adapted to the constrained environments
and a scalable key management protocol that can distribute
the seed to multiple receivers in the same service group. We
will also improve the prototype implementation of NDN-ACE
and make it available to more IoT applications.

REFERENCES

[1] OWASP, “OWASP Internet of Things Top 10 Project,”
https://www.owasp.org/index.php/OWASP Internet of Things Project,
accessed: Oct 2, 2015.

[2] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” Internet Requests for Comments, RFC Editor, RFC
7252, June 2014. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc7252.txt

[3] L. Seitz, G. Selander, E. Wahlstroem, S. Erdtman, and H. Tschofenig,
“Authorization for the Internet of Things using OAuth 2.0,” Internet
Draft, IETF Secretariat, Tech. Rep. draft-seitz-ace-oauth-authz-00,
October 2015. [Online]. Available: http://www.ietf.org/internet-drafts/
draft-seitz-ace-oauth-authz-00.txt

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” in Proceedings of the
5th International Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’09. New York, NY, USA: ACM, 2009, pp.
1–12. [Online]. Available: http://doi.acm.org/10.1145/1658939.1658941

[5] NDN Team, “Named Data Networking (NDN) Project,” Named Data
Networking Project, Technical Report NDN-0001, October 2010.

[6] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
ACM SIGCOMM Computer Communication Review (CCR), vol. 44,
no. 3, pp. 66–73, Jul 2014.

[7] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing
for Message Authentication,” Internet Requests for Comments,
RFC Editor, RFC 2104, February 1997. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc2104.txt

[8] C. Bormann, M. Ersue, and A. Keranen, “Terminology for Constrained-
Node Networks,” RFC 7228 (Informational), Internet Engineering Task
Force, May 2014. [Online]. Available: http://www.ietf.org/rfc/rfc7228.txt

[9] J. Vasseur, “Terms Used in Routing for Low-Power and Lossy
Networks,” RFC 7102 (Informational), Internet Engineering Task Force,
Jan. 2014. [Online]. Available: http://www.ietf.org/rfc/rfc7102.txt

[10] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” Internet Requests for Comments, RFC Editor,
RFC 5246, August 2008. [Online]. Available: http://www.rfc-editor.org/
rfc/rfc5246.txt

[11] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security
Version 1.2,” Internet Requests for Comments, RFC Editor, RFC
6347, January 2012. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc6347.txt

[12] Y. Yu, A. Afanasyev, D. Clark, k. claffy, V. Jacobson, and L. Zhang,
“Schematizing Trust in Named Data Networking,” in Proceedings of
the 2Nd International Conference on Information-Centric Networking,
ser. ICN ’15. New York, NY, USA: ACM, 2015, pp. 177–186.
[Online]. Available: http://doi.acm.org/10.1145/2810156.2810170

[13] J. Burke, P. Gasti, N. Nathan, and G. Tsudik, “Securing instrumented
environments over content-centric networking: the case of lighting con-
trol and NDN,” in Computer Communications Workshops (INFOCOM
WKSHPS), 2013 IEEE Conference on, April 2013, pp. 394–398.

[14] NDN Team, “NDN Packet Format Specification: Signed Interest,” http:
//named-data.net/doc/ndn-cxx/current/tutorials/signed-interest.html, ac-
cessed: Oct 2, 2015.

[15] ——, “NDN Packet Format Specification: Name,” http://named-data.net/
doc/ndn-tlv/name.html, accessed: Oct 2, 2015.

[16] W. Shang, Q. Ding, A. Marianantoni, J. Burke, and L. Zhang, “Securing
building management systems using Named Data Networking,” Network,
IEEE, vol. 28, no. 3, pp. 50–56, 2014.

[17] Y. Yu, A. Afanasyev, and L. Zhang, “Name-Based Access Control,”
Named Data Networking Project, Technical Report NDN-0034, October
2015.

[18] W. Diffie and M. Hellman, “New Directions in Cryptography,” Infor-
mation Theory, IEEE Transactions on, vol. 22, no. 6, pp. 644–654, Nov
1976.

[19] A. Birgisson, J. G. Politz, Ú. Erlingsson, A. Taly, M. Vrable, and
M. Lentczner, “Macaroons: Cookies with Contextual Caveats for De-
centralized Authorization in the Cloud,” in Network and Distributed
System Security Symposium, 2014.

[20] G. Selander, J. Mattsson, F. Palombini, and L. Seitz, “Object Security of
CoAP (OSCOAP),” Internet Draft, IETF Secretariat, Tech. Rep. draft-
selander-ace-object-security-03, October 2015. [Online]. Available: http:
//www.ietf.org/internet-drafts/draft-selander-ace-object-security-03.txt

[21] S. Gerdes, O. Bergmann, and C. Bormann, “Delegated CoAP
Authentication and Authorization Framework (DCAF),” Internet
Draft, IETF Secretariat, Tech. Rep. draft-gerdes-ace-dcaf-authorize-04,
October 2015. [Online]. Available: http://www.ietf.org/internet-drafts/
draft-gerdes-ace-dcaf-authorize-04.txt

[22] P. Hunt, J. Richer, W. Mills, P. Mishra, and H. Tschofenig,
“OAuth 2.0 Proof-of-Possession (PoP) Security Architecture,” Internet
Draft, IETF Secretariat, Tech. Rep. draft-ietf-oauth-pop-architecture-05,
October 2015. [Online]. Available: http://www.ietf.org/internet-drafts/
draft-ietf-oauth-pop-architecture-05.txt

[23] NDN Team, “NDN client library with TLV wire format support in native
Python,” https://github.com/named-data/PyNDN2.

[24] R. M. Needham and M. D. Schroeder, “Using Encryption for
Authentication in Large Networks of Computers,” Commun. ACM,
vol. 21, no. 12, pp. 993–999, Dec. 1978. [Online]. Available:
http://doi.acm.org/10.1145/359657.359659

[25] B. Neuman and T. Ts’o, “Kerberos: an authentication service for
computer networks,” Communications Magazine, IEEE, vol. 32, no. 9,
pp. 33–38, Sept 1994.

[26] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The Kerberos
Network Authentication Service (V5),” Internet Requests for Comments,
RFC Editor, RFC 4120, July 2005. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc4120.txt

11

[27] E. Hammer-Lahav, “The OAuth 1.0 Protocol,” Internet Requests for
Comments, RFC Editor, RFC 5849, April 2010. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc5849.txt

[28] D. Hardt, “The OAuth 2.0 Authorization Framework,” Internet
Requests for Comments, RFC Editor, RFC 6749, October 2012.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc6749.txt

[29] E. Rescorla, “HTTP Over TLS,” Internet Requests for Comments,
RFC Editor, RFC 2818, May 2000. [Online]. Available: http:
//www.rfc-editor.org/rfc/rfc2818.txt

[30] IETF, “IETF ace Working Group Charter,” https://datatracker.ietf.org/
wg/ace/charter/. [Online]. Available: https://datatracker.ietf.org/wg/ace/
charter/

[31] S. Gerdes, L. Seitz, G. Selander, and C. Bormann, “An architecture
for authorization in constrained environments,” Internet Draft, IETF
Secretariat, Tech. Rep. draft-ietf-ace-actors-02, October 2015. [Online].
Available: http://www.ietf.org/internet-drafts/draft-ietf-ace-actors-02.txt

[32] M. Vucinic, B. Tourancheau, F. Rousseau, A. Duda, L. Damon, and
R. Guizzetti, “OSCAR: Object Security Architecture for the Internet
of Things,” CoRR, vol. abs/1404.7799, 2014. [Online]. Available:
http://arxiv.org/abs/1404.7799

