NDN protocol development: status of reference implementations, supporting software releases, open architecture research issues

Alex Afanasyev
University of California, Los Angeles, NDN team

ICN RG Interim Meeting
San Francisco, CA, October 2, 2015
Progress in the past year

• Expand and improve supporting libraries

• One major release and five minor releases
 – next full major release this month

• Expanded list of supported platforms, new features and bug fixes
Reference Implementation Status

- Free software approach
- NFD: NDN Forwarding Daemon
 - New flexible packet format based on TLV
 - Modular and extensible design
 - Support for multiple forwarding strategies
- Libraries: full featured implementations in a variety of languages
 - C++ (full + lightweight), Java (se+android), JS (in-browser+nodejs), Python
- Apps: https://github.com/named-data

<table>
<thead>
<tr>
<th>Libraries (LPLG3)</th>
<th>Apps (*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFD (GPL3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>NdnCon</td>
<td>Chronochat-js</td>
</tr>
<tr>
<td>ndnrtc</td>
<td>ChronoShare</td>
</tr>
<tr>
<td>NLSR</td>
<td>ndn-traffic-generator</td>
</tr>
<tr>
<td>repo-ng</td>
<td>Federated Wiki</td>
</tr>
<tr>
<td>ndn-tools</td>
<td>ndn-bms</td>
</tr>
<tr>
<td>ChronoChat</td>
<td>ndn-lighting</td>
</tr>
</tbody>
</table>
Community Involvement

• Mailing lists
 – nfd-dev: 100+ (http://www.lists.cs.ucla.edu/mailman/listinfo/nfd-dev)
 – ndnSIM: 300+ (http://www.lists.cs.ucla.edu/mailman/listinfo/ndnsim)

• Code contributors across NDN projects
 – 70+ (many outside of NDN team)

• NDN on Github
 – https://github.com/named-data
 – 20+ forks of NFD, ndn-cxx
 – 48+ forks of ndnSIM

• 1st NDN Hackathon
 – http://ndncomm.github.io/
 – 25 participants, 7 projects (out of 19 project proposals)

• NDNComm2015
 – 100+ people from 63 institutions and 13 countries
NDN Consortium

Founding Universities (8)
- Colorado State University
- University of Arizona
- University of California, Los Angeles (UCLA)
- University of California, San Diego
- University of Illinois, Urbana-Champaign
- University of Memphis
- University of Michigan
- Washington University in St. Louis

Industry (10)
- Alcatel-Lucent
- Brocade
- Cisco Systems
- Fujitsu Laboratories of America
- Huawei Technologies
- Intel Corporation
- Juniper Networks
- Panasonic Corporation
- Verisign, Inc.
- ViaSat

Academic / Non-profit (9)
- Anyang University, Korea
- Northeastern University
- The MITRE Corporation
- Tongji University, China
- Tsinghua University, China
- University of Basel, Switzerland
- University of Maryland, College Park
- Université Pierre et Marie Curie Sorbonne Universités, France
- Waseda University, Japan

http://named-data.net/consortium-members/
Technical Memos on NDN Architectural Design

- (rev2) Consumer-Producer API for Named Data Networking. ICN’15/NDN-0017
- (rev3) Schematizing and Automating Trust in Named Data Networking. ICN’15 / NDN-0030
- (rev1) Scalable Name-Based Packet Forwarding: From Millions to Billions. ICN’15
- (rev15) NDNLPv2 spec (http://redmine.named-data.net/projects/nfd/wiki/NDNLPv2)
- (rev1) ICN Packet Format Design Requirements. draft-icn-packet-format-requirements-01.
- (rev4) SNAMP: Secure Namespace Mapping to Scale NDN Forwarding, GI’2015 / NDN-0004
- (rev1) Public Key Management in Named Data Networking. NDN-0029
- (rev4) NFD Developer’s Guide. NDN-0021
- (rev1) Fetching content in Named Data Networking with embedded manifests. NDN-0025
- (rev1) NDN Technical Memo: Naming Conventions. NDN-0022
- (rev1) Kite: A Mobility Support Scheme for NDN. NDN-0020
- (rev1) A World on NDN: Affordances & Implications of the Named Data Networking Future Internet Architecture. NDN-0018
- Packet Forwarding Speed vs. Processing: Implementation Tradeoffs in Handling Selectors
- NDN Name Discovery
- LINK - description
- Why Variable Length Wire Encoding is Important
- Implicit Digest vs. Content Hash
FYI: Recent Papers from NDN Team

- **ICN’15**
 - Scalable Name-Based Packet Forwarding: From Millions to Billions
 - Consumer / Producer communication with application level framing in Named Data Networking
 - NDN-RTC: Real-time videoconferencing over Named Data Networking
 - Schematizing and Automating Trust in Named Data Networking
- **Other**
 - SNAMP: Secure Namespace Mapping to Scale NDN Forwarding (GI’2015)
 - The Story of ChronoShare, or How NDN Brought Distributed Secure File Sharing Back (MASS CCN’15)
 - Named Data Networking in Climate Research and HEP Applications (CHEP2015)
 - Synchronizing Namespaces with Invertible Bloom Filters (ACNS’15)
 - Navigo: Interest Forwarding by Geolocations in Vehicular Named Data Networking (WoWMoM’15)

- http://named-data.net/publications/
Active Development

• Weekly code commits at Github
 – NFD
 – ndn-cxx
 – jndn
 – PyNDN2
Multi-Platform Support

• NFD now runs on Android
 – A few pilot applications
 • Simple game https://github.com/dchimeraan/ndn-hangman
 • NDN Whiteboard https://github.com/sumitgouthaman/NDNWhiteboard
 • Photo sharing app https://github.com/ohnonoho/photoSharing

• Raspberry Pi, Arduino, Odroid
 – Used to prototype smart home devices, IoT

• DD-WRT and OpenWrt
 – Home routers

• Other embedded systems
Evaluation Platforms

• Every release of NFD is tested and deployed on the global NDN testbed.
• For evaluation, users now have a set of choices with different tradeoffs between scale and fidelity
 • NDN Testbed
 • 26 sites in US, China, France, Switzerland, Spain, Norway, Italy, Korea, Japan
 • http://named-data.net/ndn-testbed/
 • Open Network Lab, Emulab, ...
 • https://onl.wustl.edu/
 • Mini-NDN
 • https://github.com/named-data/mini-ndn
 • ndnSIM 2.1
 • http://ndnsim.net/2.1/
Architectural Features Available for Experimentation

• Edge support
 – minimize manual configurations

• NDNLPv2
 – hop-by-hop packet delivery assistance

• Network NACK
 – router-level “no”

• LINK object
 – name referrals (“delegations”)

ICNRG Interim Meeting
Edge Support

• Autoconfig and local hub discovery
 – Combination of various techniques to automatically discover and connect hosts to NDN testbed.

• Automatic Prefix Propagation
 – Producer connects to gateway and securely register its content prefixes with the gateway.
 – Needed for the last hop delivery of interests to the producer
NDNLPv2: Link Protocol for NDN

- Within one hop, under the NDN Interest/Data layer.
- A set of link services over underlying transport
 - Fragmentation/reassembly
 - Loss detection/recovery
 - done extensive simulations already
 - Link failure detection
 - Network NACK
- Services are optional depending on the type of transport
 - E.g., TCP, UDP, Ethernet
Network NACK

• When a node cannot fetch the data, generate a NACK to signal the downstream to explore other options.
 – Loop, link failure, no route, congestion, ...

• Return the unsatisfied Interest together with an error code as the NACK

• Downstream node explores other forwarding options.

• http://redmine.named-data.net/projects/nfd/wiki/NDNLPv2
• http://redmine.named-data.net/issues/2520
LINK Object

- LINK is a new type of content object, which links one name to another.

- Used to support mobility, and routing scalability.
- Available in NFD/libraries
 - http://redmine.named-data.net/issues/2587

Strategy

• Version 4 of the Best Route Strategy
 – Support Interest retransmission with exponential back-off of the suppression interval
 – http://redmine.named-data.net/issues/3156 v4
 – http://redmine.named-data.net/issues/1913 v3
 – http://redmine.named-data.net/issues/1871 v2

• The Access Strategy for end hosts
 – Multicast to learn which host provides the content and remember what has been learned
 – http://redmine.named-data.net/attachments/download/201/access-router-strategy_20141220.pptx

• The Adaptive SRTT-based Forwarding strategy for hyperbolic routing

• Support LINK object for mobility and routing scalability
Security

- Tutorial
- Schematized trust (see ICN’15 paper)
 - application to NFD, NLSR, and other apps
- PIB service to manage public keys and publish certs
 - http://redmine.named-data.net/projects/ndn-cxx/wiki/PublicKey_Info_Base
- Improved signing APIs for better usability
- Signed Interest
 - http://named-data.net/doc/ndn-cxx/current/tutorials/signed-interest.html
- New NDN certificate format
- Experiments with automated testbed certificate issuance
Future Plan

• Forwarding Strategy
 – new strategies to support IoT, sensors, mobile and DTN environments
 – composable strategy towards the vision of a limited VM
• NDN over constrained communication channels
• Scoped communication
 – within enterprise, homes, etc.
• Hop-by-hop interest limit mechanism for congestion control
• Moving towards the plug-in-play model
 – auto-configuration, self-discovery, self-configuration
• Optimizations and refinements
 – Packet format, packet processing, data structures and algorithms, crypto
• Facilitate usable content-based security
 – authenticity, confidentiality, privacy