
NDN, Technical Report NDN-0030, 2015. http://named-data.net/techreports.html

Revision 2: June 2, 2015
Revision 1: April 20, 2015 (http://named-data.net/wp-content/uploads/2015/04/ndn-0030-1-athena-configurable-validation-framework.pdf)

Schematizing and Automating Trust in Named Data
Networking

Yingdi Yu
UCLA

yingdi@cs.ucla.edu

Alexander Afanasyev
UCLA

afanasev@cs.ucla.edu

David Clark
MIT

ddc@csail.mit.edu
kc claffy

CAIDA
kc@caida.org

Van Jacobson
UCLA

vanj@cs.ucla.edu

Lixia Zhang
UCLA

lixia@cs.ucla.edu

ABSTRACT
Securing communication in networking applications involves
many complex tasks that can be daunting even for secu-
rity experts. The Named Data Networking (NDN) architec-
ture builds data authentication into the narrow waist layer
by requiring all applications to sign and authenticate every
network-level data packet. To make this authentication us-
able, the decision about which keys can sign which data and
the procedure of signature verification need to be automated.
This paper explores the ability of NDN to enable such au-
tomation through the use of trust schemas. For data con-
sumers, trust schemas provide an automatic way to discover
which keys to use to authenticate data packets. For data pro-
ducers, schemas automate the decision about which keys to
use to sign data packets and, if keys are missing, how to
create keys while ensuring that they are used only within
a narrowly defined scope (“least privilege principle”). We
have successfully applied the designed trust schema in sev-
eral prototype NDN applications with trust models of differ-
ent complexity, showing the potential of this approach to be
generally applicable to a wide range of NDN applications.

General Terms
Security

Keywords
Security, Named Data Networking

1. INTRODUCTION
Designing secure systems and network applications

usually involves properly authenticating multiple enti-
ties in the system and granting these entities with the
minimum set of privileges necessary to perform oper-
ations. In contrast to traditional IP networks where
applications usually rely on an additional layer (e.g.,
Transport Layer Security [9]) to authenticate connec-
tions, Named Data Networking (NDN) [18,20] is a pro-
posed data-centric Internet architecture that requires
every application to name and sign the produced network-

level data packets and authenticate received packets. To
utilize the data-centric security of NDN without requir-
ing application developers or users to be security ex-
perts, system-level support is needed to automate the
process of packet signing and authentication.

The power of the NDN architecture comes from nam-
ing data hierarchically at the granularity of network-
level packets and sealing named data with public key
signatures. Producers use key names to indicate which
public key a consumer should retrieve to verify signa-
tures of created data packets. Before performing sig-
nature verification, consumers can match data and key
name to deduce whether the key is authorized to sign
the data packet.

To facilitate this matching process, we introduce the
concepts of trust rules and trust schemas. A set of trust
rules defines a trust schema that instantiates an overall
trust model of an application, i.e., what is (are) legit-
imate key(s) for each data packet that the application
produces or consumes. The fundamental idea is that
each trust rule defines a relationship between the name
of data and its signing key, e.g., both must share the
same prefix, share the same suffix, and/or have spe-
cific name components at certain position of the names.
Given a trust schema that correctly reflects the trust
model of the application, consumers can properly au-
thenticate each retrieved data packet, and data produc-
ers can select (and if necessary generate) the right keys
to sign the produced data automatically.

In this paper we describe how NDN naming and the
use of trust schemas enables automation of data signing
and authentication in NDN applications with complex
trust models. We have implemented a prototype of a
trust schema in NDN application development libraries
(ndn-cxx and NDN-CCL) and have used it to power the
trust management of several NDN applications, includ-
ing our NDN Forwarding Daemon (NFD), NDN Link
State Routing Protocol (NLSR), NDN Domain Name
System (NDNS), NDN Repository System (repo-ng),
and ChronoChat applications [15].

1

http://named-data.net/techreports.html
http://named-data.net/wp-content/uploads/2015/04/ndn-0030-1-athena-configurable-validation-framework.pdf

We organize this paper as follows. Section 2 intro-
duces data authentication in NDN and its threat model.
We then explain the value of a trust schema (Section 3),
our trust schema design (Section 4), its use in automat-
ing trust management (Section 5), and other considera-
tions in their use (Section 6). Finally we review related
work and summarize our contribution.

2. DATA AUTHENTICATION IN NDN
NDN fosters a data-centric security model at the net-

work layer [18]: each data packet is uniquely named and
this name is bound to the content using a signature. Be-
side the name, content, signature, and a few other fields,
a data packet also contains a KeyLocator field [16] to
indicate the name of public key to verify the signature,
which is simply another piece of named NDN content
(Figure 1). Like any other data packet, such packets
are also signed, making them equivalent to certificates
in NDN [19]. Because NDN names the content carried
in a packet, for simplicity, we will use the term “key” to
refer to an NDN data packet that carries a public key.

Name
Content
Signature
KeyLocator

Data packet

Name
Content
Signature
KeyLocator

Data packet (key)

…

Figure 1: Authentication elements in NDN data packet

In the rest of the paper we assume that given a name,
the network can directly retrieve the corresponding data
packet. Other considerations, including fetching data
packets whose names are not globally routed [1], may
require additional steps in data retrieval but will not
affect the security model described in this paper.

2.1 Example of Data Authentication
We use a simplified blog website framework as an

example throughout the paper to illustrate a possible
trust model and our proposed approach to schematize
it. The framework includes four groups of entities (Fig-
ure 2): the website, website administrators, blog au-
thors, and articles. The website may have a few admin-
istrators, who can authorize authors to publish articles
on the website. Trust relations between these entities
in NDN terms can be captured by signed data packets
and chains of keys. When an administrator installs the
website software, the installer generates a key1 to act as
the root of trust for the website. The installer process
also creates a key for the initial administrator and signs
it with the website’s key. The initial administrator can

1This key may be self-signed or later secured using some
trust model, e.g., PKI or Web-of-Trust.

AuthorsAdminsBlog Website Articles

configured by authorize to publish

enable other

Figure 2: Entities of a simple blog website framework

further delegate management privileges to other admin-
istrators by signing their keys, and can add authors into
the system by signing the authors’ keys. By signing ar-
ticles using a valid author key, an author can effectively
publish its articles on the website.

When a reader retrieves an article, he or she can
recursively follow the KeyLocator field in each data
packet to retrieve the key of the author who wrote the
article, the key of the administrator who authorized the
author, and the key of the blog website where the arti-
cle is published. If the reader accepts the website trust
model and trusts the public key of the website (or uses
PKI or Web-of-Trust mechanisms to verify authenticity
of the key), the reader can reliably authenticate legiti-
mate articles through a sequence of data packet signa-
ture verifications.

2.2 Threat Model
Threats to data authentication integrity in NDN in-

clude failed authentication, mis-authentication, and key
compromise. Failed authentication of a legitimate key
(false negative) can result in a consumer treating valid
data as malicious, potentially leading to denial of ser-
vice. Mis-authentication of a mis-configured or mali-
cious key (false positive) can cause consumers to ac-
cept incorrect or malicious data. These errors can oc-
cur when the trust schema (data-key relations) is incor-
rectly or unclearly defined, or when the authentication
mechanism does not fully adhere to the defined schema.
A set of commonly used trust schemas written by secu-
rity experts can not only mitigate these threats, but
also facilitate automation of both signing and authen-
tication mechanisms.

When a legitimate key is compromised, an attacker
can obtain privileges associated with this key. To mit-
igate this threat we enforce the “least privilege” princi-
ple: each key must have a restricted non-elevating usage
scope to limit the damage upon key compromise, and
keys with broader privileges should be used only infre-
quently.

3. WHY WE NEED A TRUST SCHEMA
In general, the relationship between data and key

names can be complex. Depending on an application’s
naming convention and trust model, data authentica-
tion may involve a chain of keys (authentication path)

2

across several different namespaces. We use our blog
website example introduced in Section 2 to illustrate
the necessity of authentication across different names-
paces, and highlight the need for the trust schema to
concisely express complex trust model relations.

The blog website framework defines entities in the
system and also their trust relationships. However, be-
cause everything is explicitly named in NDN, the frame-
work also needs to define a naming representation of the
entities. Figure 3 shows a possible representation: arti-
cles are represented as data packets under the “/a/blog
/article” namespace, with category, publication year,
and unique article identifier; each author obtains a key
under the “/a/blog/author” namespace with an author
identifier,2 each administrator obtains a key under the
“/a/blog/admin” namespace with an administrator iden-
tifier; and the website itself has a configuration key
with the name “/a/blog” (e.g., created during the in-
stallation of the blog). An implementation of this blog
website framework must capture the trust relationship
between entities (described in Section 2.1) in terms of
the relationship between NDN namespaces. However,
this comprehensive naming convention leads to the fact
that an authentication path following the trust model
has to traverse three namespaces: “/a/blog/article”,
“/a/blog/author”, and “/a/blog/admin” as shown in Fig-
ure 3.

Articles

/a/blog/article

/a/blog/author

/a/blog/admin

/a/blog

signs

signs

signs

Admins

Authors

/a/blog/article/food/2015/1

/a/blog/admin/Lixia/KEY/37
/a/blog/KEY/1

/a/blog/author/Yingdi/KEY/22

/a/blog/admin/Alex/KEY/5

signs

Figure 3: Example of namespaces and authentication
paths in a blog website “/a/blog”

In theory, it is possible for application developers to
hard-code all relationships in the trust model, i.e., re-
lationships between articles and authors keys, between
authors and administrators keys, between administra-
tors keys and other administrators keys, and between
administrators keys and the configuration key of the
website. However, even with a simple trust relationships
as in our example, this process can be non-trivial and
error-prone. A small implementation error may com-
promise security of the whole website. For example,

2The last two components of each key name are “KEY” and
a key identifier. This naming convention allows authors to
change keys over time.

a website implementation that accidentally associates
authors with author keys rather than with administra-
tor keys may allow authors to authorize another author
without the permission from an administrator. Or, an
article-publishing application that mistakenly uses an
administrator key to sign an article violates the least
privilege principle, and may also prevent browsers that
comply with the trust model from authenticating arti-
cles.

In contrast, when trust relationships are captured by
a set of well-defined rules that match data and key
names (trust schema), a system-level tool interpreting
these rules can automatically implement authentication
and signing procedures. This ability to automate un-
burdens developers from individually handling sophis-
ticated data signing and authentication. A trust schema
also makes it feasible for security experts to define a set
of generalized trust models (e.g., one for all blog web-
sites, one for mail services, etc.) that other applications
can reuse. Each reuse can continue to refine and debug
the schema, improving it for future applications.

4. TRUST SCHEMA
In this section, we present the trust schema as a tool

to define trust models in a generalized way. A trust
schema comprises a set of linked trust rules and one or
more trust anchors. As we will show later in this section,
the trust schema mechanism can be used to automate
both authentication and signing processes. To define
trust schema rules, we will use a notation similar to
regular expressions to express name patterns. Table 1
gives a brief summary of the syntax elements we use in
name patterns that are formally defined in [17].

Table 1: Elements of name patterns used in trust
schema definitions

<name> Match name component name

<> Match any single name component, i.e., wildcard
<name><> Match name component name followed by any sin-

gle name component
<>* Match any sequence of name components
(...) Match pattern inside the brakets and assign it as

an indexed sub-pattern
\n Reference to the n-th indexed sub-pattern
[func] Match (for authentication) or specialize (for sign-

ing) name component according to function func
defined pattern, i.e., wildcard specializer

rule(arg1,
...)

Derive a more specific name pattern from rule’s
data name pattern with arguments arg1, ...

4.1 Trust Rule
A trust rule is an association of the data name with

its corresponding signing key name. There are multiple
ways to represent such association. For example, Fig-
ure 4(a) shows a simple direct association between an
article name and its corresponding author name. This

3

/a/blog/article/food/2015/1 /a/blog/author/Yingdi/KEY/22
(a) Explicit relationship between specific data and key name

(article is valid if signed by an authenticated key with the specified name)

/a/blog/article/food/2015/1

<a><blog><article><><><>

/a/blog/author/Yingdi/KEY/22
/a/blog/author/David/KEY/31

<a><blog><author>[user]<KEY>[id]
(b) Generalized relation between data and key names

(any article is valid if it is signed by any authenticated author)

/a/blog/article/drinks/2014/2

(c) Coupling generalized relations of data and key names
(any article is valid if it is signed by any authenticated author of this blog)

(<>*)<blog><article><><><> \1<blog><author>[user]<KEY>[id]

<la><times><blog><article><><><> <la><times><blog><author>[user]<KEY>[id]
<a><blog><article><><><> <a><blog><author>[user]<KEY>[id]

Figure 4: Trust rule generalization

rule precisely captures that the article“.../food/2015/1”
must be signed by author key “.../Yingdi/KEY/22”, but
says nothing about other articles or authors, even those
that share the same naming patterns. If we can gener-
alize the name relationships in trust rules, and reliably
link rules to one another, we can construct concise, so-
phisticated, robust, and re-usable trust models.

4.1.1 Generalizing Trust Rules
A well-defined trust model usually associates the same

type of data with the same types of keys, e.g., articles
should always be signed by the authors. We can use the
naming convention of a given application (or a set of
applications that share the same naming convention) to
create a set of rules to define the relationships between
name patterns for data and keys in that application.
This set of trust rules then captures the complete trust
model for the application.

In the blog example, all articles share the same prefix
“/a/blog/article”, but each article has its own cate-
gory, year, and article identifier. One way to generalize
this relationship is to use name patterns as shown in
Figure 4(b). In Figure 4 and later examples, we use the
wildcard “<>” to match any name component (i.e., the
schema does not impose any restrictions on the content
of the name component), “[user]” to match alphanu-
merical user identifiers, and “[id]” to match numerical
key identifiers.

In general, trust models must explicitly associate a
data name with its signing key name through matching
of name components. In our example, both the article
name and the author name must share the same web-
site name (“/a”). To capture this constraint, we lever-
age sub-patterns and repetition syntax, as highlighted
in Figure 4(c). We believe this syntax is sufficiently gen-
eral to capture complex trust model frameworks and to
allow reuse by different applications.

4.1.2 Linking Trust Rules

Data Name Key NameRule

(<>*)<blog><article><> author(\1)article
(<>*)<blog><author>[user]<KEY>[id] \1<blog><admin>[user]<KEY>[id] author

(b)

(<>*)<blog><article><><><> \1<blog><author>[user]<KEY>[id] article
(<>*)<blog><author>[user]<KEY>[id] \1<blog><admin>[user]<KEY>[id] author(a)

Figure 5: Generalization of trust rule linkage: (a) im-
plicit linkage; (b) explicit linkage

A trust model should also properly associate keys
with their signing keys, to ensure that a data consumer
can reliably construct chains of keys to authenticate
data and that a data producer can correctly choose or
initialize its signing keys.

Figure 5(a) defines“article”and“author”trust rules.
The key name pattern in the “article” rule will always
match the data name pattern of the“author”rule, there-
fore both rules are implicitly linked. However, in order
to ensure integrity of the trust model, the schema should
deterministically establish an authentication path (or
paths) for each authenticated data packet. Therefore,
each rule has to be explicitly linked to other rule(s) in
the trust schema definition.

To explicitly link rules, we assign each rule a unique
identifier to be used in a function-like way as part of the
key name pattern, as shown on Figure 5(b). In other
words, invoking such rules is similar to invoking a func-
tion: invocation substitutes the key name pattern with
the data name pattern from the invoked rule, specializ-
ing it with the supplied patterns or references to the in-
dexed sub-patterns. In our example, the “article” rule
invokes the “author” rule passing to it the first indexed
sub-pattern. For the“/a/blog/article/food/2015/1”ar-
ticle, the sub-pattern will expand to“/a”and the invoca-
tion to the “author” rule will return “<a><blog><author>
[user]<KEY>[id]” name pattern. This linkage imposes
the restriction that only authorized authors of blog “/a
/blog” can sign and publish articles of the blog.

4.2 Trust Anchor
To be complete, a trust schema must also include

one or more trust anchors which serve as bootstrapping
points for the trust model. A trust anchor is a key that
is pre-authenticated using an out-of-bound mechanism,
e.g., comes with software packages. In the trust schema
we express trust anchors as special rules that include
a key name pattern and a pre-authenticated key (e.g.,
actual key bits or file path). Every successful authen-
tication path must end at a trust anchor. Therefore, a
trust schema must always include a way for trust rules
to establish the link(s) from data or key names down to
trust anchors. Figure 6 shows an example of the trust
rule “admin” linking to the trust anchor “root”.

The trust anchor performs two important functions.
First, it captures keys that conform to the defined name

4

Data NameRule Key Name

(<>*)<blog><KEY>[id] root /a/blog/KEY/1 (0x30 0x82 ...)

(<>*)<blog><admin>[user]<KEY>[id] admin root(\1)

Key NameAnchor Key

Figure 6: Example of linking trust rule and anchor

pattern, i.e., if a packet is signed with a key that matches
the name pattern in a trust anchor, this key must be au-
thenticated using this trust anchor. Second, the anchor
ensures that the key name matches exactly the trust
anchor’s public key and fails to authorize anything else.
For example, an administrator’s key of another website
“/another/blog/admin/Carl” will not be a valid admin-
istrator’s key for “/a/blog”: the expanded key pattern
“<another><blog><KEY>[id]” will not match the blog’s
trust anchor “/a/blog/KEY/1”. Note that the schema
also prohibits another website’s admin key to be signed
with the blog’s trust anchor: the “admin” rule will right-
fully reject such a key.

4.3 Crypto Requirements
In addition to providing a generalized formal defini-

tion of trust rules and trust anchors, a trust schema
must also include cryptographic requirements on data
signatures, such as hash and signing algorithm, mini-
mum key size. These requirements are not directly re-
lated to naming, but prevent consumers from accept-
ing data with easily compromised (weak) signatures.
Therefore, a trust schema should clearly state these pa-
rameters as an essential part of a trust model.

4.4 Trust Schema Examples
We now demonstrate how the trust schema we de-

scribed so far can express two different trust models.
The first trust model is for our blog website framework,
and the second is an example of a model that resembles
trust model of DNSSEC and strictly follows the naming
hierarchy to match data and key names.

4.4.1 Blog Website Framework
In the blog website example, the trust rules must cap-

ture the relationship between articles and authors, be-
tween authors and administrators, as well as between
administrators and blog website configuration (blog’s
trust anchor). An example of the trust schema that
can achieve these goals is shown in Figure 7. Note that
this schema assumes that the blog’s configuration key
“/a/blog/KEY/1” is pre-authenticated (i.e., a trust an-
chor). Depending on the specific usage scenario, a blog
reader may further authenticate the configuration key
using a hierarchical trust model similar to the example
in Section 4.4.2, or using some other trust model, e.g.,
Web-of-Trust.

The first rule in the example schema, “article”, cap-

Data NameRule Key Name

(<>*)<blog><admin>[user]<KEY>[id]admin admin(\1)
 | root(\1)

(<>*)<blog><author>[user]<KEY>[id]author admin(\1)
(<>*)<blog><article><><><>article author(\1)

 (<>*)<blog><KEY>[id] root /a/blog/KEY/1 (0x30 0x82 ...)
Key NameAnchor Key

Examples
/a/blog/article/food/2015/1
/a/blog/author/Yingdi/KEY/22
/a/blog/admin/Alex/KEY/5
/a/blog/admin/Lixia/KEY/37

Figure 7: Trust schema the blog website framework with
“/a/KEY/1” as the trust anchor

/a/blog/KEY/1

/a/KEY/42

/KEY/2

signed by

signed by
Blog website key

/a namespace owner’s key

Root key

Figure 8: Example of naming in hierarchical trust model

tures the trust constraint that authors must sign their
articles with their keys. Similarly, the “author” rule en-
sures that only blog administrators can sign authors’
keys. The final “admin” rule defines two possible re-
lations for administrators’ keys in the security frame-
work: (1) existing administrators may delegate admin-
istrator privileges to another person; and (2) authenti-
cation paths for the administrator keys must terminate
at the blog website trust anchor.

Note that although every trust rule in the trust schema
in Figure 7 uses the repeated wildcard “<>*” to match
the website prefix, the prefix is always determined (spe-
cialized) at the moment when the “article” rule cap-
tures the original article data name. After the “arti-
cle” rule captures “/a/blog/article/food/2015/1” data,
prefix “/a” is propagated to the “author” rule as a refer-
ence to the first sub-pattern, then to the “admin” rule,
and down to the “root” trust anchor.

4.4.2 Hierarchical Trust Model
In a linear hierarchical trust model, with DNSSEC [2]

as a prominent example, a single rule can capture the re-
lationship between all the data and key names; in plain
English, this rule is “the signing key name must be a
prefix of the data name.” Because key names should be
unique and need to include additional suffix components
as shown on Figure 8, the trust schema for the hierar-
chical relationship in NDN needs to consider these ad-
ditional components.3 The overall trust in this model
can be bootstrapped using one or more trust anchors
associated with the top level namespace(s).

Figure 9 shows an example of the trust schema that
defines the hierarchical trust relationships, consisting of
a single rule and a trust anchor. The rule“key”captures
that keys at each level of the hierarchy must be signed

3For simplicity, in this example we consider only authenti-
cation of public keys, but the trust model and schema can
be easily extended to other data, as shown with the blog
website example.

5

<KEY>[id]root /KEY/2 (0x66 0x3a ...)

Key NameAnchor Key

Data NameRule Key Name

(<>*)(<>)<KEY>[id] key key(\1, null) | root()
Examples

/a/bog/KEY/1

/a/KEY/42

Figure 9: Trust schema for the hierarchical trust model
with “/KEY/2” as the trust anchor

by the keys from the parent namespace, i.e., the prefix
before “KEY” of the signing key must be one component
shorter than the name of the key itself. The trust an-
chor ensures that the authentication path discovery ter-
minates when it reaches the root namespace: when the
prefix of the signing key before “KEY” is empty (just “/”),
then it must be signed by the specified “/KEY/2” key.

The “key” rule is recursively linked to itself and to the
trust anchor. In these cases, when matching data and
key names, all specified patterns need to be considered,
with anchor rules taking precedence. For a key“/a/blog
/KEY/1”, the rule “key” will extract the parent names-
pace of the key (i.e., “/a”) and derive two name patterns:
“<a><KEY>[id]” and “<KEY><2>”. Given the signing key
name matches the first pattern, the process recursively
continues with the same rule, until there is a match with
the trust anchor.

If the key’s KeyLocator does not match any key name
pattern, it implies that the key does not comply with
the trust model and should be treated as an invalid key.

4.5 Schema for Authentication
For each data packet, the trust schema determines

a valid authentication path(s) within the corresponding
trust model. Given that the trust schema is expressed as
formally defined rules, an authentication interpreter of
the trust schema can automate the whole authentication
process for any given trust model (Section 5.1).

For each input data packet, the authenticating in-
terpreter finds the corresponding trust rule by match-
ing the name of the packet against the specified name
patterns in the rules. If the packet and its KeyLoca-

tor comply with constraints of the found trust rule,
the interperter can then retrieve the public key accord-
ing to the data’s KeyLocator and recursively inspect
the retrieved key according to the trust schema, until
reaching a trust anchor or a pre-defined limit on the
number of recursive steps. In the former case, the in-
terpreter has collected all the intermediate public keys
on a valid authentication path, thus can verify signa-
tures starting from the trust anchor up to the input
data packet. When the interpreter cannot find a rule
that matches the input data packet or constructed au-
thentication path loops or becomes overly long, the in-
terpreter declares failure to discover the authentication
path.

The input data packet is authenticated only if there
is a valid authentication path according to the trust
schema, and each signature on the path is verifiable
and satisfies the minimum cryptographic requirements
of the schema. In other words, either failure to discover
authentication path or failure to verify any signature
on the authentication path implies that the input data
packet cannot be authenticated with the interpreted
trust model.

4.6 Schema for Signing
One can also view the trust schema as a collection of

constraints on a data packet’s signing key, with respect
to its name, signature, key type and size, etc. Thus,
the trust schema also specifies the required signing pro-
cess, i.e., how to select or generate signing keys given
the name of the data packet. Effectively, this allows
automation of the signing process using a signing inter-
preter of the trust schema (Section 5.2).

The signing interpreter takes a data packet as an in-
put and looks up the corresponding trust rule. Instead
of checking for compliance of the data’s name and Key-

Locator to the trust rule, it infers the correct name of
the key that needs to be used to sign the data packet.
If this key exists on the system, the interpreter will im-
mediately sign and return the data packet. If the key
does not exist, the interpreter will try to generate the
key with the specified name and crypto requirements,
and then sign this key by recursively re-interpreting the
same schema again with the generated key as a new
input. More details on how the interpeter can gener-
ate key names based on rules in the trust schema are
described in Section 5.2.

Note that it is not always possible for the interpreter
to automatically generate all necessary keys. If the sign-
ing process recursively reaches a trust anchor, it means
that the producer does not have, or cannot create any
qualifed signing key for the data packet. For example,
if a not-yet authorized author is trying to sign an arti-
cle for publication, the interpreter will fail to sign it, as
the author does not have a valid key to sign an article,
nor a key to endorse an author on the blog, nor a key
to configure a new administrator in the system. Even
in this case, the interpreter can still generate useful di-
agnostic information, e.g., which keys are missing and
how to obtain them.

5. AUTOMATING TRUST
Now that we have introduced the concept of schema-

based data authentication and signing, we will describe
how to automate these processes, using the blog website
framework as an example.

5.1 Automating Authentication
Each step of the authentication path for data (key)

6

packets is defined by the rules of the trust schema.
Rules are linked together through a function-like invo-
cation of rule names as part of the key name pattern def-
inition, as shown in Figure 7. The authentication pro-
cess moves forward (from one step to the next) only if
the data (or key) satisfies the conditions of the rule. We
can model this authentication process as a Finite State
Machine (FSM), with each state representing a rule and
state transitions representing function-like invocations.
This way, once a data packet enters the FSM, the FSM’s
states define the packet’s authentication path, and an
automatic process can walk through these states until
exiting the FSM with success or failure.

Execution of the FSM processing requires a trust
schema interpreter. The interpreter used for data au-
thentication, which we call authenticating interpreter,
takes data packets as input, requests public keys when
necessary, and outputs whether the input packet is au-
thenticated or not. Given a trust schema for a trust
model, an authenticating interpreter effectively auto-
mates the process of data authentication for this trust
model. Figure 10 shows an FSM of an authenticating
interpreter for the blog website trust model discussed
in Section 4.4.1.

Authenticating Interpreter

signed
data

public
keys

... requests for
public keys

root

author

article

admin

Figure 10: Finite state machine for the authentication
interpreter of the blog website trust model schema

5.1.1 Authentication State
Whenever a new data packet arrives at the FSM, the

interpreter determines the corresponding initial state by
checking the data name against the name patterns for
each state. After that, the interpreter initiates the key
name checking procedure, including steps to:

• extract components from the data name according
to the defined sub-patterns;

• derive the key name pattern from the rule’s key
name functions with the extracted components;

• check if the data’s KeyLocator matches the de-
rived key name pattern.

If the data packet passes the key name checking, the
authentication process transitions to the downstream
state of the FSM: the interpreter requests the key iden-
tified by the data’s KeyLocator and pauses FSM pro-
cessing until the key is retrieved. When the key is de-
livered to the interpreter, the interpreter initiates a new

instance of the same checking procedure at the state on
which the FSM processing previously paused. When-
ever the FSM transitions to a trust anchor state, the
interpreter immediately triggers verification of signa-
tures, following the reverse path of transitions in the
FSM.

5.1.2 Walking Through the State Machine
In this section we demonstrate how the authentica-

tion automation can work for the blog website trust
model. We use an article data packet with name“/a/blog
/article/food/2015/1”signed by an author key“/a/blog
/author/Yingdi/KEY/22” as an example to show how the
authentication process goes through the state machine
shown in Figure 10.

Initial state.
Based on the trust schema, the article name “/a/blog

/article/food/2015/1” will be captured by the “arti-
cle” rule, thus the authentication process starts from
the corresponding “article” state. When executing the
key name checking procedure, the interpreter will ex-
tract “<a>” as the first sub-pattern and use it to de-
rive a key name pattern through a function-like invo-
cation of the “author” rule. The resulting pattern “<a>
<blog><author>[user]<KEY>[id]”will successfully match
the KeyLocator field of the data packet and the FSM
will transition to the downstream “author” state.

State transition.
At this point, the interpreter makes a request for

“/a/blog/author/Yingdi/KEY/22”key and pauses process-
ing until the key is retrieved. After retrieving the re-
quested key, the interpreter resumes operations at the
“author” state with the retrieved key as an input. Sim-
ilarly, the interpreter extracts “<a>” as the first sub-
pattern from the author key name and derives through
the “admin” rule a key name pattern “<a><blog><admin>
[user]<KEY>[id]”. Assuming that the retrieved key is
signed with an admin key “/a/blog/admin/Alex/KEY/5”,
the FSM will transition to the corresponding “admin”
state.

Self-loop transition.
The “admin” rule in the website trust schema links

to two trust rules, of which one is the “admin” rule it-
self. This self-linked rule represents a management priv-
ilege delegation from one administrator to another ad-
ministrator and is represented by a self-loop transition
in the FSM. This transition can capture an adminis-
trator key “/a/blog/admin/Alex/KEY/5” signed with an-
other administrator key “/a/blog/admin/Lixia/KEY/37”.
In this case, the FSM transitions to the same “admin”
state over the loopback link and the interpreter requests
for the other administrator key and pauses the FSM

7

processing again. Note that a self-loop transition may
cause an infinite loop in the authentication path, but
a pre-defined limit on the number of transitions can
prevent this situation. The interpreter can further op-
timize loop detection by recording the name of every
intermediate key that each state has observed during
the authentication process.

Transitioning towards the trust anchor state.
When the interpreter retrieves the public key“/a/blog

/admin/Lixia/KEY/37”, it can repeat the key name check-
ing procedure on the “admin” again, deriving two pat-
terns for key name matching: “<a><blog><admin>[user]
<KEY>[id]” (from the “admin” rule) and “<a><blog><KEY>
[id]” (from the trust anchor “root”). If “/a/blog/admin
/Lixia/KEY/37” key was signed by “/a/blog/KEY/1” (the
specified trust anchor), the second name pattern would
match the KeyLocator. In this case, the process imme-
diately transitions to the trust anchor state, triggering
initiation of the signature verification procedure.

Signature verification.
Once the signature verification procedure is triggered,

the interpreter will follow the reverse path of FSM back
to the original data packet, terminating with failure if at
any step it cannot verify the signature. In the example,
the process will start with validating “/a/blog/admin
/Lixia/KEY/37” key using the trust anchor key, follow-
ing checking signature of “/a/blog/admin/Alex/KEY/5”
using the validated admin key, similarly for the author
key “/a/blog/author/Yingdi/KEY/22”, terminating with
checking signature of the input article data packet using
validated author key.

5.2 Automating Signing
Another version of the trust schema interpreter, a

signing interpreter, can use a trust schema to automate
selection of signing keys and generation of keys when
necessary. Similar to the authenticating interpreter, the
signing interpreter compiles a trust schema to an FSM
(Figure 11), but processes an unsigned data packet as
input and outputs the data packet signed with a key
that conforms to the trust model (or fails). During pro-
cessing, the interpreter interacts with the private key
store (e.g., Trusted Platform Module, TPM) to request
data signing and create signing keys when they are not
yet available.

5.2.1 Key Selection
Given a data packet, the signing interpreter can de-

rive a name pattern of the key that is allowed to sign
this data according to the trust model. For this pur-
pose, it finds the state in the FSM that corresponds to
the data packet, and expands the corresponding sign-
ing key name pattern. For example, let us assume that

TPM

Signing Interpreter

unsigned
data

signed
data

private key
operations

root

author

article

admin

Figure 11: Signing interpreter for the blog website trust
model schema

an administrator of the blog wants to publish his arti-
cle “/a/blog/article/snacks/2015/3”. This data packet
will enter the FSM from the “article” state, at which
point the interpreter can derive the key name pattern
“<a><blog><author>[user]<KEY>[id]”, as shown in step
1 in Figure 12. With the derived name pattern and the
crypto requirements from the trust schema, the inter-
preter will search a qualified key in the TPM (step 2 in
Figure 12). In our example, the admin is publishing a
blog article for the first time, and is not yet authorized
to do so, but the signing interpreter of the trust schema
can automatically create such authorization, as we will
show below.

article
<a><blog><author>[user]<KEY>[id]

author

<a><blog><admin>[user]<KEY>[id] /a/blog/admin/Alex/KEY/5

/a/blog/article/snacks/2015/3

/a/blog/author/Alex/KEY/40

Derive key name for the article1

Derive key name for author’s key3

Lookup key in TPM2

Lookup key in TPM4

Expand author’s key
name and generate key4

/a/blog/article/snacks/2015/3

Sign data5

[user] is a function to expand to a local user name
[id] is a function to expand to a unique numerical identifier

Figure 12: An interpreter processing the blog web-
site trust schema directs the procedure of signing data
“/a/blog/article/snacks/2015/3”

5.2.2 Creating Keys
When the interpreter cannot find a signing key that

corresponds to a state of the FSM (the result of step 2
in Figure 12), it transitions to a downstream state and
repeats the key searching procedure. In our example,
when the interpreter realizes that there are no author
keys available, it will try to find out if there are any
administrator keys available. If not, the FSM will con-
tinue to transition downstream and repeat the search,
until there are no more possible transitions available
(note that self-loop transitions are skipped in the sign-
ing process when the signing key does not exist in the
private key store). At this point the interpreter aborts
the signing operation, as it will not be able to sign any-

8

thing that will conform to the trust model.
In our example, the signing interpreter has access to

the administrator’s key, and it will try to create a new
author key. In order to create such key, the interpreter
must derive a name for the key. In this case, the wild-
card specializer [func] (Table 1) in a key name pattern
can expand to specialize the key name. For example,
[user] can specialize the name component for the au-
thor identifier using the local user name (e.g., “Alex”),
and [id] can generate a unique identifier for the key.
Therefore, at step 4 in Figure 12 (dotted blue lines),
the interpreter can expand the author key pattern into
“/a/blog/author/Alex/KEY/40”. At this point, the inter-
preter is ready to generate an author key that satisfies
the crypto requirements and overall trust model speci-
fied in the schema (step 4 on Figure 12), after which it
will be ready to sign data packets of the article by this
author (step 5 on Figure 12).

Note that a signing interpreter shares the same FSM
as the corresponding authenticating interpreter. This
feature allows a signing interpreter to “double check”
the validity of selected (or generated) signing keys by
authenticating these keys as an authenticating inter-
preter,4 thus ensuring that the signed data can be au-
thenticated within the same trust model.

6. DISCUSSION

6.1 Design Pattern for Security
A trust schema is more than just an approach to de-

scribe the relationships between data and key names,
it is also a design pattern for NDN security. Similar
to design patterns in software engineering [10], which
provide general reusable solutions to commonly occur-
ring problems in software design, the trust schema pro-
vides a reusable solution to apply commonly used trust
models in NDN applications. Security experts can use
trust schemas to define a set of security patterns for
frequently used data authentication models. An estab-
lished set of trust schemas will greatly reduce the bur-
den on NDN application developers, who can select an
appropriate security pattern for their applications dur-
ing the design phase, and gain all the benefit of NDN’s
built-in security features. Trust schema also facilitates
the automation of both packet signing and authentica-
tion, making it easy to create NDN applications with
proper data authentication models, and enabling secu-
rity functionality even during application prototyping.

6.2 Trust Schema Combination
4An optimization could be to ask a producer to maintain
the chain of intermediate keys for each of its signing keys,
so that the interpreter can authenticate keys immediately.
In fact, it has been a common pratice to keep a complete
chain of keys at the key owner side in existing authentication
systems, such as TLS [9]

Applications may combine trust schemas to achieve
more powerful functionalities. Section 4 mentioned that
the trust schema of a hierarchical trust model could help
a consumer authenticate the trust anchor in the blog
website trust schema.

In fact, a trust schema is itself a data packet, which
can be signed. An operating system manufacturer may
even define a meta trust schema to authenticate the
trust schema of applications developed for the system,
limiting software installation, execution, and access to
private key stores on the operating system to only ap-
plications with authenticated trust schema. Compared
to the current software distribution mechanisms (such
as Apple’s App Store and Google’s Google Play) which
only require a signature of a legitimate application de-
veloper, a security launcher based on the meta trust
schema can provide a mechanism to limit the poten-
tial harm from unknown software installation on host
operating systems.

6.3 Key Caching
In our examples, all data authentication processes

walked through the complete authentication path. The
process can be optimized as follows. An interpreter can
cache each intermediate key of an authentication pro-
cess at the state where the key is checked and verified,
so that a new authentication process may find one of
its intermediate keys in those states before reaching a
trust anchor. In this case, the interpreter can treat the
cached key as a trust anchor and immediately trigger
signature verification on the reverse path, thus short-
cutting the data authentication process.

6.4 Multi-path Authentication
A common concern about trust models that follow

a single naming hierarchy is robustness: with only one
chain of keys to the authentication target, failure to
authenticate any intermediate key results in overall au-
thentication failure. When a data packet can carry more
than one signature [19], a trust model defined with a
trust schema can associate names across different nam-
ing hierarchies. This capability would allow authenti-
cation of data through different chains of keys, signifi-
cantly increasing the robustness of the system.

6.5 Formal Trust Schema Syntax
The syntax we used to describe the trust schema is

still at an experimental stage. Trust schemas share
many design philosophies with logic programming lan-
guages (such as Prolog [7]) and it may be helpful to
unify the trust schema syntax with formal syntax used
by existing languages.

7. RELATED WORK

9

The focus of this paper is trust management automa-
tion. We are aware of similar efforts for Public Key In-
frastructure (PKI), including a standardized path vali-
dation algorithm for X.509 certificate authentication [8],
certificate chain discovery methods for SPKI certificate
system [6,14], and general chain discovery mechanisms [3].
However, these studies assume a specific trust model,
while automation based on trust schemas is a general
trust management solution for NDN applications with
different trust models. Moreover, it not only allows au-
tomation of authentication process, but also enables (at
least partial) automation of the data signing process.

The designed trust schema leverages NDN naming
to enforce name-based trust policies for data packets.
DNSSEC [2], a security extension of DNS, adopts a sim-
ilar mechanism to authenticate DNS resource records:
a key bound to a DNS domain name is globally trusted
to sign only DNS resource records under this domain.
DANE [11] extends the name-based mechanism of DNSSEC
to authenticate a TLS public keys. At the same time,
both DNSSEC and DANE assume a specific hierarchical
trust model, while our trust schema can capture many
different trust models that NDN applications may need.

The trust schema is basically a policy language, where
rules define policies on which keys are trusted to au-
thenticate data. Compared to previous work on policy
languages for access control and authorization, such as
PolicyMaker [5], SD3 [12], RT [13], and Cassandra [4],
our work focuses on data authentication and integrates
data authentication into the NDN network architecture.

8. CONCLUSION
Usability is a fundamental requirement for any se-

curity solution. The NDN design mandates that each
network-layer data packet carry a cryptographic sig-
nature for authentication, however this requirement is
only on the packet format, it represents a signficant but
only a first step toward securing networking applica-
tions. Our observations during the first few years of
NDN application development suggest that it is a non-
trivial task for application developers to properly de-
fine trust relationships between data and keys, handle
proper key chain creation, and enforce authentication of
data according to the defined rules. It happens too of-
ten that developers use shortcuts to get around security
(e.g., hard-code keys, turn verification off “temporarily”
when it blocks development progress).

In response to this important and urgent issue, we
invented the idea of a trust schema to formally define
application trust models. We developed prototypes of
two trust schema interpreters that can convert trust
schemas into finite state machines and help applica-
tions rigorously sign and authenticate data automat-
ically. We applied our prototypes to secure a range
of NDN applications, and our experience so far gives

us confidence in the solution’s general applicability to
most, if not all, NDN applications.

We believe we have contributed a meaningful step to-
ward a reusable approach to data authentication. We
plan to apply the schematized trust management in
more NDN applications and integrate the schematized
trust management with operating system support. We
also encourage security experts to define other com-
monly reusable trust schemas (“security design patterns”)
to faciliate data authentication in NDN applications.

9. REFERENCES
[1] A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang.

SNAMP: Secure namespace mapping to scale NDN
forwarding. In Proc. of Global Internet Symposium, 2015.

[2] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose.
DNS security introduction and requirements. RFC 4033,
2005.

[3] L. Bauer, S. Garriss, and M. K. Reiter. Efficient proving for
practical distributed access-control systems. In ESORICS,
2007.

[4] M. Y. Becker and P. Sewell. Cassandra: Distributed access
control policies with tunable expressiveness. In Proc. of
International Workshop on Policies for Distributed
Systems and Networks (POLICY), 2004.

[5] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. In Proc. of IEEE Symposium on Security
and Privacy, 1996.

[6] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos,
and R. L. Rivest. Certificate chain discovery in SPKI/SDSI.
Journal of Computer Security, 2001.

[7] W. Clocksin and C. S. Mellish. Programming in PROLOG.
Springer Science & Business Media, 2003.

[8] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley,
and W. Polk. Internet X.509 public key infrastructure
certificate and certificate revocation list (CRL) profile.
RFC 5280, 2008.

[9] T. Dierks and E. Rescorla. The transport layer security
(TLS) protocol version 1.2. RFC 5246, 2008.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
patterns: elements of reusable object-oriented software.
Pearson Education, 1994.

[11] P. Hoffman and J. Schlyter. The DNS-based authentication
of named entities (DANE) transport layer security (TLS)
protocol: TLSA. RFC 6698, 2012.

[12] T. Jim. SD3: A trust management system with certified
evaluation. In Proc. of IEEE Symposium on Security and
Privacy, 2001.

[13] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a
role-based trust-management framework. In Proc. of IEEE
Symposium on Security and Privacy, 2002.

[14] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed
credential chain discovery in trust management. In Proc. of
Conf. on Comp. and Comm. Security (CCS-8), 2001.

[15] NDN Team. Libraries / NDN platform.
http://named-data.net/codebase/platform/, 2015.

[16] NDN Team. NDN packet format specification.
http://named-data.net/doc/ndn-tlv/, 2015.

[17] NDN Team. NDN regular expression.
http://named-data.net/doc/ndn-cxx/current/tutorials/
utils-ndn-regex.html, 2015.

[18] D. Smetters and V. Jacobson. Securing network content.
Technical report, PARC, 2009.

[19] Y. Yu. Public key management in Named Data
Networking. Tech. Rep. NDN-0029, NDN, 2015.

[20] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy,
P. Crowley, C. Papadopoulos, L. Wang, and B. Zhang.
Named data networking. ACM Computer Communication
Reviews, 2014.

10

http://named-data.net/codebase/platform/
http://named-data.net/doc/ndn-cxx/current/tutorials/utils-ndn-regex.html
http://named-data.net/doc/ndn-cxx/current/tutorials/utils-ndn-regex.html

	Introduction
	Data Authentication in NDN
	Example of Data Authentication
	Threat Model

	Why We Need a Trust Schema
	Trust Schema
	Trust Rule
	Generalizing Trust Rules
	Linking Trust Rules

	Trust Anchor
	Crypto Requirements
	Trust Schema Examples
	Blog Website Framework
	Hierarchical Trust Model

	Schema for Authentication
	Schema for Signing

	Automating Trust
	Automating Authentication
	Authentication State
	Walking Through the State Machine

	Automating Signing
	Key Selection
	Creating Keys

	Discussion
	Design Pattern for Security
	Trust Schema Combination
	Key Caching
	Multi-path Authentication
	Formal Trust Schema Syntax

	Related Work
	Conclusion
	References

