
NDN, Technical Report NDN-0030, 2015. http://named-data.net/techreports.html

Revision 1: April 20, 2015

Athena: A Configurable Validation Framework For NDN
Applications

Yingdi Yu
UCLA

yingdi@cs.ucla.edu

ABSTRACT
In Named Data Networking (NDN), data is bound with its
name through its producer’s public key signature. Secure
communication in NDN requires every piece of data to be
authenticated. Leaving the data authentication to applica-
tion developers is error-prone. It is more reasonable to ask
application developer to select a pre-defined trust model,
and have a security library to automatically set up all the
data authentication procedures. In this paper, we proposed
Athena, a configurable validation framework to support au-
tomated data authentication. We also defined a policy lan-
guage Guardian to help security experts to specify a variety
of trust model in a convenient way.

1. INTRODUCTION
Named Data Networking (NDN) is designed with built-

in security. The name and content of a data packet are
bound together with a signature. The process of packet
validation, however, may not be trivial.

First of all, one must determine whether the signer of
a packet can be trusted for signing the packet; and one
also needs to determine that the signing key actually
belongs to the trusted signer. The approach of making
the two decisions above may vary from one application
to another application, depending on the trust model of
the application.

Second, in order to verify a signature, one may need
to retrieve the corresponding public key and related au-
thentication information, such as certificates issued by
some third parties, the signature status, etc.. The in-
formation to retrieve depends on the security require-
ments of an application. For example, some applica-
tions using web-of-trust may want to fetch all the en-
dorsement certificates for a key from a particular key
server, while some other applications may want to re-
trieve certificates directly. Moreover, constrained by the
network environments in which an applications is run-
ning, the mechanisms to retrieve authentication infor-
mation could also be different. For example, when the
network access of a data consumer is limited to a data
producer only, the data consumer may want to retrieve
all the authentication information from the producer

rather than sending interests to other parties which will
never respond.

Third, the signature validation process also requires
some careful checkings. For example, one may need to
check whether the signature has been revoked before its
validity period ends; or one may need to check whether
the issuer of a certificate is allowed to delegate some
trust to others.

It is unnecessary and error-prone to leave all the im-
plementation details to NDN application developers,
while developers should still be allowed to experiment
a variety of trust models and other security features in
the validation process. Therefore, it would be desired to
provide a modularized framework for packet validation,
which handles as many common validation procedures
as possible but is still flexible enough for developers to
extend.

In this paper, we first identify the requirements of
packet validation in NDN applications, and generalize
a common validation procedure. Based on that, we pro-
poses Athena, a modularized framework of packet vali-
dation in NDN applications.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly introduce the security semantics of
NDN. The requirements of packet validation are exam-
ined in Section 3. The Athena framwork is presented
in Section 4 and we further elaborate two modules of
Athena in Section 5 and 6 respectively. We demostrate
the framework with two existing examples in Section 7
Some other related issues are discussed in Section 8. We
conclude the paper in Section 9.

2. NDN SECURITY
NDN Security is data-oriented. As shown in Figure 1,

the content and its name are bound together through
a digital signature, along with the meta information of
the content and the signature. The meta information of
the signature includes the signature type (Signature-
Type), the signer (KeyLocator), the validity period of
the signature ValidityPeriod, and may also include
extensions such as signature status, etc..

Ideally, every NDN data packet must be validated be-

1

Name
MetaInfo
Content

SignatureInfo:
 SignatureType
 KeyLocator
 ValidityPeriod
 Extensions

SigValue

Figure 1: The format of an NDN data packet.

KeyLocator:
/ucla/alice/key

Name:
/ucla/alice/blog/1

Signature

Application data

KeyLocator: /ucla/key

Name:
/ucla/alice/key

Signature

Key 1

KeyLocator: /ucla/key
Name: /ucla/key

Signature (self-signed)

Key 2

Fetch & Verify

Fetch & Verify

Sign Sign

Trust
Anchor

Figure 2: An example of data validation in NDN. The
last key is pre-trusted and is represented as a self-signed
key.

fore being used. In order to validate a data packet, a
data consumer must retrieve the correct public key to
verify the data signature. A public key, as a special
type of content, is also named and can be retrieved as a
data packet in NDN. The producer of a data packet is
supposed to provide the retrieval information about the
public key in the KeyLocator, for example, the name
of the public key. Since every data packet is signed in
NDN, a data packet containing a public key is essen-
tially a public key certificate whose issuer is the signer
of the packet. Thus, a certificate can be validated in
the same way as a normal data packet in NDN. Fig-
ure 2 shows an example of data validation in NDN.

A verified signature does not necessarily means the
data packet is valid. A data consumer must also decide
whether the data signer can be trusted for signing a
particular data packet. The name spaces for which a
key can be trusted is defined as the trust scope of the
key. Given the same public key, its trust scope could be
different in different applications. The specification of
the trust scope of public keys and some other conditions
on the signer (such as the signature type) constitutes
the policy of an application.

Moreover, a signature may have a limited lifetime
for the intential restriction on the effect of the name-
content binding or for the cautiousness that the signing
algorithm may be broken eventually. Therefore, a data
packet is usually treated as valid by a data consumer if
1) it complies with the application’s policy; 2) its sig-
nature can be verified; 3) its signature has not expired

yet.

3. VALIDATION REQUIREMENTS IN NDN
In this section, we identify the requirements of packet

validation in NDN on three aspects: policy checking, key
retrieval, and signature verification.

3.1 Policy Checking
On receiving a packet, one should first check if the

packet complies with the policy, because: 1) it is the
only procedure that does not require any other infor-
mation except the packer per se and 2) retrieving other
information could be complicated and costy.

The policy checking is focused on the SignatureInfo
of a packet. For each sub-field in SignatureInfo, one
may specify the required condition. These conditions
should describe the trusted keys of the packet, the ac-
ceptable signature types, etc.. A packet will be treated
as invalid immediately if one of the sub-fields cannot
satisfy its corresponding condition. For different pack-
ets, the conditions on SignatureInfo could be differ-
ent. We generally call the conditions for all the packets
that an application expects to validate as Policy.

Note that the checking procedure for the same sub-
field does not change among applications. It would
be unnecessary and error-prone to ask application de-
velopers to implement these procedures on their own.
Therefore, a desired validation framework should pro-
vide standard checking procedures for each sub-field of
SignatureInfo.

Although the checking procedure can be standard-
ized, the policy or the conditions may vary a lot from
one application to another application. For example,
the condition on KeyLocator (one of the Signature-

Info sub-fields), which restricts the trusted keys of a
packet, actually defines the validation trust model of
an application and may be highly customized. Thus,
a desired validation framework should provide enough
flexibility in specifying policies.

3.2 Public Key Retrieval
If a packet has passed the policy checking, the next

step is to get the public key to verify the signature.
One should first look up the public key in the trust
anchors. Trust anchors are a set of public keys that
are pre-authenticated before any validation process be-
gins. Therefore, a trust anchor can be directly used to
verify the signature1 without requiring other informa-
tion. This is also why the lookup should be done before
looking for the public key in other places. A desired val-
idation framework should provide efficient trust anchor

1This does not mean that any packet signed by a trust an-
chor will be treated as valid, because the policy checking
step should filter out the packets that are out of the trust
scope of the trust anchor.

2

lookup and management.
If the public key is not in the trust anchors, one may

need to retrieve the public key from some other places.
The key retrieval mechanim may be different from one
application to another application. For example, some
applications may assume that the data provider will
also provide the public key to verify the signature, thus
they may send an interest towards the data provider.
However, some other applications may assume that the
public key can be retrieved using the key name directly
regardless of who actually serve the key. In some cases,
one does not need to retrieve a public key, but also some
information associated with the key, such as endorse-
ments, delegations, etc.. Therefore, a desired validation
framework should support flexible key retrieval mecha-
nism.

Since a public key is also retrieved as a data packet
in NDN, it can be validated in the same framework.
As a result, a validation process may develop recur-
sively until a trust anchor is reached. A loop detection
mechanism must be provided and some step constraints
should also be enforced to avoid infinite incursions of
public key retrieval. When a public key is required to
be certified by multiple parties, the validation process
may even fork into multiple branches. Thus, a desired
validation framework should build the validation paths
correctly and effectively.

3.3 Signature Verification
When the validation process reaches a trust anchor

or an intermediate public key has been authenticated,
the public key can be used to verify the correspond-
ing signature. Although signature verification is trivial
with a correct public key, the procedure after signature
verification could be complicated.

When the validated packet contains some intermedi-
ate authentication information, the content of the packet
must be parsed appropriately, otherwise the validation
process cannot proceed. Although the content format of
many intermediate authentication data (such as certifi-
cate) is defined as a public standard, some applications
may require certain authentication information that is
encoded in a private format.

Moreover, some application may require checking the
status of the signature in case the signature has been
revoked before its validity period ends. Signature sta-
tus checking should be done after the signature verifi-
cation, because the signature status checking could be
expensive and it is worthless to check the status of an
invalid signature. However, the signature status check-
ing mechanism has not been defined in the NDN archi-
tecture yet. Therefore a desired validation framework
should provide an interface for users to extend the post-
verification data processing.

3.4 Validation Result Processing

Info Manager

Trusted Info

Unverified Info
Policy Checker

Authenticator
Trust Anchors

Certificate Cache

Data Buffer

Info Fetcher

Origin Validation Request

Failure

Failure

Success

Auth
Info Internal

Validation
Request

Cache
certificate

Key
Retrival

Check
Signature

Failure

Figure 3: The validation framework

Although there is only one exit for a successful val-
idation, a validation process may fail for a variety of
reasons. Some failures are recoverable. Some failures
may help application to adjust its behaviors. It is also
possible that the same failure would be treated in differ-
ent ways in different applications. Therefore, a desired
validation framework should allow applications to han-
dle the signature verification result in their own ways.

4. VALIDATION FRAMEWORK
The analysis above identified the requirements of packet

validation in NDN, and also suggested that the process
of packet validation can be modularized. In this sec-
tion, we introduce Athena, a modularized framework of
packet validation in NDN applications. As shown in
Figure 3, the framework consists of three modules: Pol-
icyChecker, InfoManager, and Authenticator. Each mod-
ule corresponds to one aspect that we analyzed before In
the rest of this section, we will first introduce the inter-
face, working flow, and each module of the framework,
and then discuss two the validation process examples.

4.1 Framework I/O
The input of Athena contains the packet to validate

and some other meta information, such as the procedure
to handle validation result. The input is expressed in
terms of a data structure called validation request. As
we will see later, the same data structure is also used for
some intermeidate authentication information (such as
public keys) that are fetched and validated internally by
the framework. For the sake of clarity, the two types of
validation request are called original validation request
and internal validation request respectively.

A validation request contains following information:

• ProcessId: the identifier of a validation process.

• Target: the packet to validate.

3

• SuccessCallback: a callback function when Tar-

get is validated.

• FailureCallback: a callback funciton when Tar-

get cannot be validated.

• MaxSteps: the maxium number of validation steps
that can be performed for this request.

Since a validation process is all about the target packet
in the original validation request, ProcessId is set to be
the digest of the original packet. Note that, there could
by more than one validation requests sharing the same
ProcessId, because the framework may generate some
internal validation requests for intermediate authentica-
tion information, which are eventually used to validate
the target of the original request. However, within the
same validation process, each individual validation re-
quest is uniquely identified by its Target.

For each validation request, there are two callback
functions that will be invoked according to the valida-
tion result. The callback functions of the original valida-
tion request should be supplied by application in order
to satisfy the requirement of validation result handling
in Section 3.4. Note that the validation process may
fail for different reasons. Some validation failures (such
as “cannot retrieve the public key”) does not necessarily
mean the target packet is invalid. Therefore, when the
FailureCallback is invoked, a failure code will also be
passed as a parameter, so that application can handle
various validation failures in the FailureCallback on
their own.

Indeed, a validation process starts when the origi-
nal validation request is submitted to the framework
and ends when either SuccessCallback or Failure-

Callback for the original validation request is invoked.
The callback functions for internal validation requests
connect together the validation steps in a single valida-
tion process. We will discuss the callback functions and
MaxSteps in detail later.

4.2 Asynchronized Validation
In order to validate the target packet in the origi-

nal validation request, an application should retrieve
the corresponding public key for the signature verifica-
tion. The retrieved public key cannot be used if it has
not been authenticated. Thus, an unauthenticated pub-
lic key (carried by a data packet) will be passed as an
internal validation request back to PolicyChecker. An
internal validation request may trigger another inter-
nal validation request if the signing key of the target of
the first internal validation request has not be authen-
ticated neither. Such a process will develop recursively
until a pre-authenticated key is reached. Once an in-
termediate key has been authenticated, it can be used
to verify the signature of depending packets (or certifi-
cates). In Athena, such a validation process is modeled

Original
Request SuccessCallback FailureCallback

Internal
Request 1 SuccessCallback FailureCallback

Internal
Request 2 SuccessCallback FailureCallback

Internal
Request 3 SuccessCallback FailureCallback

Trusted Key

Bu
ild

 v
al

id
at

io
n

pa
th

Pr
op

ag
at

e
va

lid
at

io
n

re
su

lt

Figure 4: An example of asynchronized validation pro-
cess

as an asynchornized process and is achieved by a set of
callback functions that are chained together. Figure 4
shows an example of the asynchornized validation.

For simplicity, we assume that each internal valida-
tion request in Figure 4 is for the signing key of the tar-
get of its previous validation request. In Athena a vali-
dation path is first recursively built till an authenticated
public key, and weaves the dependency between the call-
back functions of the internal validation requests.

When the Target of the last internal validation re-
quest (the third one in Figure 4) is validated, the cor-
responding SuccessCallback will be invoked. In this
callback, the authenticated public key is used to validate
the depending request (the second one in Figure 4). If
the target of all the subsequent validation request can
be validated, the success will be propagated through the
SuccessCallback to the one of the original validation
request. If an intermediate target cannot be validated,
the corresponding FailureCallback will be invoked. In
most cases, the failure will be propagated through the
FailureCallback to the one of the original validation
request.

Note that FailureCallback may not be only invoked
when signature verification fails. If the failure is recover-
able (e.g., temporary connectivity issue), the Failure-

Callback can still get the validation path back onto the
desired track, as the dashed lines suggest in Figure 4.

Since the validation path is built recursively, it is im-
portant to control the depth of the whole recursion. Al-
though in most cases a well-defined policy can prevent
infinite recursion by restricting the trusted signing keys,
a hard limit is still needed in case of errors in the pol-
icy. The MaxSteps in a valiation request is designed for
this purpose. In Athena, the MaxSteps of each internal
validation request is required to be less than the one of
its previous validation request. As we will see in Sec-
tion 4.4, a request with non-positive MaxSteps will be
rejected directly.

4

4.3 PolicyChecker
PolicyChecker, as its name suggests, is the module

to check packet against policy. As we discussed in Sec-
tion 3.1, the policy checking should be done first. There-
fore, the PolicyChecker module is the first module to
handle any validation request in Athena.

Recall that we identified two requirements for policy
checking in Section 3.1: 1) provide standard checking
procedures and 2) allow as much flexibility as possible
in policy specification. The Athena framework fulfills
the two requirements by providing a configurable Poli-
cyChecker module.

For each sub-field of SignatureInfo that is defined
in NDN packet format, PolicyChecker provides a built-in
checking procedure with configurable conditions. Appli-
cation can customize the PolicyChecker module by

• selecting a set of checking procedures for a group
of packets that share the same functionality

• specifying the condition for each selected checking
procedure

Such customization is done by writing a configuration
file using a policy language called Guardian. As we will
show in Section 5, Guardian can be used to describe a
variety of conditions on SignatureInfo, thus giving ap-
plications sufficient flexibility to specify their own poli-
cies.

PolicyChecker is initialized with a configuration. All
the policy checking procedures are constructed auto-
matically according to the configuration. When Policy-
Checker receives a validation request, a corresponding
set of checking procedures will be selected to inspect
the SignatureInfo of the target packet. If the target
packet can pass all the checking, the validation request
will be delivered to the InfoManager module, which will
be introduced later. Otherwise, the FailureCallback

will be invoked to terminate the validation process.
The benefit of a configurable PolicyChecker is obvi-

ous. The configuration file provides an convenient in-
terface for an application to specify their own policy
without worrying about implementation details. As a
result, the users of the Athena framework can easily ex-
periment different trust models by simply changing the
PolicyChecker configuration.

4.4 InfoManager
The InfoManager module is designed to handle the

public key retrieval which is discussed in Section 3.2.
When necessary, the module may also retrieve other
authentication related data, such as the status of a sig-
nature, endorsement, delegation, etc.. We generally call
all these data as authentication information. Beside
authentication information retrieval, InfoManager also
provide adequate management of these information.

Recall that we identified three requirements regarding
authentication information management in Section 3.2:
1) efficient trust anchor lookup and management, 2)
flexible information retrieval mechanism, and 3) effec-
tive validation path construction. The InfoManager sat-
isfies the three requirements by providing two sub-modules:
TrustAnchors and InfoFetcher. Besides the two basic
sub-modules, there are two more optional sub-modules
in InfoManager: CertificateCache and DataBuffer, which
are designed to improved the performance of InfoMan-
ager. In order to provide sufficient flexibility, all the
four sub-modules are configurable and extensible. We
will briefly introduce the four sub-modules here and dis-
cuss the design details to Section 6.

When a validation request is delivered to InfoMan-
ager, it will be first processed by TrustAnchors. The
TrustAnchors sub-module looks up the public key that
matches the KeyLocator of the target packet. If there is
a match, the validation request together with the public
key will be delivered to the Authenticator module, which
will be introduced later.

If the signing key of the target packet is not a trust
anchor, the validation request will be processed by Cer-
tificateCache if it is enabled. The CertificateCache sub-
module can cache intermediate public key certificates
that have been authenticated in some other previous
validation processes, thus avoiding unnecessarily pub-
lic key retrieval and authentication. The existence of
CertificateCache may significantly improve the perfor-
mance of the validation framework, especially in terms
of latency.

If the signing key cannot be found from neither TrustAn-
chors nor CertificateCache, the validation request will be
processed by InfoFetcher. InfoFetcher will fetch the pub-
lic key from the network according to KeyLocator of
the target packet. It may also fetch additional authen-
tication information when necessary.

InfoFetcher needs to perform two additional proce-
dures before fetching any requested data. First, it must
check MaxSteps to determine whether the data fetching
is allowed. Second, it must check whether the inter-
est for the same data has been sent out before in the
same validation process (as identified by ProcessId).
The fetched data packets cannot be used without vali-
dation. Therefore, InfoFetcher will prepare an internal
validation request for the fetched data and deliver the
validation request to PolicyChecker, so that the interme-
diate public key can be validated in the same way as the
original target packet. To indicate that the new valida-
tion request consumes one further step, the MaxSteps in
the new validation request will be decreased by 1 from
one of the previous validation request. All the proce-
dure above effectively enable loop detection and avoid
infinite validation path in Athena.

In some cases, InfoFetcher may bring back more au-

5

thentication information that requested or application
may supply some addtional authentication information
along with the original validation request. Although
these information may not be used immediately to val-
idate for the original target packet, they could be use-
ful in validaing some intermediate public keys. The
DataBuffer sub-module is designed to hold these infor-
mation temporarily to avoid unnecessary data fetching.
Similar as CertificateCache, DataBuffer is also designed
for performance optimization, thus being optional. When
DataBuffer is enabled, InfoFetcher will look for the re-
quested data in DataBuffer before sending out interests
to the network.

4.5 Authenticator
The last module is Authenticator which is designed to

handle signature-related processing as discussed in Sec-
tion 3.3 and trigger corresponding callback functions.
Since the validation request is always delivered to Au-
thenticator with an authenticated public key, the signa-
ture of the target packet can be easily verified in the
Authenticator.

As we identified in Section 3.3, a desired validation
framework should allow users to extend the post-verification
data processing. The Authenticator module satisfies such
a requirement by provding a processing callback system.
For any data packet that requires further processing
after signature verification, a corresponding processing
callback can be registered in the Authenticator module.
When the signature of a packet has been verified, the
packet will be matched against all the registered call-
backs and will be processed by the matched callback
function.

5. GUARDIAN
As we mentioned in Section 4, the core part of the

PolicyChecker module is the policy configuration. The
configuration must be clearly specified, so that the con-
ditions on SignatureInfo can be accurately interpreted
by PolicyChecker. Therefore, we defined Guardian, a pol-
icy language for configuration specification.

Guardian is designed with two goals. First, it should
facilitate users to classify packets for different checking
procedure sets. Second, it should allow users to easily
specify conditions on each SignatureInfo sub-field. As
a result, Guardian is designed to provide a rule-based pol-
icy configuration. A policy written in Guardian consists
of a list of rules. Table ?? shows an example configu-
ration. Each rule corresponds to a particular group of
packets that share the same checking procedure set and
contains the conditions for each checking procedure in
the set. A packet has to pass a rule in the policy in
order to pass the PolicyChecker module.

A rule consists of two parts: a filter and a set of
checkers. A checker defines the conditions for a par-

rule {
filter {
packet-type data
packet-name <localhost><secured><>*
}
checker {
signature-type rsa-sha256
min-key-size 2048
key-locator {
name <localhost><admin><KEY><><ID-CERT>
}
}
checker {
signature-type ecdsa-sha256
min-key-size 256
key-locator {
name <localhost><admin><KEY><><ID-CERT>
}
}
}
rule {
filter {
packet-type data
packet-name <localhost><unsecured><>*
}
checker {
signature-type sha256
}
}

Figure 5: An example of a policy written in Guardian.

ticular checking procedure set, while the filter qualifies
the packets to which the checkers should be applied. A
packet can pass a rule only if the packet is matched by
the filter and can pass one of the checkers in the rule. A
rule usually contains only one checker. However, when
there could be more than one sets of valid conditions on
for the matched packets, a rule may contain more than
one checkers.

Rules in a policy are organized as a list. A packet will
be matched against the filter of each rule from the be-
ginning of the list until the first rule whose filter matches
the packet. Only the checkers of the first matched rule
will be applied to the packet. In other word, once a
packet is matched by a rule, the packet will either pass
the policy checking or be treated as invalid immediately
according to the checking result of the matched rule, re-
gardless of whether the packet can pass some other rule
later or not. As a result, the order of the rules matters
in a policy. A rule with a more specific filter should be
placed before those with a less specific filter. If a packet
cannot be matched by any rule in a policy, the packet
will be treated as invalid immediately. In the rest of
this section, we will explain filter and checker in detail.

5.1 Name Pattern
Before we go into details about filter and checker, it

would be helpful to introduce an important concept in
Guardian: name pattern, because it is inevitable, within
the NDN context, to specify the conditions on name

6

in both filters and checkers. For example, a filter may
match a packet according to the packet name, while the
name in KeyLocator of a packet may have to satisfy
certain conditions.

Name pattern is a tool to describe the conditions on
NDN names. It resembles regular expression and pro-
vides two functionalities: 1) match an NDN name, and
2) extract information out of an NDN name. The sec-
ond functionality is particularly useful in expressing the
condition on the relationship between the name of a
packet and the name of the packet signer.

A name pattern is constructed at two levels: compo-
nent level and name level. Each level corresponds to
a different matching scheme. At the component level,
only a single name component is matched. The compo-
nent level matcher is expressed as a regular expression
enclosed with a pair of “<” and“>”. For example <ucla>
can match a name component ucla. The only excep-
tion is “<>” which is a wildcard matcher that can match
any single name component.

At the name level, the pattern of name components is
matched. The name level matcher describes the order of
name components and their repetitions. For example, a
pattern matcher <edu><ucla><cs> can match a name
/edu/ucla/cs. We also define several meta-characters
which resemble those in the standard regular expression:

• (,): defines a sub-pattern which can be referred
using \n.

• +: one or more repetition of the preceding compo-
nent or sub-pattern.

• *: zero or more repetition of the preceding com-
ponent or sub-pattern.

• {n, m}, {n,}, {, m}, {n}: customized repetition
of the preceding component or sub-pattern.

With these meta-characters, one can specify for com-
plicated name patterns For example, a name pattern
<edu><ucla><>* can match any name with the pre-
fix /edu/ucla. A name pattern (<>*)<DNS>(<>*)<NS>

with back reference \1\2 can extract the domain name
of an NDNS name server record (e.g. /edu/ucla/cs

will be extracted from /edu/ucla/DNS/cs/NS). As we
will see later, such component extraction can help ap-
plications to effciently specify their trust models.

5.2 Filter
Filter is used to classify packets according to their

properties, so that packets can be checked through ap-
propriate procedures. For each property specified in
a filter, there is a value that a qualified packet must
match. In other word, given a filter, a qualified packet
must match all the specified property value. For now,
Guardian supports two packet properties in filter: 1)
packet-type and 2) packet-name.

The packet-type property has only two possible val-
ues: data and interest2. This property must be sup-
ported because the checking procedures for a data packet
and a signed interest could be different, even though the
packet name could be the same.

The value of the packet-name property is a name pat-
tern that can match the packet name. This property
must be supported because the name of a packet con-
tains most information about a packet, such as the de-
scription of the content (for a data packet) or the usage
of a command (for a signed interest).

One does not have to specify all the properties in a
filter. If the value for a property is missing, it will be in-
terpreted as “any” and PolicyChecker will skip matching
the property.

Filter can be extended to refine the packet classifica-
tion by introducing new packet property types. Note
that introducing new property types does not affect the
correctness of old filter specification, thus the extension
on filter is always backward compatible.

5.3 Checker
Checker is used to inspect the SignatureInfo of a

packet. Since two sub-fields (SignatureType and Key-

Locator) are defined in SigInfo by the NDN specifica-
tion [1], current checker implementation supports both
of them.

The condition on SignatureType should be one of
the signature type defined in the NDN specification [1].
This condition represents the security level on a partic-
ular group of packet in a policy. For example, in the
policy in Table 5, the SignatureType in the first rule
is required to be a strong signature type (such as rsa-

sha256), the security requirements to the data packets
matched by this rule is apparently higher than those
matched by the second rule in which a sha-256 digest
is sufficient enough.

Compared to the condition on SignatureType, the
condition on KeyLocator could be more complicated.
Although in some cases one can specify the legitimate
signing key name directly (such as the first rule in Ta-
ble 5), in some other cases, the name of a legitimate
signing key depends on the name of the packet. For
example, in the hierarchical trust model, a packet must
be signed with a key that represents one of the packet’s
parent name spaces. In order to describe such a depen-
dency, Guardian provides a new type of condition, called
hyper-relation, which leverages the component extrac-
tion functionality of name pattern.

Hyper-relation is defined with three pieces of infor-
mation:

• p-pattern: name pattern for packet name. With
2See more details about signed interest at http:
//named-data.net/doc/ndn-cxx/current/tutorials/
signed-interest.html

7

key-locator {
k-pattern (<>*)<KEY><><ID-CERT> \1
h-relation is-prefix-of
p-pattern (<>*) \1
}

Figure 6: An example of hyper-relation.

key-locator {
k-pattern (<>*)<admin><><KEY><><ID-CERT> \1
h-relation equal
p-pattern (<>*)<router><><KEY><><ID-CERT> \1
}

Figure 7: An example of hyper-relation for non-
hierarchial trust model.

p-pattern components will be matched from packet
name and expanded into a new name space Np.

• k-pattern: name pattern for KeyLocator. Com-
ponents from KeyLocator will be matched and ex-
panded into another new name space Nk.

• h-relation: relation from the signer’s expanded
name space Nk to the packet’s expanded names-
pace two new name spaces Np. Its value may be
“equal”,“is-prefix-of”and“is-strict-prefix-
of”.

Table 6 shows an example of hyper-relation.
Since hyper-relations regulate the relation between a

packet name and its signer name, they actually define
the trust model of an application. For example, the
hyper-relation in Table 6 defines a hierarchical trust
model, i.e., a key is only trusted to sign data under
its own name space.

Hyper-relations can also be used to define non-hierar-
chical trust model. Table 7 shows such an example. In
this example, an administrator is trusted to sign the
key of routers in the same network. Although the key
name of a router /ucla/router/1 is not under the name
space of the administrator key /ucla/admin/alice/,
the hyper-relation in Table 7 can extract the site prefix
from both names and compare them. Therefore, the
trust can be derived from the administrator of a site to
a router in the site’s network.

Besides supporting the fields that are explicitly de-
fined, checker may also check some implicit information
about signature, e.g., key size. The key size is particu-
larly important, because for some signature algorithms
the key size determines the strength of signature. As a
result, one can specify the minimum key size in checker
through the min-key-size. For example, in Table 5,
the size of an RSA key is required to be at least 2048.

5.3.1 multiple checkers

There are might be several sets of valid conditions on
the same group of packets. For example, for one cater-
gory of contents, both RSA signatures and ECDSA sig-
natures are accepted and the minimum key size may be
different for each signature type. As another example,
it is possible that more than one signers (with differ-
ent identities) are trusted for signing the same content.
Guardian supports multiple condition sets by allowing
multiple checkers in a rule. A packet only needs to pass
one of the checkers.

6. INFO MANAGER
As we mentioned in Section 4.4, InfoManager prepares

the public key that may be used to verify the packet
signature. The module consists of two sub-modules:
TrustAnchors and InfoFetcher and may inlcude two op-
tional caching sub-modules: DataBuffer and Certificate-
Cache. All these sub-modules are configurable. In the
rest of this section, we will discuss these sub-modules
in detail.

6.1 TrustAnchors
The TrustAnchors sub-module stores and manages pre-

authenticated keys. Pre-authenticated keys are loaded
into TrustAnchors when InfoManager is initialized. Be-
fore being loaded, a pre-authenticated key could be stored
in a variety of formats. Therefore, TrustAnchors must
support a variety of key loading mechanisms.

In some cases, a pre-authenticated key may be re-
placed by a new key. Such a key rollover should not
interupt the operation of the depending application.
Therefore, TrustAnchors should also handle key rollover
smoothly during the runtime.

The flexibility of loading keys is enabled by the con-
figuration of TrustAnchors. At least three key loading
mechanisms are supported so far: raw, file, and direc-
tory, as shown in the first three examples in Table 8.
When “raw” is specified, the value is the raw public
key bits that are encoded appropriately (e.g., base64).
When“file”is specified, the value is a path to a file where
the public key bits is stored. When“dir” is specified, the
value is a path to a directory under which each file con-
tains a public key. When more loading mechanisms are
needed, the new mechanism can be supported by in-
troducing more configuration options. Although there
is only one TrustAnchors sub-module, multiple trust-

anchor entries can be specified and all the keys refer-
enced by these entries are loaded into the same TrustAn-
chors.

Athena provides two runtime key rollover mechanisms.
The first one is a programming interface through which
application can trigger key rollover on demand. The
second mechanism is relative passive and is achieved
through a monitoring system. The monitoring system
watches for any changes on the sources specified in the

8

trust-anchor {
raw-base64 "Bv0DGwdG...amHFvHIMDw=="
}
trust-anchor {
file /usr/local/ndn/trusted.key
}
trust-anchor {
dir /usr/local/ndn/keys
}

Figure 8: Examples of trust anchor configuration.

trust-anchor {
file /usr/local/ndn/trusted.key
refresh 1h ; reload the key every hour
}

Figure 9: An example of runtime trust anchor rollover
configuration.

configuration and adjust the pre-authenticated key set
accordingly. User can enable the the watching system
by adding a new entry refresh in the trust-anchor

configuration. The value of this entry is the period for
which the sources are polled. Table 9 shows an exmpale
of enabling the monitoring system.

6.2 InfoFetcher
When the public key for a packet is not one of the

trust anchors, Athena may fetch the public key from the
network. As we mentioned in Section 3.2, how to fetch
a public key depends on the network environment, the
application trust model, etc.. In some cases, the same
information may be served in different ways, thus the
corresponding fetching mechanism could be different as
well. For example, a public key may be served as an
NDNS record or as a part of a jumbo data that con-
tains all the proofs to authenticate the key. Therefore,
it would be desired if InfoFetcher can provide fine gran-
ularity control over the data fetching. Moreover, since
public keys are critical in data validation, InfoFetcher
should also provide sufficient redundancy in data fetch-
ing, in case one of the fetching mechanism fails.

All these requirements can be satisfied by the In-
foFetcher configuration. As shown in Table 10, the con-
figuration consists of a list of fetch entries. Each entry
contains a info-name field which is a name pattern that
can match the name of the requested data and can be
expanded to a new name for the information to fetch.
Similar to the rules defined in the policy section, the
name pf the requested data will be matched from the
first entry in the list until a matched entry is found.
However, if no entry matches the requested data name,
the data name will be directly set as the fetching inter-
est name.

Besides the info-name, an fetch entry may contains
one or more method fields which indicate the method

retrieval {
info-name <localhop><register><>*
method bundle
}
retrieval {
info-name (<>*) \textbackslash 1<endorsement>
method ndns
method bundle
}

Figure 10: Examples of InfoRetriever configuration.

certificate-cache {
cache-size 1000
cache-algorithm lru
max-freshness 1h
}

Figure 11: Examples of CertificateCache configuration.

to fetch the data. The methods are ordered according
to their priorities. When the one method fails, the next
method will be tried if it exists. As a result, the order
of methods represents the strategy of data fetching.

6.3 Caching
As we mentioned before, there are two optional caching

sub-modules in InfoManager: DataBuffer for unverified
packets and CertificateCache for authenticated packets.
Due to their functionality, the configuration of these
two sub-modules only specifies the basic properties of
a cache including: cache-size, cache-algorithm, and
max-freshness. The last property max-freshness is
specified to prevent a non-stale packet from staying in
the cache forever. Table 11 shows an configuration ex-
ample for CertificateCache. The optional modules will
not be enable if the corresponding configuration does
not exist.

7. DEMOSTRATION
In this section, we demonstrate two examples of val-

idaiton process that resembles two existing validaiton
modes: DNSSEC (DNS Security Extenstions) and TLS
(Transport Layer Security).

In DNSSEC mode, authentication information (such
as DNSKEY records and DS records) are retrieved sepa-
rately and can be cached at the validator side for future
usage. In TLS mode, all the authentication informa-
tion3 are all provided by the signer of the target packet.

7.1 DNSSEC-style validation
In order to support the DNNSEC-style validation,

the CertificateCache is enabled while DataBuffer is dis-
abled. Figure 12 shows an example configuration for
the DNSSEC-style validation. The policy in the config-

3we assume that revocation information is conveyed in terms
of OCSP-stapling

9

policy {
rule {
filter {
packet-type data
packet-name <>*
}
checker {
signature-type rsa-sha256
min-key-size 2048
key-locator {
k-pattern (<>*)<KEY><><ID-CERT> \1
h-relation is-prefix-of
p-pattern (<>*) \1
}
}
}
}
trust-anchor {
raw-base64 "Bv0DGwdG...amHFvHIMDw=="
}
certificate-cache {
cache-size 1000
cache-algorithm lru
max-freshness 1h
}

Figure 12: An example of DNSSEC-style validation
configuration.

uration contains a single rule which specifies a hierar-
chical trust model. The trust anchor is the DNS root
expressed in the raw format. The capacity of the cer-
tificate cache is set to 1000. The caching strategy is set
to Least Recently Used (LRU) and the default TTL is
set to 1 hour.

The process flow of DNSSEC-style validation is shown
in Figure 13. A target packet is first processed by the
PolicyChecker module (step 1). PolicyChecker, according
to what is specified in the policy, requests InfoManager
for the public key to verify the target packet (step 2).
InfoManager then looks up the requested certificate in
TrustAnchors and CertificateCache. If the requested cer-
tificate is found, InfoManager will deliver the validation
request to Authenticator for signature verification (step
7).

If the requested certificate is absent in both TrustAn-
chors and CertificateCache, the InfoFetcher will be in-
voked to fetch the certificate (step 3 & 4). The fetched
certificate will be passed back to PolicyChecker as an
internal validation request (step 5 & 6). The process
may develop recursively until one of the authenticated
public key is reached (step 2-6). Once the authentica-
tor has validated an intermediate public key, the key
can be cached in the CertificateCache (step 8). Depend-
ing on the validation result, either SuccessCallback or
FailureCallback will be invoked eventually.

7.2 TLS-style validation
In order to support a TLS-style validation, DataBuffer

is enabled to cache all the authentication information

Info Manager

Trusted Info

Unverified Info
Policy Checker

Authenticator
Trust Anchors

Certificate Cache

Info Fetcher

Origin Validation Request

Failure

Failure

Success

Auth
Info Internal

Validation
Request

Failure

1
2

3

4

5

6

7

8

Figure 13: The validation process in DNSSEC mode.

for the signing key. Since all the authentication infor-
mation has already been supplied, there is no need to
enable CertificateCache. Assume the TLS trust model
can be expressed through NDN name, e.g., the name of
all certificate authority (CA) starts with a name compo-
nent “CA”, an example configuration is shown in Fig-
ure 14. In this configuration, the policy contains two
rules. The first rule restricts the issuer of a certifi-
cate to CAs. The second rule restricts the legtimiate
signer of normal data to be the owner of one of the
data’s parent name spaces. The trust anchor in the TLS
mode are root CAs, whose certificates are stored in a
directory “/usr/local/root-ca/keys”. The capacity
of data buffer is set to 1000, while the caching strategy
of data buffer is set to First In First Out (FIFO).

The process flow of TLS-style validation is shown in
Figure 15. When the original traget packet is submit-
ted to the PolicyChecker module, the related authen-
tication information is also cached in DataBuffer (step
1). If the original packet can pass the PolicyChecker,
the InfoManager will look up the signer’s public key in
TrustAnchors (step 2). If the corresponding public key
is not a trust anchor, InfoManager then looks for the
public key certificate in DataBuffer (step 3) and gener-
ates an internal validation request to PolicyChecker (step
4). Since all the authentication information are cached
in DataBuffer, the validation process will proceed along
with the request exchange between DataBuffer and Pol-
icyChecker (step 2-5), until one of the trust anchor is
reached. After that Authenticator will take over the val-
idation process and trigger the asynchronized validation
callbacks (step 6).

8. DISCUSSION
It is worthwhile to note that the a validation configu-

ration actually provides sufficient information of a par-
ticular trust model. Assume that trust anchors are ex-
pressed in raw mode in a configuration, any device with
such configuration would be able to validate the data

10

policy {
rule {
filter {
packet-type data
packet-name <>*<KEY><><ID-CERT><>
}
checker {
signature-type rsa-sha256
min-key-size 2048
key-locator{
name <CA><>*<KEY><><ID-CERT>
}
}
}
rule {
filter {
packet-type data
packet-name <>*
}
checker {
signature-type rsa-sha256
min-key-size 2048
key-locator {
k-pattern (<>*)<KEY><><ID-CERT> \1
h-relation is-prefix-of
p-pattern (<>*) \1
}
}
}
}
trust-anchor {
dir /usr/local/root-ca/keys
}
data-buffer {
cache-size 1000
cache-algorithm fifo
max-freshness 1m
}

Figure 14: An example of TLS-style validation configu-
ration.

Info Manager

Trusted Info

Unverified Info
Policy Checker

Authenticator
Trust Anchors

Data Buffer

Info Fetcher

Origin Validation Request

Failure

Failure

Success

Auth
Info

Internal
Validation
Request

Failure

1

1

2

3

4
5

6

Figure 15: The validation process in TLS mode.

specified in the policy. When a data consumer sends an
interest along with the corresponding validation config-
uration, the intermediate devices (such as routers) will
be enabled to validate packets, thus further preventing
cache poisoning attacks.

9. CONCLUSION
In this paper, we systematically analyzed the packet

validation procedure in NDN application, and identi-
fied the packet validation requirements of NDN appli-
cations. Based on our analysis, we proposed a modu-
larized validation framework: Athena. The modularized
design makes Athena easy to extend.

We also defined a configuration based interface to
customize Athena and also defined a policy language
Guardian for policy specification. The configuration in-
terface and the policy language free application devel-
opers and researchers from implemention details of the
validation process, allow them to focus on experiment-
ing different trust model and other security features.

10. REFERENCES
[1] N. project team. NDN packet format specification.

http://named-data.net/doc/ndn-tlv/index.html.

11

