NDN; Technical Report NDN-0029, 2015. http://named-data.net/techreports.html
Revision 1: April 20, 2015

Public Key Management in Named Data Networking

Yingdi Yu
UCLA
yingdi@cs.ucla.edu

ABSTRACT

As every data is signed in Named Data Networking (NDN),
public key management becomes critical. The public key
management requires a well-defined certificate format and
several systems and protocols to support certificate distri-
bution and revocation. In this paper, we proposed the new
NDN certificate format, discussed several approaches of serv-
ing certificates in NDN. We also discuss how to revoke cer-
tificates with the new certificate design.

1. MOTIVATION

In Named Data Networking (NDN), the content of
a data packet is securely bound to the packet name
through a signature. The validity of a data packet and
its content depends on the validity of the signature.
Since public key signatures are widely used in NDN,
the public key management therefore becomes critical
in NDN security.

From the perspective of a data consumer, the public
key of the producer of a data packet must be authenti-
cated before the signature verification. It is impractical
to assume that a data consumer has pre-authenticated
the public key of all the potential data producers. In
many cases, a data producer may have to fetch a data
producer’s public key from the network on demand.
Since the network is not assumed to be trustworthy in
NDN, a data consumer must validate each public key
that is fetched from the network. As a result, an as-
sertion about the validity of a public key made by a
trusted third party becomes important in NDN.

The most common assertion format is a public key
certificate which securely associates a public key with
a particular identity, or a name in the NDN context!.
One of the purposes of this document is to introduce
the format of the public key certificate in NDN and
elaborate the reason of the design.

From the perspective of a data producer, it is very im-
portant to make its public key certificates available, oth-

by identity, we mean an identifier of a data producer in the
cyberspace rather than the producer’s real world identity.
The mapping from a cyberspace identifier to a real world
identity is determined by applications or human users

erwise its data will be rejected due to unverifiable sig-
nature. Although several certificate provisioning mech-
anisms have been proposed (such as NDNS [3], PIB [2]),
they are all limited by the concept of publishing certifi-
cate explicitly through an application. Another pur-
pose of this document is to propose an application-
independent certificate provisioning mechanism.

Moreover, since data are directly signed, the data
provisioning model of NDN becomes different from the
one in traditional IP network and bring up several chal-
lenges in public key management in NDN. For example,
how to check if signing key of a data has been not been
compromised, how to check if a signature has not been
revoked before the expiration timestamp how to main-
tain data after the signature expires, and etc. In this
document, we will also discuss the possible solution to
these challenges.

2. SECURITY MODEL

In TP network, the data security is based on the se-
cure session through which data is transmitted. In or-
der to start a secure session, an end point of the session
needs to authenticate the other end point and negoti-
ate a session key to encrypt data transmitted in the
session. When public key cryptography is used in au-
thentication, an end point must prove that it has a pri-
vate key whose public key is bound to the name of the
data producer.

Such a session based security model assumes that the
host of data is also the producer of the data. As a re-
sult, when the data producer and data host are different,
the data host must “pretend” to be the data producer.
For example, in order to allow data consumer to estab-
lish a secure session to a Content Distribution Network
(CDN) server, the data producer (a CDN customer in
this example) either distributes its private keys on the
data hosts (CDN servers in this example) or binds its
own identity to the public key of the data hosts. Ac-
tually, such a session based security model has already
caused some problems in distributing content in IP net-
work [5].

Unlike IP network, NDN secures data directly. Data

is signed by its producer and can be directly verified
using the producer’s public key. As a result, the role of
data producer and data host can be separated in data
provisioning. If the credential about data producers are
publicly available, the data hosts in NDN only need to
serve the signed data rather than pretend to be the data
producers.

3. CERTIFICATE IN NDN

A certificate usually associates a public key with an
identity name through a signature. Similarly, the con-
tent of a NDN data packet is bound with the data name
through a signature. If we assume that an identifier can
be expressed as a data name, a data packet containing
a public key bits is essentially a certificate. As a result,
an NDN certificate is defined as a data packet with a
special type of content.

3.1 Certificate Name

As a data packet, an NDN certificate must have a
name. The certificate name plays at multiple roles in
security and data fetching, thus it deserves further dis-
cussion.

3.1.1 What should a certificate name contain?

One major usage of certificate name is the KeyLo-
cator of a data packet. The KeyLocator serves two
purposes: first, as its name suggests, it can be used to
retrieve the public key; second, it may also help data
consumers to determine the legitimacy of the signer.
Therefore, it would be necessary to encode the identity
that is associated with a public key into a certificate
name, so that data consumer can discard a data packet
directly if the certificate name does not contains a cor-
rect identity. Moreover, if the prefix of a certificate
name is the identity, certificate fetching can leverage
the NDN packet forwarding system as fetching other
normal data.

While a certificate associates a public key with an
identity, the same identity may be associated with more
than one public keys. For example, a user may deploy
two keys associated to the same name on two devices,
or a user may periodically replace its key while still
keeping the same identity. As a result, a key id must
be present in a certificate name in order to distinguish
the certificates for different keys.

Moreover, the certificate of a public key may have
more than one version due to the signature changes. For
example, when the certificate issuer replaces its key, it
should re-sign all the certificates which are signed with
the replaced key. The re-signed certificate is essentially
a new certificate due to the new signature. A version
number in the certificate can effectively distinguish the
two certificates with different signatures.

/ndn/edu/ucla/alice/KEY/%ef%al...%34/%01%c2...%f2

|<—Identifier—>| |<—key id—>|<—version—>|

Figure 1: Certificate naming convention.

3.1.2 What should NOT be a part of a certificate
name?

A certificate name should not include routing related
information. Otherwise, one may have to generate mul-
tiple certificates for a single public key, if the public key
is expected to be served from different networks. We
will discuss how to route the interests for certificate in
Section 4.

Similarly, a certificate name should not include the
information about the serving application, in order to
avoid generating multiple certificates if the public key is
published by different applications. We will also discuss
how to serve certificate from end hosts in Section 4.

Moreover, signer information should not be included
in certificate name, for two reasons. First, a public key
may only need one signer (or certifier) in most cases.
For example, in a hierarchical trust model, the signer
of a public key is usually pre-defined. In this case, it is
redundant to include the signer name in the certificate
name. Second, when more than one signers are required
for a public key, it would be more efficient to retrieve
all the signatures together rather than to retrieve the
same public key with different signature separately (the
multiple signatures will be discussed in Section 3.4.3).
In this case, it is unnecessary to encode all signer’s name
in a certificate name.

3.1.3 Certificate naming convention

Based on the discussion above, we propose the nam-
ing convention for NDN certificates as shown in Fig-
ure 1. A certificate name starts with the associated
identity name which is followed by a special name com-
ponent KEY and another name component containing
the key id. The last name component of a certificate
name is the version number of the certificate.

There are two design choices for key id. One is a
globally unique id, e.g., a SHA-256 hash of the public
key bits. The other one is an relatively unique id (e.g.,
a timestamp), because the id has to be combined with
the identity name to uniquely identify a public key.

The benefit of a relatively unique id is the size of
the id. The key id may have only 8 bytes when it is
expressed in terms of timestamp. In contrast, a key id
in terms of SHA-256 hash will take 32 bytes.

The advantage of using key hash as the key id is that
the certificate name implicitly fixes the associated pub-
lic key. Such a property is more desirable, because it

MetaInfo:
ContentType: key
ContentFormat: X.509 Key
FreshnessPeriod: 86400000 // ms

Figure 2: An example of Metalnfo of a public
key certificate.

Name: /ucla/alice/KEY/%1/%2
Metalnfo:

ContentFormat: X.509 Key
Content:

Public key bits in X.509 format

Signaturelnfo:
SignatureType: SignatureRsaWithSha256
KeyLocator: (signer key name)
SignatureValue:

Name: /ucla/bob/KEY/%3/%4
Metalnfo:

ContentFormat: X.509 Cert
Content:

X.509 Certificate

Signaturelnfo:
SignatureType: DigestSha256
SignatureValue:

Figure 3: Example of certificate with different
content format.

allows routers to check whether a retrieved public key
matches the key hash in the interest name, thus partly
avoiding cache poisoning attacks. Therefore, we recom-
mend to use key hash as the key id when the length of
the certificate name is less important.

3.2 Metalnfo

Public key is a special type of content in NDN. The
value of ContentType in MetaInfo of a certificate is
defined to be Key.

Besides ContentType, it would also be desirable to
define another sub-field ContentFormat to describe the
encoding format of the public key in the content. With
such information, data consumer does not have to make
implicit assumption about the public key encoding. The
default public key format is X.509 Key (the public key
format of X.509 standard [4]).

Since ContentFormat enable public keys to be en-
coded in a variety of formats. As a result, it is possi-
ble to introduce new public key formats and also allow
reusing non-NDN certificates, e.g., X.509 certificate by
explicitly set ContentFormat to X.509 Cert.

3.3 Content

Depending on the ContentFormat in MetaInfo, the
content of a data packet could be the raw bits of a pub-
lic key (e.g., X.509 Key) or a certificate in other format
(e.g., X.509 Cert), as shown in Figure 3. If the con-
tent is the raw key bits, the validity of the certificate is
determined by the signature of the data packet. If the
content is some other certificate, the validity is actu-
ally determined by the signature of the inner certificate.
Data consumers who can recognize the content format
should validate the public key using the format specific
logic. Data consumers should discard a certificate if its
content format cannot be recognized.

3.4 Signaturelnfo & SignatureValue

The Signaturelnfo and SignatureValue matters only
when the content of certificate is raw key bits (e.g., con-
tent format is X.509 Key). In current NDN packet for-
mat specification, SignatureInfo is defined with two
sub-fields: SignatureType and KeyLocator. However,
some other information about the signature is still miss-
ing.

3.4.1 Signature Validity Period

The first missing information is the validity period
of the signature. Therefore, we propose a new sub-field

ValidityPeriod in SignatureInfo. The ValidityPeriod

consists of two timestamps: NotBefore is the times-
tamp when the signature becomes valid, and NotAfter
is the timestamp after which the signature should not
be considered as valid. The actual validity period of a
signature subjects to the validity period of its signing
key, that is, a signature can only be valid during a pe-
riod which is the intersection of the validity period of
keys on the signing chain.

Both timestamps in ValidityPeriod are specified us-
ing absolute timestamp. It may inevitably introduce the
problem of clock synchronization. The clock synchro-
nization is a general problem for any certificate system,
and how to solve this problem is beyond the scope of
this document.

3.4.2 Signature Extensions

We also propose a pair of sub-fields: CriticalExtensions

and NonCriticalExtensions in order to enable new
signature features in the future. Each of these two sub-
fields consists of a list of extensions. For any extension
in the critical extension list, data consumer must pro-
cess it if it can be recognized. Data consumer must treat
the signature as invalid if a critical extension cannot be
recognized. For any extension in the non-critical exten-
sion list, data consumer may process it if the extensions
can be recognized, and may ignore it if the extensions
cannot be recognized.

An example of signature extension is the signature
status checking. In some cases, a signature may be re-

Jucla/bob/KEY/%1/%2/SIG/%01
|<_ original __|
cert name

Segment Number

Figure 4: Signature bundle naming convention.

voked before its validity period expires. A data con-
sumer may need to check the status of a signature even
if it is still in the validity period. A signature extension
for status checking can provide sufficient information
for data consumer to collect the signature status, and it
may allow signers to enforce signature status checking.
We will discuss signature status checking in detail in
Section 5.1.

3.4.3 Multiple Signature Extension

Another example of signature extension is the one
for multiple signatures, MultipleSig. Note that multi-
ple signatures are only needed by certificate. A normal
data packet with multiple signatures is equivalent to a
normal data packet signed with a key with multiple sig-
natures. Therefore, for the discussion below, we focus
on multiple signatures for public keys.

When an association between a public key and a iden-
tity can be certified by more than one signers, it is un-
necessary to retrieve multiple data packets, each carry-
ing the same public key and signed by a different signer.
Instead, it would be more efficient to publish all the sig-
natures in a single data packet, called signature bundle.
Note that each signature in a key bundle is still in-
dependently verifiable, when combined with the Name,
MetaInfo, and Content of the original packet.

The value of a multiple signature extension is the
name of the signature bundle. The name of the sig-
nature bundle is an extension of the original data name
as shown in Figure 4. It starts with the name of original
data name as a prefix, so that data consumer can always
fetch the signature bundle in the same way as the origi-
nal data packet. After that, the signature bundle name
has a special name component SIG indicating that the
content is a signature bundle. After SIG component,
there is a segment number in case the signature bundle
is too big to fit in one data packet. A signature bundle
name also has an implicit name component which is the
digest of the bundle (or segment if a bundle is divided
into multiple segments). When the digest is explicitly
expressed (as the last name component of a signature
bundle name) in the MultipleSig extension, it can fixes
all the signatures of the certificate.

When multiple signature extension is used, the origi-
nal certificate can be self-signed, as the multiple signa-
ture extension points to the actual signature set. When-
ever the signature set changes, the owner of the public

Name: /ucla/bob/KEY/%1/%2
Metalnfo:
& | Content:
x public key bits
2 | signaturelnfo:
2 SignatureType: SignatureRsaWithSha256
o KeyLocator: /ucla/bob/KEY/%1 (self-signed)
NonCriticalExtension:
MultipleSig: /ucla/bob/KEY/%1/%2/S1G/%00/%a
SignatureValue
o |
Name: /ucla/bob/KEY/%1/%2/S1G/%00/%ab
— | Metalnfo:
o | Content:
2 Siglnfo1, SigValue1, Siglnfo2, SigValue2, ...
@ | Signaturelnfo:
o SignatureType: SignatureRsaWithSha256
% KeyLocator: /ucla/bob/KEY/%1 (self-signed)
=4 NonCriticalExtension:
D MultipleSig: /ucla/bob/KEY/%1/%2/S1G/%01/%e
SignatureValue \
o« | Name: /ucla/bob/KEY/%1/%2/S1G/%01/%e3 =
o | Metalnfo:
T | Content:
@ SigInfo3, SigValue3, Siginfo4, SigValue4, ...
o | Signaturelnfo:
% SignatureType: SignatureRsaWithSha256
S KeyLocator: /ucla/bob/KEY/%1 (self-signed)
o | SignatureValue

Figure 5: Example of multiple signature exten-
sion.

key may generate a new version of signature bundle,
and also generate a new version of self-signed certifi-
cate whose multiple signature extension points to the
new signature bundle.

As we mentioned earlier, it is possible that the sig-
nature bundle cannot be fit into a single data packet.
In this case, the signature bundle can be divided into
several data packets, or segments. Each segment is also
self-signed. All the segments in the same signature bun-
dle are chained together by putting the full name of the
next segments (i.e., with implicit digest) into its own
multiple signature extension, and a certificate user ver-
ify the integrity of the signature bundle. Figure 5 shows
an example where a signature bundle is split into two
segments.

3.5 Capability Certificate

The certificates discussed above associate a public key
with an identity name. Some certificates may associate
a public key with certain capabilities, e.g., the CA cer-
tificate in PKIX [4] associates the capability of certi-
fying other’s identity with a public key. For this type
of certificates, we assume that the associated capabil-
ity can be also expressed as a NDN name, i.e., named
capability. With this assumption, both identity certifi-
cate and capability certificate can be generalized by the
NDN certificate.

4. CERTIFICATE PROVISIONING

To facilitate the discussion, we introduce three roles
in certificate provisioning: private key owner, certificate
host, and certificate user.

A private key owner is the one who possesses a private
key, thus it is also the owner of the corresponding public
key certificate. Ideally, there should be only one owner
for each certificate.

Certificate host is the one who has a copy of the cer-
tificate and listens to the prefix of the certificate in order
to satisfy the interests for the certificate. Given a cer-
tificate, there could be multiple certificate hosts. Some
certificate hosts are explicitly designated by the private
key owners while all the other certificate hosts are non-
designated hosts.

Certificate users are those who use a certificate to
verify the signature of the private key owner. A cer-
tificate user may retrieve a certificate from one of the
certificate hosts. Note that the interest for certificate
may be satisfied by the copy cached in a router on the
way to the certificate host.

Figure 6 shows an example of how the three roles
interact with each other in the certificate provisioning.
We will discuss them in detail in the rest of this section.

4.1 Private Key Owner

subscribe
/ucla/alice cert

Non-designated Designated Designated
host __host2 h/os,tj

/localhome
Certificate

Private key owner
/ndn/alice

[fetch forwarding hint of /ucla/alice cert |

/
‘\ Cerfificate /ﬁ @ NDNS

—user1 _— authority server

Figure 6: Example of certificate provisioning.

The responsibility of a private key owner is to main-
tain the certificate. First, the owner of a private key
should find at least one designated host for its certifi-
cate. Such a designated host could be managed by the
private key owner or by some third party who provides
data hosting service for the private key owner. For ex-
ample, in Figure 6, the owner of a private key with
the identifier (/ucla/alice) has two designated hosts:
one in the /ucla network which is managed by the pri-
vate key owner and the other one is provided by a data
hosing service /datafarm. Having multiple designated
certificate hosts may improve the availability of certifi-
cate.

Second, the owner of a private key should keep the
consistency of the certificates on all its designated hosts.
For example, when multiple signatures exist for a pub-
lic key, the private key owner should manage the corre-
sponding signature bundle as described in Section 3.4.3.
Whenever the signature bundle is changed (e.g., new
signature is added), the private key owner should as-
sure that each designated host have a new version of
the certificate. The owner may explicitly upload the
new version of certificates to these designated hosts (as
the step 1 in Figure 6, or specify a primary designated
host and require all the other designated hosts to syn-
chronize with the primary one. However, the details of
these mechanisms are out of the scope of the document.

Moreover, a private key owner should make the for-
warding information about its designated hosts avail-
able. This can be done with the help of NDNS [3].
For example, in step 2 in Figure 6, a private key owner
creates NDNS forwarding hint records pointing to each
designated certificate hosts.

4.2 Certificate Host

As we mentioned before, there are two types of cer-
tificate hosts. The designated hosts are supposed to be
publicly available for general purpose, while the non-
designated hosts are usually locally available for specific
usage. For example, an end host could be a certificate
host for prefix registration on a local hub. In this case,
the end host can serve all the certificates that are re-
quired to validate a prefix registration command and
do not expect receiving any interests for certificate from
some certificate users other than the local hub.

Unlike designated certificate hosts, private key own-
ers are not aware of the existence of non-designated
certificate hosts. Therefore, it is the non-designated
certificate hosts’ own responsibility to obtain the latest
changes on a certificate. As shown in step 3 in Figure 6,
the non-designated certificate host may subscribe the
certificate updates from one of the designated hosts.

4.3 Certificate User

Ideally, users of a certificate should not be aware of
where and how the certificate is served. A certificate
user may try to fetch the certificate within the local
network (step 6 in Figure 6), and try to fetch the cer-
tificate from designated certificate hosts if the local at-
tempt fails.

However, it would be beneficial if a certificate user
has some knowledge about the certificate provisioning.
For example, if a certificate user knows for sure that
there is no local certificate host, it can skip the attempt
to fetch certificate locally and look up the forwarding
hint directly in NDNS (step 4 and 5 in Figure 6).

4.4 Application Independent Certificate Host-
ing

There are several certificate hosting mechanisms that
have already been proposed, e.g., NDNS and PIB. How-
ever, all these mechanisms explicitly requires certificate
users to send an interest for certificate as a query to an
particular application. As a result, some application-
specific name components (such as “NDNS” and “PIB”)
are explicitly encoded in the interest name. It might be
problematic to encode hosting application specific com-
ponents into a certificate name, because it implies that
either a certificate has to be served using the same ap-
plication, or a private key owner has to obtained a new
certificate when the hosting application is changed.

If certificate name is kept as application-independent,
then using existing certificate hosting mechanism to host
certificate will inevitably involve packet encapsulation,
that is, the requested certificate is encapsulated as a
content of a data packet whose name is application-
dependent. However, packet encapsulation implies that
the same certificate may be cached as multiple packets
due to different names, thus it may impair the efficiency

Insert data into repo

Managed 4 @

Repo

@A
Try to match
data in repo

Local
—| Forwarding

@ Daeon @
quward intergst to app
if no match in repo

Application-independent publishing

Figure T7:
model

of caching.

It would be worthwhile to notice that all the problems
above are caused by a concept of publishing certificate
explicitly through certain application (either NDNS or
PIB), because the local interest forwarding daemon (e.g.,
NFED [1]) needs to explicitly forward the interests for
certificate toward the publishing applications. It is rea-
sonable to forward interests towards an application if
the requested data should be produced by the appli-
cation on demand, however, once data have been pro-
duced, serving the data from an end host should not
involve the producing application. Certificate is a type
of data that are rarely produced on demand, even if it is
on demand, it can be done in an obscure way. Therefore,
hosting certificate should be application independent.

We propose an application-independent mechanism
to host certificate. Note that, such an mechanism should
also apply to any other data that is not produced on
demand. Figure 7 illustrates the data publishing mech-
anism. When an application needs to publish some
data, the application simply store the data in a man-
aged repository (Step 1). A write access control whose
trust model is equivalent to prefix registration can be
applied to the managed repository, so that only legit-
imate application can add/remove data under the its
registered prefixes.

When the local forwarding daemon receives an inter-
est for the data (Step 2), the daemon will look for the
matched data in the managed repository (Step 3) be-
fore forwarding the interest to the applications that can
produce the data (Step 4). When certificate publishing
is concerned, step 4 can be omitted since certificate is
never produced on demand.

S. PUBLIC KEY MANAGEMENT

In this section, we discuss how to manage public key
from perspectives of private key owner. A key owner
should consider three things: 1) how to make public
key certificate available; 2) how to revoke a signature;
and 3) how to revoke a public key. The first question
has been discussed in Section 4. In this section, we focus

/ucla/bob/SigStatus/%e3....%f4/%01...%a3

7 N

signer name implicit digest status
of signed data timestamp

Figure 8: Signature status naming convention.

on the rest two questions.

It would be worthwhile to clarify the difference be-
tween signature revocation and key revocation first. Sig-
nature revocation usually affects only one signature.
Revoking a signature usually implies that the binding
between the data name and content is no longer valid
even if the signature is still within its validity period.
Signature revocation does not necessarily imply the sign-
ing key is compromised. However, key revocation is
needed when the a key is compromised. Therefore, all
the certificate of the compromised key becomes invalid,
and the validity of all signatures generated using the
compromised key becomes questionable if the time point
when the key is compromised is unknown.

5.1 Signature Revocation

There are two signature revocation approaches. The
first one is to ask the private key owner to publish a
negative statement about the signature, and the sec-
ond one is to keep publishing a positive statement until
the signature is revoked or expires. Both approaches
have their own limitations when the statements are tem-
porarily unavailable, (e.g., due to packet loss or opera-
tion failure). In the worst case, the absence of a negative
statement may cause false authentication, thus privilege
may be given out to unauthorized parties. In contrast,
the absence of a positive statement may cause denial of
service, but do not grant any privilege. It is not easy
to permanently keep data unavailable in a distributed
system such as NDN, but once a privilege is granted
it is really difficult to revert all the effects. Therefore,
temporary denial of service is more tolerable than inap-
propriately granted privilege in NDN public key man-
agement.

In NDN, the statement about the validity of a signa-
ture is expressed as a data packet, called signature sta-
tus. Since a signature represents an assertion made by
the private key owner, it is the owner’s decision whether
to publish its signature status data. If the private key
owner decides to publish its signature status, the owner
should assure the same availability of its signature sta-
tus as its certificate.

The naming convention of signature status data is
shown in Figure 8. Its name starts with the name of the
key owner (or signer) as its prefix. That implies that
signature status data shares the same name prefix as

the signer’s certificate, so it can be fetched in the same
way as the signer’s certificate. After the signer name,
there is a special name component SigStatus which indi-
cates that the content is the status of one of the signer’s
signatures. The digest of the data packet to which the
signature belongs is appended after SigStatus. This di-
gest can uniquely identify the corresponding signature.
The last component in the name of a signature status
data is the timestamp of the status. Although ideally a
signer should publish the status of its signature on de-
mand for every query, it is still the signer’s decision how
to publish the signature status. For example, a signer
may choose to publish its signature periodically and can
decide the period of the signature status publishing.

The content of a signature status data consists of two
pieces of information: the signature status (“good” or
“revoked”) and the reason if the signature is revoked.

As we mentioned in Section 3.4.2, a signature exten-
sion StatusChecking can be defined to support signa-
ture status checking. The presence of StatusChecking
implies the signature status data is available. By mak-
ing StatusChecking as a critical signature extension,
the private key owner can explicitly require certificate
users to check the status of its signature. If a status
checking extension is marked as non-critical extension,
it is determined by the certificate user’s policy to check
the signature status.

The StatusChecking extension also provides suffi-
cient information that can help a certificate user to fetch
the signature status. For example, a private key owner
can specify the period of the signature status publish-
ing. With this information, a certificate user can deter-
mine the timestamp of the requested signature status.

In case that the private key owner may not be able
to periodically publish the signature status data, the
key owner may delegate the task of publishing signature
status to a trusted third party by specifying the name of
the third party in the signature status extension. As a
result, the signature status data will be published under
a name with the third party name prepended.

5.2 Key Revocation

If a key is compromised, it is ineffective to revoke each
signature generated using the key. A more straightfor-
ward solution is to ask the private key owner to sui-
cide the key by making a self-signed “suicide” certifi-
cate. Such a suicide certificate is almost the same as a
self-signed certificate, except that the certificate name
has an special name component REVOKED appended.

Note that such a suicide certificate is a negative state-
ment, therefore it is important to make the revocation
certificate publicly available for certificate users. The
private key owner, of course, can publish the suicide cer-
tificate in the same way as normal certificate. However,
it requires certificate users to explicitly fetch the sui-

cide certificate on demand and also requires key owner
to keep generating a NACK for the suicide certificate
before the suicide is committed.

Another solution is to build a global suicide direc-
tory for keys which is synchronized by all the certificate
users, so that certificate users already know which keys
suicide before verifying the signature. Since the design
details of the suicide directory is beyond the scope of
this document, we briefly describe the idea of the sui-
cide directory here.

A suicide directory can be implemented as a tamper-
evident log. Suicide certificates are appended to the log
one-by-one. The appending order is managed by only
a limited number of entities who receive and verify the
suicide report from the owner of compromised private
keys.

Since the log is tamper-evident, if a managing en-
tity tries to modify the log, it can be detected imme-
diately, thus forcing each managing entity to behave
correctly. Moreover, unless all the managing entities
collude together, it is really difficult to prevent a pri-
vate key owner to append a suicide certificate to the
log.

6. DATA PROVISIONING

According to the discussion above, a data consumer
(or a certificate user) may need to fetch a lot of public
key related data to validate a data packet. These data
may include certificates that can be used to derive a
chain of trust from a trust anchor to the data, the sig-
nature status of data or certificates on the chain, and
the directory of suicide keys. We generally call these
public key related data as authentication data.

Although ideally a data host only needs to serve data,
it would be more useful to ask data hosts to serve all
the authentication data as well. These authentication
data are usually spread at different places in the net-
work, it is not guaranteed that a data consumer will
be able to fetch all the required data. Failing to fetch
one of them may prevent the data consumer from val-
idating the data. If data hosts can pre-collect all the
information, such single point failures can be effectively
avoided. Moreover, it can also save the efforts of data
consumers to individually fetch these data.

Furthermore, data host can publish all the public key
related data as a bundle, called key bundle. As all these
data can be combined in one or a few packets, several
round trip time for data consumer can be avoided in
data fetching, thus reducing the latency of data valida-
tion.

The naming convention of key bundle is shown in
Figure 9. It starts with the original data name in or-
der to guarantee that the key bundle can be retrieved
in the same way as the data. A special name compo-
nent PROOF is appended after the original data name,

/ucla/bob/music/1/PROOF/hierarchical/%e5...%a3/%01

7 A

original data trust model trust anchor segment
name (optional)

Figure 9: Key bundle naming convention.

indicating the content type. After PROOF, there are
three more components. The first two components in-
dicate the trust model and trust anchor of the key bun-
dle. That is, if a data consumer is using the same trust
model and trust anchor, it should be able to validate
the original data with this key bundle. The last compo-
nent is segment number. It is only needed when all the
authentication data cannot be fit into one data packet.

Since the content of a key bundle is authentication
data which are all verifiable, the key bundle does not
have to be signed. The authentication data are ar-
ranged in a specific order: the authentication data for a
key should be placed before those keys downstream the
signing chain, so that each intermediate key can be im-
mediately validated with the authentication data that
have been validated.

7. REFERENCES

[1] NFD - Named Data Networking Forwarding
Daemon. http://named-data.net/doc/NFD/.

[2] Public-key Info Base service.
http://redmine.named-data.net/projects/ndn-
cxx/wiki/PublicKey_Info_Base.

[3] A. Afanasyev. Addressing Operational Challenges
in Named Data Networking Through NDNS
Distributed Database. PhD thesis, UCLA, 2013.

[4] D. Cooper, S. Santesson, S. Farrell, S. Boeyen,
R. Housley, and W. Polk. RFC 5280: Internet x.
509 public key infrastructure certificate and
certificate revocation list (crl) profile, May 2008.

[5] J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and
J. Wu. When https meets cdn: A case of
authentication in delegated service. In Security and
Privacy (SP), 2014 IEEE Symposium on, 2014.

