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ABSTRACT

Named Data Networking (NDN) is one of five projects funded
by the U.S. National Science Foundation under its Future
Internet Architecture Program. NDN has its roots in an
earlier project, Content-Centric Networking (CCN), which
Van Jacobson first publicly presented in 2006.) The NDN
project investigates Jacobson’s proposed evolution from to-
day’s host-centric network architecture (IP) to a data-centric
network architecture (NDN). This conceptually simple shift
has far-reaching implications for how we design, develop,
deploy, and use networks and applications. We describe the
motivation and vision of this new architecture, and its basic
components and operations. We also provide a snapshot of
its current design, development status, and research chal-
lenges. More information about the project, including pro-
totype implementations, publications, and annual reports,
is available on named-data.net.

1. VISION: A NEW NARROW WAIST

Today’s Internet’s hourglass architecture centers on a uni-
versal network layer (i.e., IP) which implements the minimal
functionality necessary for global interconnectivity. This
thin waist enabled the Internet’s explosive growth by al-
lowing both lower and upper layer technologies to innovate
independently. However, IP was designed to create a com-
munication network, where packets named only communi-
cation endpoints. Sustained growth in e-commerce, digital
media, social networking, and smartphone applications has
led to dominant use of the Internet as a distribution network.
Distribution networks are more general than communication
networks, and solving distribution problems via a point-to-
point communication protocol is complex and error-prone.

The Named Data Networking (NDN) project proposed an
evolution of the IP architecture that generalizes the role of
this thin waist, such that packets can name objects other
than communication endpoints (Figure 1). More specifi-
cally, NDN changes the semantics of network service from
delivering the packet to a given destination address to fetch-
ing data identified by a given name. The name in an NDN
packet can name anything — an endpoint, a data chunk in
a movie or a book, a command to turn on some lights, etc.
This conceptually simple change allows NDN networks to

LepA New Way to Look at Networking”,
https://www.youtube.com/watch?v=0CZMoY3q2uM
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Figure 1: The main building blocks of the NDN ar-
chitecture are named content chunks, in contrast to
the IP architecture’s fundamental unit of communi-
cation, which is an end-to-end channel between two
end endpoints identified by IP addresses.
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use almost all of the Internet’s well-tested engineering prop-
erties to solve a much broader range of problems including
not only end-to-end communications but also content dis-
tribution and control problems. Based on three decades of
experience with the strengths and limitations of the current
Internet architecture, the design also builds in security prim-
itives (via signatures on all named data) and self-regulation
of network traffic (via flow balance between Interest and
Data packets). The architecture includes functionality de-
signed to be conducive to user choice and competition as
the network evolves, such as multipath forwarding and in-
network storage.

NDN is one instance of a more general network research di-
rection called information-centric networking (ICN), under
which different architecture designs have emerged [29]. The
Internet Research Task Force (IRTF) established an ICN re-
search working group in 2012%. In this paper we provide a
brief (and necessarily incomplete) snapshot of the current
state of the NDN architecture research project, which in-
cludes sixteen NSF-funded principal investigators at twelve
campuses, and growing interest from the academic and in-
dustrial research communities. A more complete description
of recent activities is in the third annual project report [20]
and on the NDN web site (named-data.net).

2http ://trac.tools.ietf.org/group/irtf/trac/wiki/icnrg
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2. NDN ARCHITECTURE

Communication in NDN is driven by receivers i.e., data
consumers, through the exchange of two types of packets:
Interest and Data. Both types of packets carry a name that
identifies a piece of data that can be transmitted in one
Data packet. A consumer puts the name of a desired piece
of data into an Interest packet and sends it to the network.
Routers use this name to forward the Interest toward the
data producer(s). Once the Interest reaches a node that has
the requested data, the node will return a Data packet that
contains both the name and the content, together with a
signature by the producer’s key which binds the two (Fig-
ure 2). This Data packet follows in reverse the path taken
by the Interest to get back to the requesting consumer.

Interest Packet Data Packet

% Name é % Name %
Selectors Metalnfo
(order preference, publisher filter, (content type,
exclude filter, ...) freshness period, ...)
% Nonce % é Content %
Guiders Signature
(scope, Interest lifetime) (signature type, key locator,
signature bits, ...)

Figure 2: Packets in the NDN Architecture.

To carry out the Interest and Data packet forwarding
functions, each NDN router maintains three data structures:
a Pending Interest Table (PIT), a Forwarding Information
Base (FIB), and a Content Store (CS) (Figure 3), as well
as a Forwarding Strategy module (not shown in the figure)
that determines whether, when and where to forward each
Interest packet. The PIT stores all the Interests that a
router has forwarded but not satisfied yet. Each PIT en-
try records the data name carried in the Internet, together
with its incoming and outgoing interface(s). When an Inter-
est packet arrives, an NDN router first checks the Content
Store for matching data; if it exists the router returns the
Data packet on the interface from which the Interest came.
Otherwise the router looks up the name in its PIT, and if
a matching entry exists, it simply records the incoming in-
terface of this Interest in the PIT entry. In the absence of a
matching PIT entry, the router will forward the Interest to-
ward the data producer(s) based on information in the FIB
as well as the router’s adaptive Forwarding Strategy. When
a router receives Interests for the same name from multiple
downstream nodes, it forwards only the first one upstream
toward the data producer(s). The FIB itself is populated by
a name-prefix based routing protocol, and can have multiple
output interfaces for each prefix.

The Forwarding Strategy may decide to drop an Interest
in certain situations, e.g., if all upstream links are congested
or the Interest is suspected to be part of a DoS attack. For
each Interest, the Forwarding Strategy retrieves the longest-
prefix matched entry from the FIB, and decides when and
where to forward the Interest.®> The Content Store is a tem-
porary cache of Data packets the router has received. Be-
cause an NDN Data packet is meaningful independent of

3While an IP router may be able to reach a network prefix
via multiple interfaces, it uses only one except in special
cases where multiple best paths have identical cost.
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Figure 3: Forwarding Process at an NDN Node.

where it comes from or where it is forwarded, it can be
cached to satisfy future Interests.

When a Data packet arrives, an NDN router finds the
matching PIT entry and forwards the data to all down-
stream interfaces listed in that PIT entry. It then removes
that PIT entry, and caches the Data in the Content Store.
Data packets always take the reverse path of Interests, and,
in the absence of packet losses, one Interest packet results
in one Data packet on each link, providing flow balance. To
fetch large content objects that comprise multiple packets,
Interests provide a similar role in controlling traffic flow as
TCP ACKs in today’s Internet: a fine-grained feedback loop
controlled by the consumer of the data (see Section 2.1).
Neither Interest nor Data packets carry any host or inter-
face addresses; routers forward Interest packets toward data
producers based on the names carried in the packets, and
forward Data packets to consumers based on the PIT state
information set up by the Interests at each hop. This Inter-
est/Data packet exchange symmetry induces a hop-by-hop
control loop (not to be confused with symmetric routing, or
with routing at all!), and eliminates the need for any notion
of source or destination nodes in data delivery, unlike in IP’s
end-to-end packet delivery model.

2.1 Names

Although routers recognize boundaries between compo-
nents in a name, they attribute no meaning to names, i.e.,
NDN names are opaque to the network. This design decision
allows each application to choose the naming scheme that
fits its needs, and naming can thus evolve independently
from the network. The NDN design assumes hierarchically
structured names, e.g., a video produced by UCLA may
have the name /ucla/videos/demo.mpg, where ¢/’ delineates
name components in text representations, similar to URLs.
This hierarchical structure allows applications to represent
the context and relationships of data elements. For exam-
ple, segment 3 of version 1 of a UCLA demo video might be
named /ucla/videos/demo.mpg/1/3. It also allows name
aggregation, e.g., /ucla could correspond to an autonomous
system originating the video. Flat names can be accommo-
dated as a special case, likely useful in local environments,
however hierarchical namespaces are essential both in scal-
ing the routing system and in providing necessary context
for the data. (Even advocates of flat routing acknowledge
that flat names scale by introducing some hierarchy [2].)
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To retrieve dynamically generated data, consumers must
be able to deterministically construct the name for a desired
piece of data without having previously seen the name or
the data. Either: (1) a deterministic algorithm allows the
producer and consumer to arrive at the same name based
on information available to both, or (2) Interest selectors
in conjunction with longest prefix matching retrieve the de-
sired data through one or more iterations. Our experience
so far suggests that a simple set of selectors can support re-
trieving data with partially known names. For example, a
consumer wanting the first version of the demo.mpg video
may request /ucla/videos/demo.mpg/1 with the Interest
selector “leftmost child” and receive a data packet named
/ucla/videos/demo.mpg/1/1 corresponding to the first seg-
ment. The consumer can request later segments using a
combination of information revealed by the first data packet
and the naming convention of the publishing application.

Data that may be retrieved globally must have globally
unique names, but names used for local communications
may require only local routing (or local broadcast) to find
matching data. Individual data names can be meaningful in
various scopes and contexts, ranging from “the light switch
in this room” to “all country names in the world”.

Namespace management is not part of the NDN architec-
ture, just as address space management is not part of the IP
architecture. However naming is the most important part of
NDN application designs. Naming data enables support for
functionality such as content distribution, multicast, mobil-
ity, and delay-tolerant networking.

Enabling application developers, and sometimes users, to
design their own namespaces for data exchange has several
benefits: increasing the closeness of mapping between an ap-
plication’s data and its use of the network; reducing the need
for secondary notation (record-keeping to map application
configuration to network configuration); and expanding the
range of abstractions available to the developers.*

We are learning through experimentation how applica-
tions should choose names that can facilitate both appli-
cation development and network delivery. As we develop
and refine our principles and guidelines for naming, we con-
vert them into naming conventions and implement them in
system libraries to simplify future application development
(see [19] for one example for intended use with the current
codebase [22]). Fortunately, the opaqueness of names to the
network allows architecture development to proceed in par-
allel with research into namespace structure and navigation
in the context of application development.

2.2 Data-Centric Security

In contrast to TCP/IP, which leaves responsibility for
security (or lack thereof) to the endpoints, NDN secures
the data itself by requiring data producers to cryptographi-
cally sign every Data packet [15]. The publisher’s signature
ensures integrity and enables determination of data prove-
nance, allowing a consumer’s trust in data to be decoupled
from how or where it is obtained. It also supports fine-
grained trust, allowing consumers to reason about whether
a public key owner is an acceptable publisher for a specific
piece of data in a specific context. The second primary re-
search thrust is designing and developing usable mechanisms
to manage user trust. We have experimented with both a hi-

4These examples of increased usability are based on Green
and Petre’s “cognitive dimensions” framework [12].
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erarchical trust model where a key namespace authorizes use
of keys (a data packet carrying a public key is effectively a
certificate, since it is signed by a third party) to sign specific
data [5], and web-of-trust to enable secure communication
without requiring pre-agreed trust anchors [36].

NDN’s data-centric security has natural applications to
content access control and infrastructure security. Appli-
cations can control access to data via encryption and dis-
tribute (data encryption) keys as encrypted NDN data, lim-
iting the data security perimeter to the context of a sin-
gle application. Requiring signatures on network routing
and control messages (like any other NDN data) provides a
solid foundation for securing routing protocols against, e.g.,
spoofing and tampering. NDN’s use of multipath forward-
ing, together with the adaptive forwarding strategy module,
mitigates prefix hijacking because routers can detect anoma-
lies caused by hijacks and retrieve data through alternate
paths [31]. Since NDN packets reference content rather than
devices, it is trickier to maliciously target a particular de-
vice, although mitigation mechanisms will be needed against
other NDN-specific attacks, e.g., Interest flooding DoS [4].

2.3 Routing and Forwarding

NDN routes and forwards packets based on names, which
eliminates three problems caused by addresses in the IP ar-
chitecture: address space exhaustion, NAT traversal, and
address management. There is no address exhaustion prob-
lem since the namespace is unbounded. There is no NAT
traversal problem since NDN does away with addresses, pub-
lic or private. Finally, address assignment and management
is no longer required in local networks.

NDN can use conventional routing algorithms such as link
state and distance vector. Instead of announcing IP pre-
fixes, an NDN router announces name prefizes that cover
the data the router is willing to serve. The routing pro-
tocol propagates these announcements across the network,
informing each router’s construction of its own FIB. Con-
ventional routing protocols, such as OSPF and BGP, can be
adapted to route on name prefixes by treating names as a
sequence of opaque components and doing component-wise
longest prefix match of a name in an Interest packet against
the FIB table.

The PIT state at each router supports forwarding across
NDN’s data plane, recording each pending Interest and the
incoming interface(s), and removing the Interest after the
matching Data is received or a timeout occurs. This per-
hop, per-packet state differs from IP’s stateless data plane.
Based on information in the FIB and performance mea-
surements, an adaptive forwarding strategy module in each
router makes informed decisions about: which Interests to
forward to which interfaces, how many unsatisfied Interests
to allow in the PIT, the relative priority of different Inter-
ests, load-balancing Interest forwarding among multiple in-
terfaces, and choosing alternative paths to avoid detected
failures [32, 31]. If a router decides that the Interest cannot
be satisfied, e.g., the upstream link is down, there is no for-
warding entry in the FIB, or extreme congestion occurs, the
router can send a NACK to its downstream neighbor(s) that
transmitted the Interest [31]. Such a NACK may trigger the
receiving router to forward the Interest to other interfaces
to explore alternate paths. The PIT state enables routers to
identify and discard looping packets, allowing them to freely
use multiple paths toward the same data producer.
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The PIT state serves other valuable purposes. First, since
it records the set of interfaces over which the Interests for
the same data name have arrived, it naturally supports mul-
ticast data delivery. Second, since each Interest retrieves at
most one Data packet, a router can control the traffic load
by controlling the number of pending Interests to achieve
flow balance. Third, the number of PIT entries is an indi-
cator of router load; constraining its size limits the effect of
a DDoS attack. Finally, PIT entry timeouts offer relatively
cheap attack detection, and the arrival interface information
in each PIT entry could support a push-back scheme.

2.4 In-Network Storage

Because each NDN Data packet carries a name and a sig-
nature, it is meaningful independent of who requested or
from where it is retrieved. Thus, a router can cache received
Data packets in its Content Store and use them to satisfy
future requests. The Content Store is analogous to buffer
memory in IP routers, but IP routers cannot reuse a packet
after forwarding it to its destination, while NDN routers
can. NDN treats storage and network channels identically
in terms of data retrieval. For static files;, NDN achieves
almost optimal data delivery. Even dynamic content can
benefit from caching in the case of multicast (e.g., realtime
teleconferencing) or retransmission after a packet loss.

In addition to the Content Store, the architecture now
supports a more persistent and larger-volume in-network
storage, called a Repository (Repo for short). This type of
storage can support services similar to that of today’s Con-
tent Delivery Networks (CDNs), without having to engineer
them as an application layer overlay using creative protocol
tricks (e.g., DNS manipulation) to make them work.

Caching named data raises different privacy concerns from
those of IP. In IP, one can examine packet headers, and pos-
sibly payload, to learn who is consuming what data. Naming
and caching of data in NDN networks may facilitate obser-
vation of what data is requested, but without destination
addresses it is harder to identify who is requesting it (unless
one is directly connected to the same subnet as the request-
ing host). Thus NDN offers a fundamentally different sort
of privacy protection than current IP networks.

Some researchers have particularly emphasized in-network
caching as the basic gain of ICN architectures, e.g., [10]. Al-
though NDN can support more powerful CDN architectures
than TCP/IP can, NDN also provides many other functions
(securing data, flow balance, stateful data plane which leads
to a number of gains on its own) that present even more
significant and important advantages.

2.5 Transport Function

The NDN architecture does not have a separate transport
layer. It moves the functions of today’s transport proto-
cols (demultiplexing, reliable delivery, and congestion con-
trol) into applications, supporting libraries, and the strategy
module of the forwarding plane. Transport-layer informa-
tion such as port and sequence numbers are unnecessarys;
all information required for transport is in the Data names.
For example, the name /ucla/videos/demo.mpg/1/3 spec-
ifies where to forward Interests for that name (/ucla/),
which application should receive them (/video/), and any
application-specific information (version 1, segment 3).

When an application requires reliable delivery, the appli-
cation itself or its supporting library will monitor the status
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of outstanding Interests and retransmit them when needed,
e.g., after a timeout. NDN’s flow balance requirement, to-
gether with the ability of nodes to control their own traffic
load by limiting the number of pending Interests at each hop,
can provide effective congestion control throughout the net-
work. If congestion losses occur, caching mitigates the im-
pact since retransmitted Interests can be satisfied by cached
Data packets right before the point of packet losses. Thus,
NDN can avoid the kind of congestion collapse that can oc-
cur in today’s Internet when a packet is lost near its destina-
tion and repeated retransmissions from the original source
host(s) consume most of the bandwidth.

NDN ARCHITECTURE DEVELOPMENT

An NDN protocol specification requires standard formats
for the two basic packet types (Interest and Data) and de-
scription of the functions supported by the network layer,
i.e., the new narrow waist. Building an operational NDN
network also requires software libraries to support naming,
high performance forwarding and routing, forwarding strat-
egy, and trust management. Similar to IP’s supporting com-
ponents (address allocation, routing protocols, DNS), these
libraries are not part of the core architecture but intrinsi-
cally support it, and all involve daunting research challenges.
This section describes the project’s application-driven, ex-
perimental approach to designing and developing the archi-
tecture, including examples that illustrate its capabilities,
and open research challenges.

3.

3.1 Application Research

The project’s approach is to design and build a variety
of applications on NDN to drive the development and de-
ployment of the architecture and its supporting modules,
to test prototype implementations, and to encourage com-
munity use, experimentation, and feedback into the design.
Application-driven development also allows verification and
validation of performance and functional advantages of NDN|
such as how routing on names promotes efficient authoring of
sophisticated distributed applications, by reducing complex-
ity, opportunities for error, and time and expense of design
and deployment. A few years of designing and developing
prototype applications on NDN has revealed five key areas
of application research that map to important features of
the architecture: (1) namespaces; (2) trust models; (3) in-
network storage; (4) data synchronization; (5) rendezvous,
discovery, and bootstrapping. These challenges arise within
and across applications. Namespace design must also recog-
nize the interplay between application-specific requirements
for data distribution and organization of trust-related in-
formation, together with those imposed for efficient rout-
ing/forwarding. Similar challenges exist in name discovery,
bootstrapping, and mobility support. This commitment to
application development paid off early in the project: it un-
covered the unanticipated importance of both a per-node
repository for persistent storage, and synchronization as a
general building block for applications. A few examples of
early applications illustrate NDN’s benefits and challenges.

Video Streaming. One of the first NDN applications was
a functional video streaming application that demonstrated
the practical benefits of NDN-based media delivery, which
inherently supports caching and multicast. NDNVideo [17]
streams live and pre-recorded HD video via NDN, and has
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been tested and demonstrated over both UDP and Ethernet
transport. In its most recent live demonstration, 1000 clients
across Amazon Web Services and the NDN testbed con-
sumed video from a single NDNVideo publisher, with only
the “plain vanilla” NDN forwarder on intermediate nodes [9].
The NDNVideo application does not require direct commu-
nication between publisher and consumer, enabling publisher-
independent scalability through NDN’s use of in-network
storage. Applications that perform on-the-fly assembly of
content or selection of video sections, i.e., frame-level ran-
dom access requirements, are supported directly through
namespace design.

Real-time Conferencing. The ChronoChat [36] multi-user
text chat application has provided a platform to explore data
synchronization techniques that can support a peer-to-peer
(i.e., no centralized server) chat service. ChronoChat has
also motivated experimentation with non-hierarchical trust
models (section 3.3), and development of library support
for encryption-based access control. Combining experience
from ChronoChat, NDNVideo, and early work on an NDN
Audio Conference Tool [37], is inspiring development of nd-
nrtc, a videoconferencing application incorporating the We-
bRTC codebase. This tool will enable investigation of NDN-
specific approaches to congestion control, rate adaptation,
and playout synchronization for real-time communication.

Building Automation Systems. Enterprise building automa-

tion and management systems (BAS/BMS) are an ideal driver
for NDN research, since a carefully designed namespace and
trust model can support authenticated control of sensors [7].
One of the largest NDN application research efforts thus far
has been a collaboration with UCLA Facilities Management,
which operates a network with over 150K points of sens-
ing and control, and has facilitated both the installation of
dedicated, industry-standard electrical demand monitoring
system and access to data from existing systems for NDN
research [23]. BAS/BMS applications pose different require-
ments for data naming and trust than multimedia applica-
tions. For example, the current NDN-based BMS design
publishes data in three namespaces: one for application data
access that follows the physical building system configura-
tion, another for device discovery and bootstrapping, and
a trust management namespace for keys that embodies the
institutional roles and relationships of the principals. An-
other challenge is to explore how namespace and storage
design can support data aggregation and mining from many
heterogeneous sensors and other devices.

Vehicular Networking. Vehicular networking is another
domain where the NDN architecture offers advantages, en-
abling location-based content retrieval and new trust models
to support ad-hoc, opportunistic communication [11]. Ex-
perimentation with vehicular applications has also led to up-
dates to the NDN protocol stack itself, including support for
other media (e.g., 3G/LTE, DSRC/WAVE, WiFi, WiMAX)
and network-layer support for data muling, where vehicu-
lar NDN nodes cache data packets heard over a broadcast
channel that do not have matching pending Interest in their
PIT, in order to later provide them to other vehicles or pass
them to infrastructure.
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Other Applications. The available NDN software platform
[22] has enabled students and others to explore NDN-based
distributed file systems, multi-user games, and network man-
agement tools. Over the next few years, work will continue
on the applications above, as well as new explorations of cli-
mate modeling and mobile health environments as drivers
of NDN architecture research and development.

New architecture component: Sync. As a direct result of
trying to build robust, efficient and truly distributed (i.e.,
serverless) peer-to-peer NDN applications, the architecture
now supports a new building block called Sync [35]. Using
NDN'’s basic Interest-Data exchange communication model,
Sync uses naming conventions to enable multiple parties to
synchronize their datasets. By exchanging individually com-
puted data digests, each party learns about new or missing
data quickly and reliably, and then can retrieve data effi-
ciently via NDN’s built-in multicast delivery.

3.2 NDN Routing and Forwarding

The NDN forwarding plane poses two major challenges:
forwarding strategy and scalable forwarding. In parallel, the
project team has developed prototype NDN-based routing
protocols to support near-term and medium-term usage on
the testbed, while also examining more radical new routing
directions that NDN’s adaptive forwarding plane can enable.
In several cases, routing protocol design revealed missing
features in current software libraries.

Forwarding Strategy Design. The forwarding strategy mod-
ule at each node is the key to NDN’s resiliency and effi-
ciency. Through effective use of NDN’s multipath capa-
bility, an adaptive forwarding strategy can send consumer
Interests along the best performing paths, avoid congestion
and failures, balance load across paths, and detect and react
to attacks such as prefix hijacking and DDoS [31]. But for-
warding strategy design is a brand new research area, with
many open questions about how to design simple, effective
strategies for different contexts and devices.

Forwarding Engine Design. The forwarding engine must
support wire-speed operations, including fast table lookup
of variable-length names, efficient data structures to store
millions to billions of names, and fast packet processing.
Project team members have proposed a highly scalable for-
warding structure and engine [34, 33]. Simulation proto-
types support multi-million entry FIBs stored in less than
10MB, with FIB lookup speeds on the order of microseconds.
Additionally, industrial teams from Cisco [26] and Alcatel-
Lucent [27] have developed feasible prototype routers.

Routing Protocol Design. The first NDN routing proto-
col, intended to rapidly prototype name-based forwarding on
the testbed while more adventurous routing research pro-
ceeded in parallel, was an OSPF extension (OSPFN [28])
that defined a new type of opaque link state advertisement
to carry name prefixes and compute name-based FIB. But
this simple adaptation of an IP-based routing protocol im-
poses exactly the type of burden NDN is designed to avoid,
including managing GRE tunnels, managing underlying IP
addresses, and hacks to support multi-hop forwarding since
OSPF supports only single-path and equal-cost multipath
forwarding. The current NDN routing protocol is NDN-
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based link-state routing (NLSR) [14], which uses names to
identify networks, routers, processes, data, and keys. NLSR
can use any underlying communication channel (e.g., Eth-
ernet, IP tunnels, TCP/UDP tunnels) to exchange routing
messages. Specifically, routers use Interest packets to re-
trieve routing updates carried in Data packets, which are
signed by the origin router to allow verification of authentic-
ity. Most importantly, NLSR creates name-based, multipath
FIBs in each router to support NDN’s forwarding plane.

Designing the NLSR protocol required considering the
same dimensions as any other NDN application: (a) how
to name routers, links, routing updates, etc.; (b) how to dis-
tribute cryptographic keys and how to derive trust in these
keys; (c¢) routing update dissemination, which requires pulling
rather than (OSPF’s) pushing updates; and (d) how to pro-
duce and rank multiple next-hops for each name prefix to
facilitate NDN’s multipath forwarding.

Exploring New Routing Paradigms. Today’s IP routing
architecture requires dissemination of topology and policy
information, route computation, and sometimes extended
convergence times as routers detect and route around fail-
ures. In NDN; the forwarding plane itself performs fast fault
detection and recovery, reducing the role of routing to boot-
strapping forwarding and disseminating long-term topology
or policy information [30]. This decoupling allows study of
more radical, scalable routing approaches that are not pos-
sible in IP networks. For example, NLSR now supports a
type of hyperbolic routing [16, 6] by disseminating hyper-
bolic coordinates in link state advertisements. The Internet
topology at the AS level is a scale-free, strongly clustered
small world [18], which has a deep connection with hyper-
bolic geometry of latent spaces effectively underlying the
topology [16]. Assuming the router topology and name space
have a hyperbolic structure, we can use hyperbolic coordi-
nates of each name prefix as well as neighbors’ coordinates
to calculate the next-hop using greedy forwardingforward-
ing — each router forwards the Interest packet to its neigh-
bor router closest to the destination name. Comparing the
performance of hyperbolic routing over NDN with link-state
routing protocols is ongoing.® Other possible approaches to
routing, e.g., small worlds, pseudo-potential gradient, and
epidemic percolation, may be worth exploring for NDN.

3.3 Trust Management

To verify a data packet’s signature, an application can
fetch the appropriate key, identified in the packet’s key loca-
tor field, just like any other content. But trust management,
i.e., how to determine the authenticity of a given key for
a particular packet in a given application, is a primary re-
search challenge. Consistent with an experimental approach,
NDN trust management research is driven by application de-
velopment and use: solving specific problems first and then
identifying common patterns.

For example, the security needs of NLSR required devel-
opment of a simple hierarchical trust model in which keys are
published with names that reflect their trust relationship. A
root key is owned by the network domain’s administrator,
and below the root are site keys, each owned by a single site’s
administrator, signed by the root key and published in the
next level of the hierarchy. Each site key then signs the site’s

®http://netwisdom.cs.memphis.edu/hrhome.html.
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operator keys, which in turn sign router keys, which in turn
sign the key of the NLSR process on that router. Finally,
the NLSR key signs the routing data originated by NLSR.
In this trust model, the namespace matches the hierarchy of
trust delegation, i.e., (conceptually) /root/site/operator/
router/process. Publishing keys with a particular name in
the hierarchy authorizes them to sign specific data pack-
ets and limits their scope. Other applications where real-
world trust tends to follow a hierarchical pattern, such as
in our building management systems (BMS) [23], may use
two separate hierarchies for building operators and for ap-
plication data, to facilitate fine control over who has access
to which data. More flexible and expressive trust relations,
such as with our chat application [36], have motivated exper-
imentation with a web-of-trust model. A current chatroom
participant can introduce a newcomer to others by signing
the newcomer’s key. Future applications will implement a
cross-certifying model (SDSI) [13, 3], which provides more
redundancy of verification, allowing data and key names to
be independent, which more easily accommodates a variety
of real-world trust relationships.

4. NDN COMMUNITY & DEPLOYMENT

The success of a new architecture requires broad commu-
nity involvement and uptake. NDN has gained momentum
already, with participation by academia and industry. But
incentivizing incremental deployment requires demonstrat-
ing that NDN can solve real-world problems where TCP /IP-
based solutions are either problematic or non-existent. The
NDN team also maintains an open-source implementation
of the NDN protocol stack, a simulator, and a testbed to
facilitate testing and broader community participation.

Like IP, NDN is a universal overlay: NDN can run over
anything that can forward datagrams (Ethernet, WiFi, Blue-
tooth, cellular, IP, TCP, etc.), and anything can run over
NDN, including IP. Instead of trying to replace or change
the deployed IP infrastructure, NDN can simply run over
it. NDN can also leverage Internet’s well-tested engineering
solutions that have taken decades to evolve, such as conven-
tions, policies, and administrative practices for naming and
routing. Thus NDN’s advantages in content distribution,
application-friendly communication and naming, robust se-
curity, support for mobility and broadcast can be realized
incrementally and relatively painlessly.

For enterprise applications (e.g., automated building con-
trol), NDN-based solutions can bring immediate value through
local deployment. Wide area applications such as the server-
less chatroom can operate over IP tunnels. As NDN-based
applications are deployed, we envision islands of NDN nodes
emerging, using a rendezvous solution to interconnect by
tunneling over non-NDN clouds. Once NDN applications
gain wide reception, ISP deployment of NDN routers will
improve performance and efficiency for themselves and their
customers, providing a natural incentive for infrastructure
growth. The IP architecture provided similar overlay capa-
bilities and incremental benefit incentives in its own deploy-
ment history

Open source software support. Freely available software
libraries and tools are essential to scalable rollout of the
NDN architecture. The NDN project originally used PARC’s
open-source package CCNx [8] as its codebase. To provide
a more agile development platform for research, in 2013 the
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NDN team forked a version of CCNx, and in early 2014 im-
plemented a new NDN forwarder, NFD [21], from scratch.
NFD supports the newly developed NDN packet format and
is designed with modularity and extensibility to facilitate
diverse experimentation. The NDN platform software re-
leases [22] include supported packages of critical components
for building and testing NDN networks and applications.
Providing NDN support in popular and easy to use lan-
guages such as Python and Javascript has further promoted
development activities in the community [24]. The team
plans to continue development and support of the NDN
codebase, including in-browser support for web-style con-
tent publishing via NDN, to help the NDN project as well
as the broader community to write innovative, experimental
NDN applications.®

The project team also maintains an open-source, NS-3
based simulator, ndnSIM [1], which provides a common plat-
form to help researchers evaluate aspects of NDN system
performance in large networks. The ndnSIM mailing list
hosts active discussions on ndnSIM usage and development

among over 100 members from a dozen countries”.

Operational NDN testbed. Vital to our experimental ap-
proach to network research and development is a large-scale
testbed to evaluate both applications and core architecture
components. During the first year of the project, the NDN
team established and instrumented a local testbed at Wash-
ington University, with programmable routers and a wide-
area overlay testbed connecting all institutions participating
in the NSF-funded NDN project. The local testbed sup-
ported baseline assessment of NDN prototype implementa-
tions, and the wide-area testbed supported testing of NDN
components, including video streaming, conferencing tools,
and routing protocols. Monitoring scripts and visualization
tools facilitate testbed management®. While the NDN team
encourages researchers to create their own testbeds, it also
accepts requests from external sites to connect to the NDN
project testbed®.

S. OPEN QUESTIONS

Ververidis et al. [29] provides a survey of many existing
ICN projects and identifies several significant debates in the
community, most notably related to strategies for scalable
trust management and naming itself.

Like other ICN designs, NDN achieves data authenticity,
confidentiality and integrity through the use of cryptogra-
phy. Keys are used to bind names to data via signatures, and
to protect data (or names) via encryption. Because these
keys are themselves named data, all features of the NDN ar-
chitecture can be leveraged to address common challenges of
key management, such as distribution and revocation; this
is an active area of research. Development and integration
of high-performance cryptographic algorithms is also essen-
tial. The most important challenge, however, is robust and
usable trust management, which allows content consumers
to determine acceptable signing keys in a given context.

5The NDN team is currently working on establishing an in-
tellectual property consortium to navigate the complex is-
sues related to patents on NDN-related technologies.

7http ://www.lists.cs.ucla.edu/mailman/listinfo/ndnsim
8http ://ndnmap.arl.wustl.edu/

9http ://named-data.net/ndn-testbed/
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Further, most proposed ICN architectures rely on self-
certifying names, which enable any node to verify that the
name in a packet matches its content. However, self-certifying
names require that each application must determine whether
the content is what was desired, which creates additional se-
curity risks if a secondary binding to application names is
used. NDN offers a different approach, taking per-packet
data names directly from applications, then securely bind-
ing those names to content. Namespace design is thus a
critical area of research as it brings together considerations
of an application’s data, communication, and storage models
with the routing and security implications of names in NDN.
In addition to scalable forwarding based on these names, an
important challenge for NDN research is to develop and eval-
uate namespace and related protocol designs for current and
envisioned application architectures, and to find reusable ap-
proaches that can be applied to common use cases.

Finally, in collaboration with social scientists, we are ex-
ploring the social impacts of NDN, in particular four as-
pects that contrast most with today’s TCP/IP architecture:
support for semantic classification, provenance, publication,
and decentralized communication. We believe these features
will enhance opportunities for free speech, security, privacy
and anonymity while raising new challenges regarding data
retention and content regulation [25].

6. LOOKING FORWARD

The application-driven, experimental approach to NDN
research has enabled progress, and provided new depth to
the original vision for NDN [15]. But the team has only
scratched the surface of research on namespace structure
and navigation, trust models and management mechanisms,
scalable forwarding and routing, forwarding strategy design,
distributed data synchronization, and rendezvous, discov-
ery, and bootstrapping. We have a demonstrated reason-
able naming approaches for a set of pilot NDN applications,
and a clearer picture on remaining challenges. We imple-
mented an NDN routing protocol that supports traditional
link-state as well as hyperbolic routing. We sketched an ini-
tial design approach for Sync, a new type of transport that
supports synchronization of data across a collection. Sync
fills the gap between NDN network layer’s simple Interest-
Data exchanges and the need of distributed applications to
synchronize their data set.

Fortunately, other research efforts closely aligned with
NDN are underway around the world, as suggested by the
growth in academic workshop and conference activities. The
NDN team has taken steps that will hopefully bring broader
community participation to the next phase of the project. In
particular, the NDN web site publishes regular software up-
dates, testbed documentation, technical and annual reports,
a FAQ), and blog entries, and archives the public ndn-interest
mailing list for users interested in technical discussions.

Note: In addition to the authors, other Pls of the original

NDN FIA project were: Tarek Abdelzaher (UIUC), Daniel

Massey (CSU) Gene Tsudik (UCI), Ersin Uzun and Jim

Thornton (PARC), and Edmund Yeh (Northeastern). NSF
grants funding this project included: CNS-1040868 (UCLA),

ONS-1039646 (UCSD), ONS-1039585 (CSU), CNS-1039615

(ASU), CNS-1205562 (Northeastern), CNS-1040380 (UIUC),
ONS-1040643 (Wash. U.), CNS-1040802 (UC Irvine), CNS-

1040036 (Memphis), and CNS-1040822 (PARC).
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