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ABSTRACT 
The CCNx Synchronization protocol is one of the protocols 
published under the CCNx distribution, and is used to 
synchronized shared collections of 2 CCNx neighbors. In this 
paper, we evaluated the performance of the synchronization 
protocol over different topologies and different network scales. 
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1. INTRODUCTION 
Content-centric-networking project (CCNx) [1] is a software 
implementation of the content-centric networking approach. The 
motivation behind the CCNx synchronization protocol is to keep a 
collection of information synchronized between 2 CCNx nodes. 
An example of a possible synchronized collection is a private 
music directory that should be kept up-to-date in a user’s 
smartphone and a personal computer. Another example of 
possible synchronized information is the network topology graph 
that should be similar in all the network routers to enable the 
correct operation of common routing protocols such as OSPF and 
ISIS [4]. Unlike the common approach, CCNx synchronization 
protocol keeps a synchronized collection up-to-date by sending 
the differences of the collection rather than the entire content. The 
benefit of sending the differences over sending the entire 
collection might clear when it comes to the network traffic of 
large collections [2]. However, the effect of synchronizing the 
differences on the synchronization time is unclear. In this work, 
we started to study the synchronization protocol and to explore 
the time it takes to synchronize a collection over different 
topologies and different network scales. 

2. BACKGROUND 
2.1 Named-Data Networking 
Named Data Networking (NDN) is a recently suggested Internet 
architecture that efficiently supports content distribution.  Unlike 
the current Internet architecture, NDN takes the content-centric 
approach by delivering a packet according to its content rather 
than to a pre-defined destination address. To receive data, a 
consumer expresses an interest packet that contains the requested 

data name. The NDN router forwards the interest packet to the 
next hop by looking into the Forwarding Information Base (FIB) 
table, finding the longest name prefix match, and sending the 
interest to the attached face. On the forwarding of an interest 
packet, the router saves a copy of the interest and its incoming 
face in its Pending-Interest table (PIT).  The producer responds to 
an interest packet by sending a corresponded data packet. The 
router uses the PIT to forward the data packet back to the 
consumer on the same incoming path. In addition to the 
forwarding of interests and data packets, the NDN router stores 
the incoming data packets in its local Content Store (CS). On the 
reception of an interest packet, the NDN router first checks for the 
content in its local CS. If the content exists, the NDN router 
generates a data response that contains the stored information. 
Otherwise, the router forwards the packet according to the interest 
name. [3] 

2.2 CCNx project 
CCNx is an open source distribution developed by PARC. Due to 
the fact that CCNx implementation includes the main attributes of 
the NDN architecture, it is used as one of the NDN evaluation 
platforms. The CCNx consists of 2 main software components: 
ccnd and ccnr. The ccnd implements the forwarding and the 
routing parts of the CCNx while the ccnr implements the CCNx 
repository. A repository can be used by an application or by the 
network to preserve required data, such as file content or an 
application state.  

2.3 CCNx Synchronization protocol 
The Sync Agent is the CCNx software module that implements 
the Synchronization protocol, and is part of the CCNx Repository 
process. The synchronization protocol synchronizes all the 
content items that share the same name prefix, and belong to a 
pre-defined collection. The Sync Agent stores the collection 
content prefixes using a tree structure called the sync tree. Each 
node in the sync tree holds a combined hash representing the 
arithmetic sum of the names hashes in that node, and the 
combined hashes of its child nodes. To stay up-to-date, each Sync 
Agent sends a periodic Root Advise interest to all of its 
neighbors, including its root hash. On the reception of a Root 
Advise interest, the Sync Agent compares its local root hash to 
the remote root hash. If the root hashes are equal, there is no reply 
to the incoming Root Advise interest, otherwise, the remote Sync 
Agent express a Node Fetch to request the content of each 
different hash element.  

3.    EXPERIEMENT SETUP 
We used the Open Network Laboratory (ONL) [5] to evaluate the 
performance of the sync protocol, and to measure the time 
consumed by the protocol to synchronize a repository collection 
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(also known as a slice) over different topologies and different 
network scales. Since the repo saves its content in 4096 kbyte 
chunks, we explored the effect of the content size on the 
synchronization time. Table 1. summarize our experiment factors. 

Table 1. Experiment factors 

 

We developed a script that used the ONL interface, and defined 
the CCNx overlay topology according to the configured factors. 
We used the ccnputfile application to write a local content to a 
selected CCNx host. We used the ccnsyncwatch application to 
report on the arrival timestamp of each file chunk to all the other 
participating nodes. We calculated the timestamps differences and 
reported on the longer synchronization period. It is important to 
mention that our goal was to evaluate the synchronization time 
without the time it takes to write content into the repo, and 
therefore the writing timestamp reported by our setup was 
recorded once the ccnputfile finished the writing operation, and 
not before that. At the time we performed our first experiments, 
we discovered that the ccnsyncwatch delays the notification of the 
first item added to an empty repo, and therefore we used tcpdump 
captures to verify the accurate arrival timestamps. We performed 
each experiment 3 times and reported on the average.  

4. RESULTS 
 

Our results show that the slice status and the examined content 
size don’t have a significant effect on the synchronization times. 

Figure 1. shows the average synchronization time for the 
examined topologies and network scales. We can see that for each 
network scale, the time it takes to synchronize content over the 
chain topology is longer than the time it takes to synchronize the 
same content over the mesh topology. In addition, our results 
show that the network scale affects the synchronization time of 
the chain topology, while it has almost no effect on the fully 
connected mesh topology. Our results also show that the 
examined sizes of the Content Size factor have no effect on the 
synchronization time. 

5. CONCLUSION  
In this paper, we explored and measured the synchronization time 
of the CCNx synchronization protocol. For the examined scales, 
we found that it takes longer to synchronize a chain topology than 
it takes to synchronize a fully connected mesh topology. We also 
found that due to the broadcast notifications of the Root Advise 
interest, the network scale has almost no effect on the 
synchronization time of the fully connected mesh topology.  

6. FUTURE WORK 
To better understand the performance of the synchronization 
protocol, we continued to explore large-scale networks and 
additional topologies. We observed a large variation in our 
results, and as part of our preliminary exploration, we identified 
that the insertion time affects the synchronization time. We 
suspect that the insertion time has an effect on the results due to a 
different memory state, hence, PIT entries and CS content. This 
additional “insertion time” factor may prove to have a substantive 
impact on the performance of large-scale networks, and it is the 
subject of future work. In addition, we plan to continue and 
explore the effect of the Content Size factor for larger content. 
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Factors Levels 
Slice Status Empty/ Not Empty 

Device Count 6/12 

Network Topology Fully connected mesh / chain 

Content Size 1 chunk of data / 19 chunks of data 

Figure 1. mesh VS. chain over different network scales 
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