
Performance Measurement of the CCNx
Synchronization Protocol

Hila Ben Abraham
Computer Science and Engineering
Washington University in St. Louis

hila@wustl.edu

Patrick Crowley
Computer Science and Engineering
Washington University in St. Louis

pcrowley@wustl.edu

ABSTRACT
The CCNx Synchronization protocol is one of the protocols
published under the CCNx distribution, and is used to
synchronized shared collections of 2 CCNx neighbors. In this
paper, we evaluated the performance of the synchronization
protocol over different topologies and different network scales.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Applications

General Terms
Measurement, Performance.

Keywords
CCNx synchronization protocol; Named Data Networking;
Content-Centric-Networking; CCNx; ONL;

1. INTRODUCTION
Content-centric-networking project (CCNx) [1] is a software
implementation of the content-centric networking approach. The
motivation behind the CCNx synchronization protocol is to keep a
collection of information synchronized between 2 CCNx nodes.
An example of a possible synchronized collection is a private
music directory that should be kept up-to-date in a user’s
smartphone and a personal computer. Another example of
possible synchronized information is the network topology graph
that should be similar in all the network routers to enable the
correct operation of common routing protocols such as OSPF and
ISIS [4]. Unlike the common approach, CCNx synchronization
protocol keeps a synchronized collection up-to-date by sending
the differences of the collection rather than the entire content. The
benefit of sending the differences over sending the entire
collection might clear when it comes to the network traffic of
large collections [2]. However, the effect of synchronizing the
differences on the synchronization time is unclear. In this work,
we started to study the synchronization protocol and to explore
the time it takes to synchronize a collection over different
topologies and different network scales.

2. BACKGROUND
2.1 Named-Data Networking
Named Data Networking (NDN) is a recently suggested Internet
architecture that efficiently supports content distribution. Unlike
the current Internet architecture, NDN takes the content-centric
approach by delivering a packet according to its content rather
than to a pre-defined destination address. To receive data, a
consumer expresses an interest packet that contains the requested

data name. The NDN router forwards the interest packet to the
next hop by looking into the Forwarding Information Base (FIB)
table, finding the longest name prefix match, and sending the
interest to the attached face. On the forwarding of an interest
packet, the router saves a copy of the interest and its incoming
face in its Pending-Interest table (PIT). The producer responds to
an interest packet by sending a corresponded data packet. The
router uses the PIT to forward the data packet back to the
consumer on the same incoming path. In addition to the
forwarding of interests and data packets, the NDN router stores
the incoming data packets in its local Content Store (CS). On the
reception of an interest packet, the NDN router first checks for the
content in its local CS. If the content exists, the NDN router
generates a data response that contains the stored information.
Otherwise, the router forwards the packet according to the interest
name. [3]

2.2 CCNx project
CCNx is an open source distribution developed by PARC. Due to
the fact that CCNx implementation includes the main attributes of
the NDN architecture, it is used as one of the NDN evaluation
platforms. The CCNx consists of 2 main software components:
ccnd and ccnr. The ccnd implements the forwarding and the
routing parts of the CCNx while the ccnr implements the CCNx
repository. A repository can be used by an application or by the
network to preserve required data, such as file content or an
application state.

2.3 CCNx Synchronization protocol
The Sync Agent is the CCNx software module that implements
the Synchronization protocol, and is part of the CCNx Repository
process. The synchronization protocol synchronizes all the
content items that share the same name prefix, and belong to a
pre-defined collection. The Sync Agent stores the collection
content prefixes using a tree structure called the sync tree. Each
node in the sync tree holds a combined hash representing the
arithmetic sum of the names hashes in that node, and the
combined hashes of its child nodes. To stay up-to-date, each Sync
Agent sends a periodic Root Advise interest to all of its
neighbors, including its root hash. On the reception of a Root
Advise interest, the Sync Agent compares its local root hash to
the remote root hash. If the root hashes are equal, there is no reply
to the incoming Root Advise interest, otherwise, the remote Sync
Agent express a Node Fetch to request the content of each
different hash element.

3. EXPERIEMENT SETUP
We used the Open Network Laboratory (ONL) [5] to evaluate the
performance of the sync protocol, and to measure the time
consumed by the protocol to synchronize a repository collection

121978-1-4799-1640-5/13/$31.00 ©2013 IEEE

(also known as a slice) over different topologies and different
network scales. Since the repo saves its content in 4096 kbyte
chunks, we explored the effect of the content size on the
synchronization time. Table 1. summarize our experiment factors.

Table 1. Experiment factors

We developed a script that used the ONL interface, and defined
the CCNx overlay topology according to the configured factors.
We used the ccnputfile application to write a local content to a
selected CCNx host. We used the ccnsyncwatch application to
report on the arrival timestamp of each file chunk to all the other
participating nodes. We calculated the timestamps differences and
reported on the longer synchronization period. It is important to
mention that our goal was to evaluate the synchronization time
without the time it takes to write content into the repo, and
therefore the writing timestamp reported by our setup was
recorded once the ccnputfile finished the writing operation, and
not before that. At the time we performed our first experiments,
we discovered that the ccnsyncwatch delays the notification of the
first item added to an empty repo, and therefore we used tcpdump
captures to verify the accurate arrival timestamps. We performed
each experiment 3 times and reported on the average.

4. RESULTS

Our results show that the slice status and the examined content
size don’t have a significant effect on the synchronization times.

Figure 1. shows the average synchronization time for the
examined topologies and network scales. We can see that for each
network scale, the time it takes to synchronize content over the
chain topology is longer than the time it takes to synchronize the
same content over the mesh topology. In addition, our results
show that the network scale affects the synchronization time of
the chain topology, while it has almost no effect on the fully
connected mesh topology. Our results also show that the
examined sizes of the Content Size factor have no effect on the
synchronization time.

5. CONCLUSION
In this paper, we explored and measured the synchronization time
of the CCNx synchronization protocol. For the examined scales,
we found that it takes longer to synchronize a chain topology than
it takes to synchronize a fully connected mesh topology. We also
found that due to the broadcast notifications of the Root Advise
interest, the network scale has almost no effect on the
synchronization time of the fully connected mesh topology.

6. FUTURE WORK
To better understand the performance of the synchronization
protocol, we continued to explore large-scale networks and
additional topologies. We observed a large variation in our
results, and as part of our preliminary exploration, we identified
that the insertion time affects the synchronization time. We
suspect that the insertion time has an effect on the results due to a
different memory state, hence, PIT entries and CS content. This
additional “insertion time” factor may prove to have a substantive
impact on the performance of large-scale networks, and it is the
subject of future work. In addition, we plan to continue and
explore the effect of the Content Size factor for larger content.

7. REFERENCES
[1] Project ccnx: http://www.ccnx.org/.

[2] D. Eppstein, M. T. Goodrich, F. Uyeda, G.VargheseIn.
“What’s the Difference? Efficient Set Reconciliation without
Prior Context”, In Proceedings of SIGCOMM, 2011.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N.
H. Briggs, and R. L. Braynard. Networking named content.
In CoNEXT ’09, pages 1–12, New York, NY, USA, 2009.
ACM.

[4] V. Jacobson, R. L. Braynard, T. Diebert, P. Mahadevan, M.
Mosko, N. H. Briggs, S. Barber, M. F. Plass, I. Solis, E.
Uzun, B. J. Lee, M. Jang, D. Byun, D. K. Smetters and J. D.
Thornton, “Custodian-Based Information Sharing”, in IEEE
Communications Magazine 07/12

[5] C. Wiseman at al., The open network laboratory. In ACM
SIGCOMM. ACM, 2009

Factors Levels
Slice Status Empty/ Not Empty

Device Count 6/12

Network Topology Fully connected mesh / chain

Content Size 1 chunk of data / 19 chunks of data

Figure 1. mesh VS. chain over different network scales

122

