NDN, Technical Report NDN-0024, 2014. http://named-data.net/techreports.html
Revision 1: September 5, 2014

NDN Common Client Libraries

Jeff Thompson, Jeff Burke
{jefft0, jburke}@remap.ucla.edu

1 Introduction

This technical report supplements and refers to the online documentation for NDN-CCL located at
http://named-data.net/doc/ndn-ccl-api.

The NDN Common Client Libraries (CCL) provide a common application programming interface (API)
across several languages for building applications that communicate using Named Data Networking (NDN) [2].
Currently, the CCL is implemented in C++, Python, JavaScript and Java. This technical report describes
general design goals, the CCL API and specific design choices for each language implementation.

NDN development is supported by the Future Internet Architecture program of the National Science
Foundation. The proposal for the current stage of research states that it is crucial to develop and release
libraries and tools, created based on application development experience, that promote ongoing team and
community experimentation with NDN.

Historically, the API design began with a library called PyCCN that provided an object-oriented interface
to the underlying C code of the CCNx library with the goal of representing important architectural primitives
of Named Data Networking in classes, such as the Name, Interest, Data, and Key now found in NDN-CCL.
This path of development continued with early versions of the JavaScript library (NDN-JS) which added more
data manipulation functions needed to support browser applications. Then, NDN-CPP was introduced as an
implementation of NDN-CCL using C++ that intends to combine higher performance with the Python and
Javascript libraries’ ease-of-use. Finally, the C++ library (NDN-CPP) added the Blob class (see below),
a formal security API to sign and verify packets, and is the reference library for developing higher-level
functionality like Sync and the in-memory content cache.

See Section [p] for a list of applications currently using NDN-CCL.

1.1 Relationship to NDN-CXX

In addition to NDN-CPP, the C++ implementation of the Common Client Library, the NDN project
team also maintains the NDN-CXX library, “C++ with eXperimental eXtensions”. This library is used in
the NFD forwarder and other core implementations. It does not have the constraint of supporting multiple
languages and makes extensive use of the Boost C++ libraries. It is also used for prototyping of new
architectural features, which are then incorporated into the NDN-CCL.

2 Design Goals

To support as many developers of NDN applications as possible, the libraries were designed with the
following goals.

1. Multiple software languages. Support multiple languages as needed by the NDN research project and
community. NDN-CCL currently supports:

o (++. C++ as a strongly typed reference implementation and library for high-performance applica-
tions. It also serves as the target language for importing experimental extensions.

e Python. Python to make experimentation and rapid prototyping easy.

e JavaScript. JavaScript because it provides inherent support for asynchronous programming styles
natural to NDN application development, because it runs directly in Web browsers which enables
applications to be easily deployed on many network-capable devices and, as with the ease of program-
ming in Python, to encourage development and experimentation with NDN for a larger audience of
developers.

http://named-data.net/techreports.html
http://named-data.net/doc/ndn-ccl-api

e Java. Java to enable mobile applications on Android devices.

2. Keep the API consistent across languages. While different software languages need some unique features
such as the type of byte array, the names of classes, methods and overall design should be consistent.
New developments in the library for one language should be quickly migrated to the other languages.

3. Keep dependencies to a minimum. This makes for easier installation and less likelihood of a conflict with
a client application’s other dependencies. Since we use open source software, if depenent code is small
then its source can be incorporated directly into the library, with proper license and author attribution.

4. Provide an easy-to use API. (See below.) The library should provide a developer-friendly API that eases
application development with the NDN architecture. The interface should provide a level of abstraction
that hides protocol details (packet format and encoding, etc.) while still reflecting the general model of
NDN communication.

5. Follow standard release practices. In standard practice, obsolete functionality is deprecated in minor
releases and only removed at a later major release. This stability allows developers to focus on their NDN
research and not on rewriting unrelated parts of their code.

6. Use a release "heartbeat”. This stimulates interoperability testing and discussion of how the various
moving parts work together.

7. Implement the NDN-TLV wire format. This of course allows an application to communicate with the
NFD forwarder ! as well as ndn-tlv 2. As of writing the libraries implement NDN-TLV version 0.1.1.
When version 0.2 is released, the libraries will implement this with the option to revert as needed. This
stability again allows developers to focus on their NDN research and not on rewriting unrelated parts of
their code.

8. Incorporate advances from NDN research projects. (For example, security, Sync and autodiscovery.) This
allows devopers to more easily pull these capabilities into their applications.

9. Follow the NDN Platform Development Guidelines® These guidelines for documentation, code style and
licensing encourage consistency across the libraries and related projects.

10. Provide installation packages. (For example, easy-install for Python.) This lowers the entry barrier for
end users of applications which depend on the libraries.

3 The CCL API

The application programming interface (API) of the NDN Common Client Libraries (CCL) is documented
online at http://named-data.net/doc/ndn-ccl-api. The important entities in NDN, such as Interest
packets, Data packets Keys, and Names, are abstracted as API objects. A security API provides data
signing and verification functionality required by the architecture, and trust management support based on
the ptototype NDN-CXX security library is under development.

The API documentation provides a unified reference for all the implemented languages: C++, Python,
JavaScript and Java. The class names, method names and parameters are the same in all the languages. So,
for example, a developer can prototype an application in Python and later port it to C++ (for performance
improvements) with minimal effort. The unified API documentation also provides a place to describe library
support for higher-level and experimental NDN functionality such as |Sync| and an in-memory cache. (The
experimental status of an API is emphasized with a red bar on the left side of the documentation page.)

Figure[I]shows the CCL library architecture. Each box in the diagram represents a class which implements
part of the NDN architecture. The connecting lines show how objects of a class use objects of another class.
The main box contains classes which represent objects in the NDN Packet Format Specification.

http://named-data.net/doc/NDN-TLV/0.1.1/
http://named-data.net/doc/NDN-TLV/0.2/
http://named-data.net/doc/ndn-ccl-api
http://named-data.net/doc/ndn-ccl-api/chrono-sync2013.html
http://named-data.net/doc/ndn-ccl-api/memory-content-cache.html
http://named-data.net/doc/ndn-tlv/index.html

Face

Interest Data

T
Exclude| [|[Name | |Signature| |Metalnfo | {KeyChain

KeylLocator

Encoding/Decoding
[

Transport H callbacks

Figure 1: Library architecture

3.1 Interest / Data Exchange

The Face|class (at the top of figure[l)) provides the top-level interface to the library. It holds a connection
to a (typically local) forwarder and supports Interest / Data exchange. The Face constructor can take
optional connection parameters such as a host name or Unix socket address. The Face class also provides
the interface to create command interests (section .

Face has two important methods for Interest / Data exchange: lexpressInterest ()|for data fetching and
registerPrefix ()| for publishing. Both methods incorporate an event-driven asynchronous programming
paradigm and require the caller to provide callbacks for event handling.

expressInterest() composes an Interest packet based on the information provided by the caller and
sends this packet to the forwarder to which the Face object is connected. When the library receives an in-
coming Data packet which matches the Interest, it calls the onData callback provided to expressInterest ()
to supply the Data packet to the application.

registerPrefix(), registers an NDN Name prefix by sending a Command Interest packet to the for-
warder and then waits for incoming Interests that request the data under that prefix. When an Interest is
received, the library calls the onInterest callback provided by the application to registerPrefix() and
the application can send the related Data packet.

3.2 Representing Interest and Data Packets

The Interest| class represents an Interest packet. As detailed in the NDN Packet Format Specification),
an Interest holds a Name and its selectors can hold an Exclude object and a KeyLocator. (Other values such
as Nonce or Scope are represented by a byte array Blob (section or a simple number.)

The Datal class represents a Data packet. As detailed in the NDN Packet Format Specification) a Data
packet holds a Name, a MetaInfo, a Signature object and a Content (represented by a byte array Blob
(section [A.1.1))).

As detailed in the NDN Packet Format Specification), the Signature is further specified based on the
signature algorithm, for example Sha256WithRsaSignature class which extends the Signature class. (This
is one of the few places in the CCL API that uses class inheritance. Generally, the class hierarhy is very
flat.) In this case, Sha256 WithRsaSignature can hold a KeyLocator. The Interest and Data make use of
the same Name and KeyLocator classes, as shown by the common lines in figure

The APIs for Interest and Data are independent of a specific wire format encoding, but it is possible to
explicitly callInterest.wireEncode () /Data.wireEncode() or Interest.wireDecode()/Data.wireDecode ()
to manipulate an encoding. These are also implicitly called by the Face object when using the wire Transport
interface (at the bottom of figure [1).

http://named-data.net/doc/ndn-ccl-api/face.html
http://named-data.net/doc/ndn-ccl-api/face.html#face-expressinterest-methods
http://named-data.net/doc/ndn-ccl-api/face.html#face-registerprefix-method
http://named-data.net/doc/ndn-ccl-api/interest.html
http://named-data.net/doc/ndn-tlv/interest.html
http://named-data.net/doc/ndn-ccl-api/name.html
http://named-data.net/doc/ndn-ccl-api/exclude.html
http://named-data.net/doc/ndn-ccl-api/key-locator.html
http://named-data.net/doc/ndn-ccl-api/data.html
http://named-data.net/doc/ndn-tlv/data.html
http://named-data.net/doc/ndn-ccl-api/name.html
http://named-data.net/doc/ndn-ccl-api/meta-info.html
http://named-data.net/doc/ndn-ccl-api/signature.html
http://named-data.net/doc/ndn-tlv/signature.html
http://named-data.net/doc/ndn-ccl-api/signature.html#sha256withrsasignature-class
http://named-data.net/doc/ndn-ccl-api/key-locator.html
http://named-data.net/doc/ndn-ccl-api/interest.html#interest-wireencode-method
http://named-data.net/doc/ndn-ccl-api/data.html#data-wireencode-method
http://named-data.net/doc/ndn-ccl-api/interest.html#interest-wiredecode-methods
http://named-data.net/doc/ndn-ccl-api/data.html#data-wiredecode-methods

3.3 Signing and Verification

In NDN, every Data packet is signed. Interests can be optionally signed in application-specific ways; for
example, Command Interests used to communicate with the NFD forwarder are signed by adding signatures
bits as a name component. Signing and verification is handled by the KeyChain class of the security API
(at the right of figure . The default KeyChain constructor uses the same public and private key stores as
the system’s local NFD forwarder.

An application may create a new Data object, for example within the onInterest callback provided to
registerPrefix (). Before sending, it must be signed by calling KeyChain.sign(). The sign() method
takes a certificate name parameter which specifies the name of the key to fetch from the private key store
for signing, as explained in the Security Library Tutorial*. This name is also used to create the KeyLocator
information in the Data packet’s Signature. Although there is a KeyChain.sign() method for Interests, a
Command Interest is typically signed by Face.makeCommandInterest(). (See section .

The signature on a Data packet is not automatically verified when the library receives it. Rather, if
the application wants to verify then it must explicitly call KeyChain.verifyData ()} typically within the
onData callback provided to expressInterest (). Because verification may require communication to fetch
certificates, verifyData() itself is asynchronous and requires onVerified and onVerifyFailed callbacks to
indicate a successfull or failed verification. Likewise, if the application wants to verify a Command Interest
then it must explicitly call verifyInterest (). (See section .

3.4 Client configuration file

For compatibility with NDN-CXX and NFD, the NDN-CCL respects the relevant settings of /.ndn/client.conf,
including the keystore type and unix socket location, for its own defaults.

3.5 Sync

Sync is a higher level protocol of the NDN architecture for efficient reconciliation of namespace knowledge
across many peers. The protocol definition is still an active research topic, which may yield multiple forms
of synchronization. To support developers in experimenting with the concept, NDN-CCL implements a
variation of Sync compatible with Chronosync, described in [5], as an experimental API.

3.6 Name Convention Support

3.6.1 Versioning, Segmenting and Timestamping

NDN-CCL provides helper methods in each language for the versioning, segmenting, and timestamping
name conventions defined in [3]. The Name class has methods appendSegment, appendSegmentOffset (for
segment byte offset), appendSequenceNumber, appendTimestamp and appendVersion, each of which take an
integer and append a name component with the appropriate marker followed by the encoded integer. These
methods let an application construct a name with the needed special name components.

Likewise, when the application receives a name, it can one of the name components and call the method
for toSegment, toSegmentOffset, toSequenceNumber, toTimestamp or toVersion. Each of these checks
that the component has the expected marker, parses the encoded integer value and returns it. These methods
let an application interpret a name with special name components which was produced by another application
using the previous “append” methods.

3.7 Command Interests

NDN-CCL implements the specification for command interests used by the NFD forwarder and de-
fined in [“Signed Interest”. To enable creating command interest, an application calls the Face method
setCommandSigningInfo| to supply the KeyChain object and related certificate name used to sign inter-
ests. Once the command signing info is set, each time an application needs to sign an interest it calls
makeCommandInterest| which takes an interest name with existing command components and appends com-
ponents for a timestamp, a random value and the Signaturelnfo. Then it signs all the name components so
far and appends a final signature component. (The Face class also calls makeCommandInterest internally to
sign the command interest for registerPrefix.)

When the application calls makeCommandInterest, the interest name must already have the command
components which may be a simple string like “register” or a TLV encoding of a more complex structure like

http://named-data.net/doc/ndn-ccl-api/key-chain.html
http://named-data.net/doc/ndn-ccl-api/key-chain.html#keychain-sign-data-method
http://named-data.net/doc/ndn-ccl-api/key-chain.html#keychain-sign-interest-method
http://named-data.net/doc/ndn-ccl-api/face.html#face-makecommandinterest-method
http://named-data.net/doc/ndn-ccl-api/key-chain.html#keychain-verifydata-method
http://named-data.net/doc/ndn-ccl-api/key-chain.html#keychain-verifyinterest-method
http://named-data.net/doc/ndn-ccl-api/name.html#name-appendsegment-method
http://named-data.net/doc/ndn-ccl-api/name-component.html#name-component-tosegment-method
http://redmine.named-data.net/projects/ndn-cxx/wiki/SignedInterest
http://named-data.net/doc/ndn-ccl-api/face.html#face-setcommandsigninginfo-method
http://named-data.net/doc/ndn-ccl-api/face.html#face-makecommandinterest-method

a FibEntry. To create a custom TLV encoding, an application can use the support for the protocol buffer
definition format described in section [3.91

To verify a received command interest, an application calls the KeyChain method verifyInterest,
similarly to verifyData described above (section .

3.8 Memory Content Cache

We have observed that many NDN applications follow a pattern in which the application would like
to “publish” data once, and then have some other entity be responsible for sending it out in response to
Interests. NDN Repositories provide persistence beyond the lifetime of the application process but require
a separate process and may add performance overhead. For data that does not necessarily need to persist
after the application process ends or needs to be sent quickly while a repo write operation may still be in
progress, the NDN-CCL provides the MemoryContentCache class, an in-memory content store that responds
asynchronously to requests received by the library.

From the time that a data packet is added to the MemoryContentCache, it is retained based on its
freshness period), after which it expires and is removed from the cache and not used to answer interests. This
is useful for data packets representing timely information such as the frames of a streaming video. Since
expired data is removed from the cache, an interest’s “must be fresh” selector| does not apply and is ignored.
(If the optional freshness period is not specified, the data packet is retained indefinitely.)

When the MemoryContentCache receives an interest without a “child selector”, it simply returns the
first data packet whose name matches based on the “min suffix components”, “max suffix components” and
“exclude” selectors (if present). If the interest has a “child selector”, it is applied after filtering based on the
other selectors.

This cache may duplicate entries in a local forwarder’s content store. In the future, the NFD forwarder
may provide an API for its own content store, which could be wrapped by this class to provide a more
memory-efficient option.

3.9 Protobuf-TLV Messages

To provide a language-independent way of defining messages, the NDN-CCL enables developers to de-
scribe messages in the well-known protocol buffer® definition format, and then creates encoding/decoding
helper classes in any of the NDN-CCL languages. Instead of encoding/decoding in the protocol buffer
format encoding, NDN-CCL provides the ProtobufT1lv utility to take a protocol buffer definition and en-
code/decode in NDN-TLV. This allows an application to define custom structured parameters of a signed
command interest, or a structured payload of a data packet. The application only needs to write a protocol
buffer definition, populate an in-memory object using the protocol buffer API, and call the library converter
to/from NDN-TLV.

4 Implementation Design Choices

This section describes the design choices for API features implemented in all the software languages and
provides details for each implemented software language. In general, design choices are made to meet the
goals of portability and minimal dependencies on external libraries.

4.1 All Languages
4.1.1 Generic Byte Arrays with Blob

The Common Client Libraries API for all languages uses a Blob class which holds an immutable byte
array and hides the details of how the byte array is implemented in the language. (For example, in Python
version 2 a byte array is the same as a string, but Python 3 implements a true byte array since a string
object was changed to hold Unicode characters.)

If an object uses mutable byte arrays (for example the component values of a name), then the library would
need to make a copy of the arrays when it stores the object (for example in the internal pending interest
table). This is because the application may change the values in the byte arrays causing unpredictable
behavior. But if the object uses immutable byte arrays, then the library does not need to make copies. It is
more efficient to avoid a data copy (especially for large byte arrays like the content payload of a data packet)
and cleaner semantics (for the same reasons that a String is immutable in languages like Java and Python).

http://named-data.net/doc/ndn-ccl-api/key-chain.html#keychain-verifyinterest-method
http://named-data.net/doc/ndn-ccl-api/memory-content-cache.html
http://named-data.net/doc/ndn-tlv/data.html#freshnessperiod
http://named-data.net/doc/ndn-tlv/interest.html#mustbefresh
http://named-data.net/doc/ndn-tlv/interest.html#childselector
http://named-data.net/doc/ndn-ccl-api/blob.html

Furthermore, even though an object like Name is mutable, it is relatively cheap to make a copy of it since
each name component is an immutable Blob so it is only necessary to do a shallow copy.

The Blob class also provides a common API for methods like size, isNull and toHex which make it
easier to port an NDN application from one software language to another.

4.1.2 Event processing with processEvents

JavaScript comes with a built-in event loop which automatically checks for incoming network data and
to provide a timer to call a function after a delay. But the other software environments (C++, Python and
Java) don’t have native support for an event loop. So, to make the libraries as portable as possible, the API
has the function processEvents| which the application must call frequently so that the library can check for
incoming network data and call any delayed functions (such as an interest timeout).

Also, JavaScript is single-threaded so it inherently avoids cross-threading problems. But the other lan-
guages (C++, Python and Java) support multible threads (but C++ and Python support it differently
based on the implementation). So, requiring the application to call processEvents helps with this problem
too. The application is required to call processEvents in the same thread that it calls expressInterest or
other methods which manipulate the same data structures as processEvents (such as the pending interest
table).

Although C++, Python and Java don’t have native support for an event loop, there are prominent
support utilities. For example, C++ can use Boost ASIO and Python can use asyncio (or Trollius in Python
2). These would change the core of the library since the choice of event loop must be allowed to "replace”
the underlying network I/O and timer code. We are looking for a way to support this while still retaining
the option for the processEvents approach.

4.2 C++ (NDN-CPP)
4.2.1 C core

While NDN-CPP provides an object-oriented C++ API for advanced applications, its core functionality
is implemented in C. The core C code makes few assumptions about memory management or linked library
support in order to promote use on a range of platforms from embedded processors up to high-performance
routers.

4.2.2 CH+ language features

In addition to the normal C++ class definitions for Name, Interest, etc., NDN-CPP supports the
following C++-specific features.

e Name as an array of components. The Name class supports operator [] so that you can more conveniently
access a name component with name [i] instead of the CCL name.get (i)l

e Name and Name.Component equality and comparison operators. The Name and Name.Component classes
support equality operators operator== and operator!=to check Name . equals and Name . Component . equals)
and comparison operators operator<, etc. for Name.compare|and Name .Component . compare|so that you
can more conveniently write, for example, if (namel == name2) or if (namel[3] < name2[3]).

e Name stream output. The stream output operator operator<< is overloaded for Name to call toUri so
that you can more conveniently write, for example, cout << namel to print the URI.

e FExclude as an array of entries. The Exclude class supports operator[] so that you can more conveniently
access an exclude entry with exclude[i] instead of the CCL lexclude.get (i)l

4.2.3 Shared pointers

There are many places in the CCL API where the application needs to allocate an object and pass it to
the library for the it to use and delete, or vice versa. For example when the library receives a data packet for
an interest, it allocates a Data object and passes it to the application through a callback function, where the
application is responsible for deleting it. Since an object is referred to in multiple places, it is not enough to
simply transfer ”ownership” to the part of the application which needs to delete it since the library would
need to waste time and memory to make copies of the object if it still needs to use it. Therefore, NDN-CPP
makes use of shared ptr, which is a reference-counting utility class designed to solve this common problem.

The shared ptr class is defined in three possible places: If the compiler is compliant with C++ 11,
then the standard library defines std::shared ptr. If the developer has installed Boost, then it defines

http://named-data.net/doc/ndn-ccl-api/face.html#face-processevents-method
http://named-data.net/doc/ndn-ccl-api/name.html#name-get-method
http://named-data.net/doc/ndn-ccl-api/name.html#name-equals-method
http://named-data.net/doc/ndn-ccl-api/name-component.html#name-component-equals-method
http://named-data.net/doc/ndn-ccl-api/name.html#name-compare-method
http://named-data.net/doc/ndn-ccl-api/name-component.html#name-component-compare-method
http://named-data.net/doc/ndn-ccl-api/name.html#name-touri-method
http://named-data.net/doc/ndn-ccl-api/exclude.html#exclude-get-method

boost: :shared_ptr. Finally, NDN-CPP includes the extracted files from Boost with the renamed namespace
ndnboost: :shared ptr.

The header file ndn-cpp/common. hpp defines the alias ptr_1ib which is used throughout NDN-CPP as
ptr_1ib::shared ptr. By default, if the compiler has C++ 11, then ptr_1ib is defined as std. Otherwise if
Boost is installed it is defined as boost. The C++ 11 standard library takes precedence over Boost because
the developer may have installed Boost for utilities other than boost: :shared_ptr. Finally, if neither is
available then ptr_lib is defined as the fallback ndnboost which means that NDN-CPP will compile even
if neither C++ 11 or Boost is installed. The default for ptr_1ib can be changed with the ./configure
options --with-std-shared-ptr and --with-boost-shared-ptr.

4.2.4 Function objects

The CCL APT uses callback functions. For example, expressInterest takes a parameter onData which
is called when the library receives a data packet for an interest. For a callback in C, an application will
typically pass a simple function pointer, but this requires it to also pass an extra pointer to a ”context”
containing the dynamic data needed by the callback function. C++ solves this common problem with the
bind utility which creates a ”function object” that automatically binds a function pointer to its context in
a single parameter.

As with shared_ptr above, the bind utility is defined in three possible places: If the compiler is com-
pliant with C++ 11, then the standard library defines std::bind. If the developer has installed Boost,
then it defines boost: :bind. Finally, NDN-CPP includes the extracted files from Boost with the renamed
namespace ndnboost: :bind.

And simiar to shared_ptr above, the header file ndn-cpp/common. hpp defines the alias func_1ib which
is used throughout NDN-CPP as func_lib::bind. By default, if the compiler has C++ 11, then func_lib
is defined as std. Otherwise if Boost is installed it is defined as boost. Finally, if neither is available then it
is defined as the fallback ndnboost. The default for func_1ib can be changed with the ./configure options
--with-std-function and --with-boost-function.

Although the support for shared_ptr and func_lib is similar, they are kept separate because an applica-
tion may start out using Boost for both, then as it upgrades to use C++ 11, it may for example update the
application code to use bind from the standard library but continue to use Boost for shared_ptr. Therefore,
NDN-CPP supports these separately.

4.2.5 Obtaining NDN-CPP
NDN-CPP can be obtained from http://github.com/named-data/ndn-cpp.
4.3 Python (PyNDN)

The PyNDN implementation in CCL aims to promote rapid, iterative development and better support
for new users of the architecture. It has evolved from Python wrappers around C code to be a pure Python
implementation, which aids cross-platform development. In the future, a higher performance version of the
library may be introduced that wraps NDN-CPP.

4.3.1 Python language features

In addition to the normal Python class definitions for Name, Interest, etc., PyYNDN supports the following
Python-specific features.

e Name as an array of components. The Name class supports __getitem _ (where the key is an int) so that
you can more conveniently access a name component with name[i] instead of the CCL name.get (1)

e Name and Name.Component equality and comparison operators. The Name and Name.Component classes
support equality operators __eq_-_ and __ne__ to check Name.equals and [Name.Component.equals, and
comparison operators __1t__, etc. for Name.compare|and Name.Component . compare|so that you can more
conveniently write, for example, if (namel == name2) or if (namel[3] < name2[3]).

e Name length. The Name class supports the Python idiom for __len__ so that you can more conveniently
get the name’s number of components with len(name) instead of the CCL name.size().

e FEzclude as an array of entries. The Exclude class supports __getitem__ (where the key is an int) so that
you can more conveniently access an exclude entry with exclude[i] instead of the CCL exclude.get (i)l

e FExclude length. The Exclude class supports the Python idiom for __len__ so that you can more conve-
niently get the exclude’s number of entries with len(exclude) instead of the CCL exclude.size().

http://github.com/named-data/ndn-cpp
http://named-data.net/doc/ndn-ccl-api/name.html#name-get-method
http://named-data.net/doc/ndn-ccl-api/name.html#name-equals-method
http://named-data.net/doc/ndn-ccl-api/name-component.html#name-component-equals-method
http://named-data.net/doc/ndn-ccl-api/name.html#name-compare-method
http://named-data.net/doc/ndn-ccl-api/name-component.html#name-component-compare-method
http://named-data.net/doc/ndn-ccl-api/name.html#name-size-method
http://named-data.net/doc/ndn-ccl-api/exclude.html#exclude-get-method
http://named-data.net/doc/ndn-ccl-api/exclude.html#exclude-size-method

e Blob length. The Blob class supports the Python idiom for __len__ so that you can more conveniently get
the blobl’s size with len(blob) instead of the CCL blob.size().

e Blob to string. Because PyNDN supports both Python 2 and 3 (see below), the Blob class supports the
string operator __str__. In Python 2, a str is simply an byte array, so this directly converts the blob to
a raw string. In Python 3, a str is a Unicode string, so this decodes the byte array as UTF8 and returns
the Unicode string.

4.3.2 Unified support for Python 2 and 3

Python 3 has enough differences from Python 2 that some Python projects provide different libraries
for applications developed with Python version 2 vs. 3. However, the CCL API provides a relatively high
level of abstraction from the lower-level details where differences between Python versions 2 and 3 matter.
Therefore, the CCL for Python (PyNDN) provides a single library to support both versions, using runtime
checks where needed to handle the low-level differences.

Futhermore, the CCL API already provides the Blob class (section which provides an abstraction
for a byte array which is one of the differences between Python versions 2 and 3. The Blob constructor accepts
many types of array and converts to a consistent internal representation based on the Python version.

4.3.3 Obtaining PyNDN

PyNDN can be obtained from http://github.com/named-data/PyNDN2, either directly from the repos-
itory or via instructions for package installation using easy_install.

4.4 JavaScript (NDN-JS)

NDN-JS is a pure JavaScript client library, previously called “lwNDN”. As mentioned above, it was orig-
inally intended to support browser-based experimentation with NDN but has also grown into an important
tool for developing user interfaces to NDN applications. It is described in more detail in [I] and [4].

4.4.1 Javascript language features

In addition to the normal JavaScript class definitions for Name, Interest, etc., NDN-JS supports the
following JavaScript-specific features.

e Fuce constructor parameters. In addition to the constructor which takes an explicit transport and con-
nectionInfo, the Face class supports the JavaScript constructor idiom of a single parameter which is an
associative array of optional parameters. See the JavaScript-only section of the constructor for a default
Transport.

4.4.2 Buffer wrapper for the browser

For JavaScript, we want a single library to support applications in both the browser and in Node.js.
The main differences are in socket communication and in the type of object to represent a byte array. For
socket communication, the CCL API already provides the Transport class abstraction so we use a different
subclass for communication in the browser and in Node.js.

But for byte array objects, the browser uses Uint8Array® and Node.js uses Buffer’ which are incom-
patible. Therefore, in the browser we use a wrapper class with the same API as the Buffer class, but uses
a Uint8Array underneath. Since JavaScript is loosely typed, we can always refer to Buffer throughout the
JavaScript library code, whether it is used in the browser or Node.js.

4.4.3 Support for Node.js

The NDN-JS library can also be used in to create standalone Javascript applications outside of the
browser through Node.js.

4.4.4 Obtaining NDN-JS

NDN-JS can be obtained from http://github.com/named-data/ndn-js, either directly from the repos-
itory or via instructions for package installation on Node.js using npm.

4.5 Java (jJNDN)

The Java library, jJNDN, aims to provide a native Java implementation of the CCL. It is currently
motivated by the need to provide support for Android development as part of the NDN research project.

http://named-data.net/doc/ndn-ccl-api/blob.html#blob-size-method
http://github.com/named-data/PyNDN2
http://named-data.net/doc/ndn-ccl-api/face.html#face-constructor-explicit-transport
http://github.com/named-data/ndn-js

4.5.1 ByteBuffer

Java provides many types of object to represent an array of numbers, such as byte[], int [], ByteArrayOutputStream
and ByteBuffer. For efficiency reasons, we want a type of object which can map directly to an underlying
block of memory, which rules out byte[] and int[]. ByteArrayOutputStream has the option to use an
underlying block of memory but is restricted to stream-style operations and doesn work with NIO. Therefore,
we use ByteBuffer.
ByteBuffer also has the nice feature of a slice operation which shares the memory of a subsequence,
which can safely be used with the immutable Blob class (section [1.1.1)). It is OK to pass a new Blob which
shares a subsequence with the original Blob since the bytes won’t be changed.

4.5.2 Obtaining jJNDN
jNDN can be obtained from http://github.com/named-data/jndn.

5 Usage

The NDN-CCL is currently used by the following applications and application research projects:

e CCNx Federated Wiki, an NDN port of the Smallest Federated wiki (NDN-JS)

e Chronochat-js, a javascript implementation of the ChronoChat demonstration application (NDN-
JS)

e Matryoshka, an experimental multi-player online game using NDN and the Unity3D game engine.
(jndn as the basis of the .NET port of CCL used in this project.)

e ndn-bms, a building management system prototype being developed as part of the NDN-NP project
(PyNDN, NDN-JS)

e ndn-lighting, lighting control application using NDN (PyNDN, NDN-JS)

e ndn-protocol, a firefox browser plug-in supporting an ndn:/ retrieval scheme (NDN-JS)

NDNEZXx, an NDN-based mobile health application being developed as part of the NDN-NP research

project. (jndn)

ndnfs and ChronoShare, NDN file sharing platforms (PyNDN)

NDNOoT, the Named Data Network of Things toolkit for the Raspberry PI (PyNDN, NDN-JS)

ndnrjs, a javascript implementation of an NDN repository (NDN-JS)

ndnrtc, a peer-to-peer multiparty audio, video, and chat application over NDN. (NDN-CPP, NDN-

JS)

ndnstatus, the NDN routing status web page (PyNDN, NDN-JS)

e NDNVideo, a video playout application for NDN (PyNDN)

e OpenPTrack-NDN an open source person tracking system that will add NDN support in Fall
2014. (NDN-CPP)

Please contact the authors to add other applications to this list.

6 Conclusion

The NDN-CCL is an actively developed set of libraries for writing Named Data Networking applications.
The developers invite feedback on the approach, API, and implementation.

6.1 Future Work

Future work under discussion includes .NET framework support, a prototype for which has been developed
to support the Matryoshka® multiplayer online game project.

Additionally, NDN-CCL will continue to incorporate new research in the NDN project, including archi-
tectural evolution, security and applications results, and API concepts.

6.2 Acknowledgements

Many people have contributed to the NDN-CCL, including: Ryan Bennett, Alex Horn, Felix Rabe, Anmol
Rajpurohit, Wentao Shang, and Zhehao Wang. The library also makes heavy use of features first introduced
in NDN-CXX and the NDN Security Library, whose primary authors include Alex Afanasyev, Junxiao Shi,
and Yingdi Yu. PyNDN is based on code by Derek Kulinski and Jeff Burke. NDN-JS is based on code by
Meki Cherkaoui and Axel Colin de Verdiere, later updated by Wentao Shang.

http://github.com/named-data/jndn

Notes

Thttp://named-data.net/doc/NFD/current/
%http://redmine.named-data.net/projects/ndnd-tlv/wiki
Shttp://named-data.net/codebase/platform/documentation/ndn-platform-development-guidelines/
4http://redmine.named-data.net/projects/ndn-cxx/wiki/SecurityLibrary
Shttps://developers.google.com/protocol-buffers
Shttps://developer.mozilla.org/en-US/docs/Web/API/Uint8Array
"http://nodejs.org/api/buffer.html

8https://github.com/zhehaowang/NDNMOG-live

References

[1] Wentao Shang, Jeff Thompson, Meki Cherkaoui, Jeff Burke, and Lixia Zhang. NDN.JS: A javascript client
library for Named Data Networking. In Proceedings of IEEE INFOCOMM 2013 NOMEN Workshop,
April 2013.

[2] NDN Project Team. Named data networking (ndn) project. Technical Report NDN-0001, Revision 1,
NDN, October 2010.

[3] NDN Project Team. Naming conventions. Technical Report NDN-0022, Revision 1, NDN, July 2014.

[4] Jeff Burke Wentao Shang, Jeff Thompson and Lixia Zhang. Development and experimentation with
ndn-js, a javascript library for named data networking. Technical Report NDN-0014, Revision 1, NDN,
August 2013.

[6] Zhenkai Zhu, Alexander Afanasyev, and Lixia Zhang. Let’s ChronoSync: Decentralized dataset state
synchronization in Named Data Networking, 2013. under submission.

10

http://named-data.net/doc/NFD/current/
http://redmine.named-data.net/projects/ndnd-tlv/wiki
http://named-data.net/codebase/platform/documentation/ndn-platform-development-guidelines/
http://redmine.named-data.net/projects/ndn-cxx/wiki/SecurityLibrary
https://developers.google.com/protocol-buffers
https://developer.mozilla.org/en-US/docs/Web/API/Uint8Array
http://nodejs.org/api/buffer.html
https://github.com/zhehaowang/NDNMOG-live

	Introduction
	Relationship to NDN-CXX

	Design Goals
	The CCL API
	Interest / Data Exchange
	Representing Interest and Data Packets
	Signing and Verification
	Client configuration file
	Sync
	Name Convention Support
	Versioning, Segmenting and Timestamping

	Command Interests
	Memory Content Cache
	Protobuf-TLV Messages

	Implementation Design Choices
	All Languages
	Generic Byte Arrays with Blob
	Event processing with processEvents

	C++ (NDN-CPP)
	C core
	C++ language features
	Shared pointers
	Function objects
	Obtaining NDN-CPP

	Python (PyNDN)
	Python language features
	Unified support for Python 2 and 3
	Obtaining PyNDN

	JavaScript (NDN-JS)
	Javascript language features
	Buffer wrapper for the browser
	Support for Node.js
	Obtaining NDN-JS

	Java (jNDN)
	ByteBuffer
	Obtaining jNDN

	Usage
	Conclusion
	Future Work
	Acknowledgements

