- History and motivation
- Content Model
- Security Model
- Node Model
- Routing
- Transport

CCN packets

"interest"	"data"
Content Name	Content Name
Selector (order preference, publisher filter, scope,)	Signature (digest algorithm, witness,)
Nonce	Signed Info (publisher ID, key locator, stale time,)
	Data

There are just two CCN packet types interest (similar to http "get") and data (similar to http response). Both are encoded in an efficient binary XML.

Internally, CCN names are opaque, structured byte strings

/parc.com/van/cal/417.vcf/v3/s0/0x3fdc96a4...

is represented as a component count then, for each component, a byte count followed by that many bytes:

The only assumption CCN makes about names is hierarchical structure. E.g., names or components can be encrypted or contain arbitrary binary data.

Using Names

- The hierarchical structure is used to do 'longest match' lookups (similar to IP prefix lookups) which helps guarantee log(n) state scaling for globally accessible data.
- Although CCN names are longer than IP identifiers, their *explicit structure* allows lookups as efficient as IP's.

(see hashing work by Rasmus Pagh and Martin Dietzfelbinger)

Names and meaning

 Like IP, a CCN node imposes no semantics on names — meaning comes from application, institution and global conventions reflected in prefix forwarding rules.

For example,

/parc.com/people/van/presentations/FISS09
might be the name of a presentation's data and
 /thisRoom/projector
the name of the projector it should display on.

• The former is a globally meaningful name leveraging the DNS global naming structure. The latter is local and context sensitive—it refers to different objects depending on the room you're in.

Basic CCN forwarding

Consumer 'broadcasts' an 'interest' over any & all available communications media:

Want '/parc.com/van/presentation.pdf'

- Interest identifies a collection of data all data items whose name has the interest as a prefix.
- Anything that hears the interest and has an element of the collection can respond with that data:

HereIs '/parc.com/van/presentation.pdf/p1' <data>

This isn't google - it's how IP works at the packet level

- Node announces (via 'promiscuous ARP') interest in packets sent to its IP address:
 arp 1.2.3.4 is-at 02:07:01:00:01:c4
- Interest is propagated via IP routing (with host-level granularity aggregated to subnet then net-level as interest gets farther away).
- Packets bound for node follow trail of interests (routes) back to it.

IP route propagation and aggregation

Basic CCN transport

- Data that matches an interest 'consumes' it.
- Interest must be re-expressed to get new data. (Controlling the re-expression allows for traffic management and environmental adaptation.)
- Multiple (distinct) interests in same collection may be expessed (similar to TCP window).

TCP works this way at the packet level

- a TCP Ack expresses interest in new data on a connection.
- Sending new data consumes the Ack and another must generated to get more data.
- Multiple Acks (and associated data packets) may be in transit simultaneously.
- System always operates in bounded flow balance regime which is robust and stable under arbitrary aggregate demand.
 (see "Reversibility and Stochastic Networks", Frank Kelly, 1979)

IP node model

IP node model

CCN node model

CCN node model

CCN node model

There's no "me" test since CCN demuxing & forwarding are the same

There's no TTL decrement since nothing can loop. (CCN packets are never modified in transit.)

