
NDN, Technical Report NDN-0015, 2013. http://named-data.net/techreports.html
Revision 1: November 7, 2013

NDNBlue: NDN over Bluetooth
Arjun Attam∗, Ilya Moiseenko†

∗Indian Institute of Technology, Delhi. arjunattam@gmail.com
†University of California, Los Angeles. iliamo@ucla.edu

Abstract—Named Data Networking is a network protocol that
in future is able to displace IP protocol from its current role of
a dominating inter-networking layer and also to have an edge in
such areas of networking as PAN (Personal Area Networking)
where IP protocol has never been universally used. This project
looks into the problem of fitting Named Data Networking request-
response communication model into constrained Bluetooth net-
working stack for both mobile and desktop platforms. We provide
a cross platform proxy layer, which works between NDN stack
and Bluetooth stack to achieve NDN connectivity over Bluetooth
links for multiple platforms.

Index Terms—Information-centric networks, named-data net-
working, bluetooth, device-to-device communication

I. INTRODUCTION

NDNBlue is an endeavor to extend the scope of NDN ap-
plications with Bluetooth. The present CCNx software router
[1] implementation for Named Data Networking works with
TCP and UDP tunnels and also can be extended with NDNLP
[2] — a link level protocol for Ethernet.

With the advent of mobile devices, Bluetooth has become
a popular wireless technology standard used for exchanging
data over short distances by creating a personal small area
networks. Bluetooth focuses on short distance communication,
typically around 30 ft. As compared to traditional wireless,
Bluetooth enables applications and devices to connect through
an ad-hoc, low-cost and power efficient medium.

Bluetooth development is a very platform and manufacturer
dependent, and therefore, NDNBlue is currently restricted to
a few platforms for now: Linux and Android. In operation,
NDNBlue is similar to NDNLP as it operates as a proxy layer
between the NDN stack (network layer) and the Bluetooth
stack (link layer.) It uses RFCOMM, a reliable transport
protocol for Bluetooth.

This document describes the design of a proxy layer,
which exposes Bluetooth interface to NDN software router.
Section VII contains protocol choices and security caveats for
Bluetooth. The source code is publicly available on Github
and links are located in section VIII.

II. REQUIREMENTS

NDNBlue works on Linux and Android devices. NDNBlue
is compatible with BlueZ, the official Bluetooth protocol
stack on Linux (refer to the implementation specifics section
for more information on Bluetooth stacks and platforms.)
NDNBlue requires the NDN software router and its C library
to be installed on Linux and the corresponding services
application on Android.

III. CONFIGURATION

The process of establishing a Bluetooth connection to run
NDN is initiated by devices finding other physically proximate
Bluetooth enabled devices. The user needs to decide between
an incoming connection (server) or an outgoing connection
(client.)

A. Discovering Devices

NDNBlue for Android can discover nearby Bluetooth de-
vices to identify the server device for outgoing connections.
The process requires that the server be set as discoverable by
other Bluetooth devices.

B. Security caveats

It is recommended that the devices should be authenticated
using the one-time pairing process in the OS level settings
before starting NDNBlue. This is to eliminate the differences
in security implementations by various Bluetooth stacks.

IV. DESIGN

To add a Bluetooth interface to NDN software router,
NDNBlue follows a similar approach as NDNLP. NDNBlue is
implemented as NDN application behaving as a proxy between
Bluetooth platform dependent stack and NDN platform inde-
pendent stack, and runs on Linux and Android. Alternatively,
NDNBlue could be integrated into the NDN software router
code base, but this option was disregarded due to frequent
changes of the NDN daemon itself, which would lead to a
big maintenance costs and stability issues of this solution. As
a result, by working between the Bluetooth stack and NDN
software router, NDNBlue relays packets and enables a user
to add a Bluetooth face to the router.

A. Bluetooth transport level

NDNBlue uses RFCOMM as the transport protocol for
Bluetooth. In addition, NDNBlue uses the Bluetooth Service
Discovery Protocol (SDP) to register a server application
which allows client devices to find out the RFCOMM channel
of the server [6]. By using a common hard coded UUID,
NDNBlue over Android can connect to the NDNBlue on
BlueZ.

NDNBlue uses nonblocking Bluetooth sockets, via polling
(Linux) and threading (Android.)

http://named-data.net/techreports.html


2

Figure 1: Basic architecture

B. NDNBlue on Linux

NDNBlue on Linux is dependent on the NDNLP imple-
mentation. NDNLP and NDNBlue can work side-by-side. It
connects to local ccnd using a UNIX domain socket face,
and it is dependent on ccnd for routing and forwarding.
Unlike NDNLP, NDNBlue does not support control face for
control commands. Face management and prefix registration
are handled by NDNBlue which can manage one Bluetooth
connection.

To use NDNBlue on Linux, download the source from
Github and build binaries with the waf files. After ensuring
that ccnd is running, use one of the following:

• ndnblue /prefix server
• ndnblue /prefix client server-MAC-addr

You can choose any prefix as desired, and
server-MAC-addr is the 48-bit MAC address of the
NDNBlue server.

C. NDNBlue on Android

The restrictive nature of Android enforces certain changes
to the approach taken by NDNBlue to communicate with
the CCNx Service Control application. UNIX domain sock-
ets on Android require administrator user privileges through
native code which is not possible without changing the
stock firmware and bootloader of the device through rooting.
Therefore, unlike NDNBlue for BlueZ, NDNBlue on Android
connects to CCNx using TCP sockets, which do not require
any changes to the device firmware. By compiling CCNx with
the -DCCN_LOCAL_TCP flag, TCP sockets are used instead
of UNIX domain sockets. [3]

This Java implementation of NDNBlue on Android trans-
mits ccnb encoded packets over Bluetooth and registers itself
as a callback handler for Interests and ContentObjects at local
ccnd. Simple face management and prefix registration is
handled by NDNBlue.

To use NDNBlue for Android, build the code on Github and
ensure CCNx services are running on the device. Then,

• Pair Bluetooth devices using OS level settings.
• Open app on device and choose a prefix
• Start server, or,
• Discover server’s Bluetooth address and start client
After the connection is established, CCNx apps on Android

can be used over Bluetooth.

V. TESTS

NDNBlue was tested with CCNx 0.7.1 running on two lap-
tops with Xubuntu 12.04 32-bit and two Samsung SCH-I535
phones running Android 4.2.1. The laptops have Broadcom
Bluetooth adapters, and one of them runs in a VirtualBox
environment. Before running NDNBlue, the devices were
paired using the Bluetooth settings at the operating systems
level. For Android devices, pairing requires the devices to be
in discoverable mode. In our case, once the devices are paired,
it is possible for establish a connection even if the devices are
not discoverable, but this is device dependent.

We wrote an Android version of ccnping [4] to test com-
munication between two devices running NDNBlue, across
Linux and Android platforms. Along with the Bluetooth
interfaces, the test devices were also connected to other
TCP/UDP/IP interfaces, and NDNBlue faces behaved as ex-
pected.

The RTT as measured using ccnping were between a
minimum of 59 ms to a maximum of 152 ms, with a median
of 98 ms and there were no timeouts.

VI. LIMITATIONS AND FUTURE WORK

With the variations in Bluetooth stacks and platforms,
NDNBlue only supports Linux and Android. While NDNBlue
works across different Bluetooth platforms, the application
code is not portable across different stacks.

The current implementation of CCNx Service Control on
Android requires an IP address to start services and therefore
the Android device needs to be connected to a wireless net-
work before NDNBlue can be used. This affects the ability of
Android devices to setup ad-hoc Bluetooth networks running
NDN. The issue can be resolved by changing the CCNx
implementation on Android to accommodate the possibility of
using non IP based networks. However, once the services start,
running NDNBlue does not require connection to a wireless
network.

As of now, NDNBlue is restricted to only one Bluetooth
connection per device. Since SDP is supported, it is possible
to use dynamically allocated RFCOMM channels in server de-
vices, and thereby alleviate this limitation. Currently, there are
no APIs to support broadcast communication in a Bluetooth
piconet, which can have one master with at most seven slaves,
and thus NDNBlue cannot broadcast messages.

VII. IMPLEMENTATION SPECIFICS

A. Platforms

In most cases, Bluetooth radio devices are bundled with
their own drivers, libraries and tools, collectively referred to
as Bluetooth stacks, which can be roughly divided into two
categories:

• Desktop operating systems implementations: focussing
on manufacturer flexibility and diverse use cases

• Embedded systems implementations: focussing on spe-
cific features limited by the scope of the portable devices
like phones, automotive controls and health peripherals.



3

As of now, every desktop operating system has a different
stack, and in some cases there are multiple stacks available
by default, for example Widcomm and MSFT Bluetooth for
Microsoft Windows. BlueZ is the most popular Bluetooth stack
for Linux distributions, and it supports all core Bluetooth
protocols and layers. Before Android 4.2, the BlueZ stack
was also used by plurality of Android phone manufacturers,
with the exception of Samsung. However, with the advent
of 4.2, Android has moved to a different proprietary stack
developed by Broadcom called Bluedroid. [7] The Android
documentation recommends using the Bluetooth Java APIs in
the Android SDK to ensure portability over Android devices.
Therefore, the original idea of having a common BlueZ C
code to run on Linux and Android was consequently dropped
since native Android development for Bluetooth has issues
with device portability.

B. Device Discovery

A Bluetooth device can either establish an outgoing connec-
tion (client) or an incoming connection (server.) The words
client and server are only used to signify who initiates the
conversation, and does not imply the client-server relationship
of typical network programming. It is possible for Bluetooth
server device to function as a client, and vice versa. Before
establishing the connection, a client device needs to choose a
target device and a transport protocol, while a server device
needs to choose a transport protocol and then begin listening
for incoming connections. The target device address is found
by device discovery.

Bluetooth devices are identified with a unique static 48-
bit address, which is identical to the Machine Address Code
(MAC) address for Ethernet and a user friendly name, which
may or may not be unique. Unlike TCP/IP where Ethernet
MAC addresses are discarded for practical purposes in the
higher layers, to establish an outgoing Bluetooth connection, a
client application needs to know the unique Bluetooth address
of the remote device. The device inquiry process is used to
detect nearby Bluetooth devices by broadcasting a special
message and waiting for replies, which helps to identify the
remote devices. The Bluetooth discovery process involves
inquiry scan of roughly 10 seconds, followed by a page scan
to find user friendly names. [8]

A Bluetooth device can control whether it is discoverable
by other Bluetooth devices, and different manufacturers have
different default settings. Typical Linux machines are discov-
erable by default, but almost all Android phones cannot be
detected by other Bluetooth devices by default, and they need
to be declared discoverable for the discovery process. This is
done using the Android device settings.

C. Security

With the diversity in Bluetooth stacks, security implementa-
tions vary. Bluetooth authentication and encryption is typically
handled at the operating system level, and therefore some se-
curity configuration is recommended before using NDNBlue.
The one-time process of authentication between two Bluetooth

devices is called pairing, wherein a Bluetooth PIN sequence
is used as a shared secret. Pairing of Bluetooth devices is
handled by the Bluetooth settings provided by the operating
system, and it enables Bluetooth applications on each device
to request encryption and authentication as required.

D. Transport Protocol

RFCOMM is the only protocol supported by all Bluetooth
stacks. For example, BlueZ is bundled with multiple transport
protocols, including RFCOMM and L2CAP, but as of now
the Android SDK only supports RFCOMM [5]. RFCOMM
is a general-purpose reliable streams-based protocol and it
closely resembles TCP. However, unlike TCP, RFCOMM
only supports 30 ports or channels, which significantly af-
fects the choice of channel for server applications. Due to
its widespread usage, RFCOMM is entitled to support and
documentation.

The Service Discovery Protocol (SDP) for Bluetooth en-
ables a remote client device to discover services identified
with a 128-bit Universally Unique Identifier (UUID.) [6]

VIII. SOURCE CODE

• github.com/arjun27/NDNBlue-Android
• github.com/arjun27/NDNBlue-BlueZ
• github.com/arjun27/CCNPing-Android

REFERENCES

[1] “CCNx” [Online]. Available: http://www.ccnx.org
[2] Junxiao Shi, Beichuan Zhang, “NDNLP: A Link Protocol for

NDN”, Technical Report NDN-0006, 2012 [Online]. Available: named-
data.net/techreport/TR006-LinkProtocol.pdf

[3] “CCNx - Feature #100760: TCP connections to ccnd” [Online]. Available:
redmine.ccnx.org/issues/100760

[4] “ccnping” [Online]. Available: github.com/NDN-Routing/ccnping
[5] “Android BluetoothSocket API” [Online]. Available: devel-

oper.android.com/reference/android/ bluetooth/BluetoothSocket.html
[6] Tim Howes, “Discovery Whitepaper: Service Discovery

Applications”, Bluetooth Special Interest Group [Online].
Available: www.bluetooth.org/DocMan/handlers/ Download-
Doc.ashx?doc id=144841

[7] “Broadcom Press Release” [Online]. Available: broad-
com.com/press/release.php?id=s721534

[8] Albert Huang, “An Introduction to Bluetooth Programming” [Online].
Available: people.csail.mit.edu/albert/bluez-intro/


	Introduction
	Requirements
	Configuration
	Discovering Devices
	Security caveats

	Design
	Bluetooth transport level
	NDNBlue on Linux
	NDNBlue on Android

	Tests
	Limitations and Future Work
	Implementation specifics
	Platforms
	Device Discovery
	Security
	Transport Protocol

	Source code
	References

