MLCOM2017

MILITARY COMMUNICATIONS AND INNOVATION - PRIORITIES FOR THE MODERN WARFIGHT

Evaluating NDN in a Notional Tactical Networks

©2017 The MITRE Corporation. ALL RIGHTS RESERVED Approved for public release. Distribution unlimited 17-3341-4

BALTIMORE, MD • OCTOBER 23–25, 2017

BALTIMORE, MD • OCTOBER 23-25, 2017

- A lot of tactical applications are inherently content-centric
 - E.g. Blue force tracking
 - Overlay solutions already in place that attempt to bring the data closer to its consumers
 - Complicate the network
 - Not too efficient

- Data dissemination in a lot of cases is one-to-many
 - E.g. Multicast TADIL-J
 - Multicast protocols are complex and lack resiliency

- Data analytics is making its way into the tactical edge
 - E.g. Naval Tactical Cloud
 - Complex algorithms to extract the semantics of the data

How does NDN compare to legacy protocols?

- Evaluate NDN in a notional USAF scenario
- Objective: evaluate resiliency in a highly disrupted environment

BALTIMORE, MD • OCTOBER 23–25, 2017

- 6 Command Centers (yellow)
- 3 Gateways (in blue)
- 10 friendly aircrafts
- 2 enemy aircrafts
- 3 enemy tanks
- Links with varying characteristics
- Data transfer from CCs to AC

BALTIMORE, MD • OCTOBER 23–25, 2017

- 6 Command Centers (yellow)
- 3 Gateways (in blue)
- 10 friendly aircrafts
- 2 enemy aircrafts
- 3 enemy tanks
- Links with varying characteristics
- Data transfer from CCs to AC

BALTIMORE, MD • OCTOBER 23–25, 2017

- 6 Command Centers (yellow)
- 3 Gateways (in blue)
- 10 friendly aircrafts
- 2 enemy aircrafts
- 3 enemy tanks
- Links with varying characteristics
- Data transfer from CCs to AC

BALTIMORE, MD • OCTOBER 23–25, 2017

- 6 Command Centers (yellow)
- 3 Gateways (in blue)
- 10 friendly aircrafts
- 2 enemy aircrafts
- 3 enemy tanks
- Links with varying characteristics
- Data transfer from CCs to AC

BALTIMORE, MD • OCTOBER 23–25, 2017

- 6 Command Centers (yellow)
- 3 Gateways (in blue)
- 10 friendly aircrafts
- 2 enemy aircrafts
- 3 enemy tanks
- Links with varying characteristics
- Data transfer from CCs to AC

BALTIMORE, MD • OCTOBER 23–25, 2017

- 6 Command Centers (yellow)
- 3 Gateways (in blue)
- 10 friendly aircrafts
- 2 enemy aircrafts
- 3 enemy tanks
- Links with varying characteristics
- Data transfer from CCs to AC

BALTIMORE, MD • OCTOBER 23–25, 2017

- Data transport through:
 - TFTP over UDP/IP
 - NORM over UDP/IP
 - SCPS-TP over IP
 - NDN over IP or Ethernet
- 20 minute runs using CORE

BALTIMORE, MD • OCTOBER 23–25, 2017

- Large file transfer A:
 - From CC2 to one randomly selected aircraft
 - Every 2-3 minutes (total of 8 files/1MB each)
 - Files only valid within 3 minutes of their generation

BALTIMORE, MD • OCTOBER 23–25, 2017

- Large file transfer B:
 - From CC2 to all aircrafts
 - Every 2-3 minutes (total of 8 files/1MB each)
 - Files only valid within 3 minutes of their generation

BALTIMORE, MD • OCTOBER 23–25, 2017

- Small file transfer:
 - From all CCs to all aircrafts
 - Every 6 seconds (total of 900 files/15KB each)

BALTIMORE, MD • OCTOBER 23–25, 2017

- PLI data
 - From all aircrafts to all other aircrafts <u>and</u> all CCs
 - Sent over IP multicast first
 - AC-GW caches as NDN packets and forwards as IP multicast
 - Lost data pulled by receivers from NDN caches

BALTIMORE, MD • OCTOBER 23–25, 2017

Evaluating NDN: Mobility & Connectivity

- Aircrafts move randomly and independently
- Satellite AC-GW link is down for 2 min every 5 min
- HMV \(\low AC-GW \) link is down for 30 sec every 2 min

BALTIMORE, MD • OCTOBER 23–25, 2017

Evaluating NDN: Mobility & Connectivity

- 10% packet loss on
 Sat-GW (AC-GW link)
- - 2Mbps links with 20ms
 delay

BALTIMORE, MD • OCTOBER 23–25, 2017

Evaluating NDN: Evaluation Metrics

- File delivery ratio
- File delivery delay
- Transport efficiency
 - Total data delivered/Total data moved across a link

BALTIMORE, MD • OCTOBER 23-25, 2017

Evaluating NDN: File Delivery Ratio

- NDN delivered > 90%
 - Benefits from innetwork caching
- Other mechanism failed
 - Dependent on end-toend connectivity

BALTIMORE, MD • OCTOBER 23–25, 2017

Evaluating NDN: File Delivery Ratio

- Link outages prohibited the delivery of all 900 files
- NORM performed similar to NDN

BALTIMORE, MD • OCTOBER 23–25, 2017

Evaluating NDN: File Delivery Delay

• 2.5 minutes on average to retrieve a large file

BALTIMORE, MD • OCTOBER 23–25, 2017

Evaluating NDN: File Delivery Delay

- Much higher delay for NORM in comparison to NDN
 - End-to-end NACKs vs.
 in-network caching

BALTIMORE, MD • OCTOBER 23–25, 2017

Evaluating NDN: Efficiency

Total data delivered

Total data moved

BALTIMORE, MD • OCTOBER 23–25, 2017

Evaluating NDN: Caching

- Evaluated with smaller cache space
 - Delivery delay increases delivery ratio may decrease (due to cache misses)
 - Outperforms all other mechanism even with caching space = 25% of the total data

BALTIMORE, MD • OCTOBER 23-25, 2017

Evaluating NDN: NDN as a secondary transport

- PLI data sent over IP multicast
- Missing location data (i.e. "holes" in the sequence) retrieved via NDN

BALTIMORE, MD • OCTOBER 23-25, 2017

How to integrate legacy tactical applications?

BALTIMORE, MD • OCTOBER 23-25, 2017

Cursor-on-Target traffic over NDN

- Seamlessly operate
 CoT data over NDN
- Significant resiliency gains compared to operation over IP

Conclusion

- NDN improves network resilience even under extreme DIL network conditions
- NDN efficiently utilizes (scarce) network resources
- NDN can be integrated into existing IP infrastructure